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Introduction: Despite Toxoplasma gondii infection leading to dysbiosis and

enteritis, the function of gut microbiota in toxoplasmosis has not been explored.

Methods: Here, shotgun metagenomics was employed to characterize the

composition and function of mouse microbial community during acute and

chronic T. gondii infection, respectively.

Results: The results revealed that the diversity of gut bacteria was decreased

immediately after T. gondii infection, and was increased with the duration of

infection. In addition, T. gondii infection led to gut microbiota dysbiosis both in

acute and chronic infection periods. Therein, several signatures, including

depression of Firmicutes to Bacteroidetes ratio and infection-enriched

Proteobacteria, were observed in the chronic period, which may contribute to

aggravated gut inflammation anddisease severity. Functional analysis showed that

a large amount of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

and carbohydrate-active enzymes (CAZy) family displayed distinct variation in

abundance between infected and healthy mice. The lipopolysaccharide

biosynthesis related pathways were activated in the chronic infection period,

which might lead to immune system imbalance and involve in intestinal

inflammation. Moreover, microbial and functional spectrums were more

disordered in chronic than acute infection periods, thus implying gut microbiota

was more likely to participate in disease process in the chronically infected mice,

even exacerbated immunologic derangement and disease progression.

Discussion: Our data indicate that the gut microbiota plays a potentially

important role in protecting mice from T. gondii infection, and contributes to

better understand the association between gut microbiota and toxoplasmosis.

KEYWORDS

Toxoplasma gondii, toxoplasmosis, gut microbiota, metagenomic sequencing,
intestinal inflammation
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Introduction

Toxoplasma gondii is a type of parasite that survives in cells and

is capable of infecting a vast majority of endotherms, including

humans (1). The primary means of T. gondii contact is direct or

indirect consumption of food and water containing T. gondii

oocysts (2, 3). The initial manifestation of T. gondii infection is

usually asymptomatic; however, in some cases, the infection may

cause cervical lymphadenopathy or ocular disease (4). In particular,

pregnant women infected with T. gondii may face severe harm to

their fetus (5). Toxoplasmosis is one of the major global public

health issues. Approximately 8%–22% of individuals in the United

States and a similar ratio in the United Kingdom are estimated to be

infected with T. gondii. Meanwhile, in Central America, South

America, and continental Europe, the infection rates are believed

to range from 30% to 90% (6, 7). In China, among 49,784 Chinese

blood donors, the overall incidence of T. gondii infection is 6.26% as

determined by immunoglobulin G (IgG) seroprevalence (8). Upon

the momentous impact of toxoplasmosis on the health of humans

and animals, it is urgent to develop effective treatment measures.

The actively proliferating tachyzoites of T. gondii, which give

rise to acute infection, are usually effectively controlled by the

body’s immune system (9, 10). Current studies suggest that there

are complex interplays among T. gondii, the mucosal immune

system, and the gut microbiota during parasitic infection (11, 12).

The gut microbiota is considered as a significant ally of human cells.

The engagement of the gut microbiota in interactions with human

cells and the alteration of the gut microbiota balance have been

implicated in disrupting human health (13–15). The maladjustment

of intestinal microecology may cause many diseases, including

those affecting the cardiovascular and nervous systems, and

directly correlates to gastrointestinal disease (16). The alteration

of the gut microbiota is strongly associated with the inflammatory

responses and malfunction of the intestines during parasitic

infection (17). Many parasites, such as Blastocystis sp. and

Cryptosporidium parvum, can change the intestinal microbial

community structure, which is able to influence the onset and

progression of disease (17, 18). Research regarding the complex

interplays among the immune system, gut bacteriome, and

protozoa emphasizes the safeguarding role of the gut microbiota

against protozoan infections (17, 19). In-depth understanding of

this protective mechanism would help prevent and treat intestinal

parasitic infections through changing the compositions of the

intestinal flora.

Recently, some studies showed the diversity and composition of

the gut microbiota in rodents infected with T. gondii by 16S

amplicon sequencing (20–22). However, the functional features of

the gut microbiota in mice with toxoplasmosis remain unclear. To

investigate the potential role of the gut microbiota in mice against T.

gondii infection, we explored the dynamic changes of intestinal

bacteria during T. gondii infection periods (acute and chronic

periods) using metagenomic sequencing. Insights into aspects of

structure and function of the microbial community may help

researchers and clinicians prevent and treat parasitic infections by

manipulating microbiota components.
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Materials and methods

Experimental design and sample collection

Eight- to 10-week-old female C57BL/6 mice with an average

weight of 19 g were purchased from SPF (Beijing) Biotechnology

Co., Ltd. All mice were raised under a 12-h light/dark cycle with an

independent ventilation system and were given food and water by

ad libitum access. The Prugniaud strain of T. gondii (Type II) used

for constructing infectious models was obtained from the State Key

Laboratory of Veterinary Etiological Biology. After 1 week of

acclimatization, the mice were randomly divided into four groups

(n = 6 per group): acute infection (AI) group, chronic infection (CI)

group (CI), and two control groups for acute (AC) and chronic

(CC) phases. The mice were orally infected with 20 T. gondii oocysts

in the two infection groups and were perfused with 0.5 mL sterile

phosphate-buffered solution in the control groups. The mice were

sacrificed on day 11 (acute period; AI, AC) and day 33 (chronic

period; CI, CC) after infection, and at least 2 g of cecal contents were

aseptically collected and stored at -80°C for DNA extraction. All

animal experiments were approved by the Qingdao Agriculture

University Ethics Committee.
DNA extraction and metagenomic
sequencing

Genomic DNA was extracted from cecal contents using the

cetyltrimethylammonium ammonium bromide method. The purity

and concentration of DNA were determined by 1% agarose gel

electrophoresis. The sequencing library was generated using NEB

Next® Ultra™ DNA Library Prep Kit for Illumina (NEB, USA)

following the manufacturer’s recommendations, and index codes

were added to each sample. Briefly, the genomic DNA sample was

fragmented to a size of 350 bp by sonication for Illumina

sequencing. Shotgun metagenomic sequencing was carried out on

the Illumina NovaSeq 6000 platform with a 150-bp paired-end

read length.
Metagenome assembly and binning

Metagenomic sequence reads were filtered to exclude adapter

and low-quality sequences using FASTP (v0.23.0) (23) with default

parameters. All clean sequence reads were assembled by MEGAHIT

(v1.2.9) (24). Reads were mapped to contigs with a length greater

than 2,000 bp using the BWA MEM program (v0.7.17-r1188) (25).

A total of 2,369 bins were generated by using MetaBAT2 (V.2.12.1)

(26) with options “-m 2000 -s 200000 –save Cls –seed 2021”. dRep

(v2.5.4) (27) program was used to remove redundancy at an average

nucleotide identity (ANI) >99%. The remaining bins were evaluated

using lineage_wf workflow of CheckM (v.1.1.2) (28). The

taxonomic classification of the metagenome-assembled genomes

(MAGs) was achieved using GTDB-Tk (v1.7.0) (29) and GTDB

database (release 202).
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Species-level clustering, phylogenetic
analysis, and abundance profiling

All MAGs were further clustered using dRep program with the

principle that an ANI >95% resulted in 156 representative species-level

genome bins (SGBs). Prokka (v1.14.5) (30) and PhyloPhlAn (v.1.0)

(31) were applied to annotate the genomes and build a phylogenetic

tree, respectively. The phylogenetic tree was annotated and visualized

using iTOL (32). To profile the abundance of the SGBs, we aligned the

clean reads onto the genome catalog by using bowtie2 (v2.2.5) (33) with

default parameters, and the mapped read count of the SGBs was

normalized to transcripts per kilobase million (TPM). The profiles of

phyla and family were calculated by aggregating the relative abundance

of the SGBs based on taxonomic ranks.
Construction of the gene catalog and
functional annotation

The contigs of the assembled sequences longer than 500 bp were

used to predict open reading frames (ORFs) using Prodigal (v2.6.3)

with procedure “meta” (34). Gene ORFs with a length <100 bp were

removed and dereplicated by clustering at 90% aligned region with

90% nucleotide identity using MMseqs2 (v11.e1a1c) (35) with the

parameters easy-cluster –min-seq-id 0.90 -c 0.9 –cluster-mode 2,

yielding a nonredundant gene catalog containing 5,234,851 ORFs.

We counted the reads that aligned to the gene catalog, and read count

was normalized to TPM. All genes in our catalog were annotated to

the Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology

(KO) (36) and CAZy family (37) using DIAMOND (v0.9.32) (38),

default parameter except that –min-score 60 –query-cover 50.
Statistical analyses

Statistical analyses were performed in an R 4.1.1 environment. The

Shannon index was assessed based on the relative abundance profiles at

the species level. The principal coordinate analysis (PCoA) based on

the Bray–Curtis distance and the permutational multivariate analysis of

variance (PERMANOVA) were used to evaluate the beta diversity

(vegan package, v2.5-7). The Wilcoxon rank-sum test was performed

to evaluate the significant difference in the diversity index and relative

abundance of taxa, KOs, KEGG pathways, and CAZy family between

diseased and healthy mice. Rarefaction analysis was performed to

assess the gene richness in each group. Heatmap was generated in R

with the ComplexHeatmap (v2.8.0) packages (39). All other

demonstrations were generated using the ggplot2 (v3.3.5) package.

Results

Reconstruction of the 241 draft microbial
genomes from cecal contents of mice
infected with T. gondii

After DNA extraction, whole-genome sequencing, host filtering,

and quality control steps, more than 164.79 Gb clean data were
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produced from 24 fresh cecal content samples (6.87 ± 0.49 Gb per

sample, ST1). These metagenomic data were used for assembly and

binning. A total of 2,369 raw bins were recovered. In order to obtain

strict and representative MAGs, 1,584 dereplicated genomes (ANI

≥99%) were left, and then thresholds of ≥70% genome completeness,

≤5% contamination, and quality score (defined as completeness –5×

contamination) <55 were used, resulting in 241 MAGs (ST2). To

derive the view of the microbial community at the species level, 241

MAGs were organized into SGBs at an ANI threshold of 95%,

resulting in a total of 156 SGBs for subsequent analyses. Based on

taxonomic annotations from the Genome Taxonomy Database

(GTDB), all genomes were annotated to family level, 234 genomes

to genus, and 144 genomes to species. The bacterial genome catalog

represented 10 phyla, 31 families, and 78 genera (Figure 1, ST2).
Alteration of gut microbial diversity in mice
experiencing T. gondii infection

We aligned the clean reads onto the genome catalog to quantify

and profile the relative abundance of phyla, families, and species in

order to investigate the diversity of the gut bacteriome in the mice. The

Shannon index was calculated to measure the alpha diversity of the gut

microbiota. In general, the diversity of gut bacteria was decreased after

T. gondii infection and was increased with the duration of infection

(CC vs. AC: p < 0.01, Figure 2A). PCoA showed that the PC 1 and PC 2

represented 30.30% and 13.08% of variance, respectively, and revealed

a substantial difference in microbial community (PERMANOVA, R2 =

0.43, p < 0.001; AI vs. AC: R2 = 0.40, p < 0.002; CI vs. CC: R2 = 0.28, p <

0.002; Figure 2B). In addition, the cluster of the AI group was at the

right in the panel and relatively farther from other clusters. These

results indicated that the obvious clinical symptoms of acute T. gondii

infection may be in part attributed to the changes of the gut

microbiome in mice, and the microbial community had a stronger

variation at acute than late stages of infection.
Dysbiosis of the gut microbiome in
diseased mice

Bacterial profiles at different classification levels were used to

uncover the microbial structure in guts of diseased and healthy mice.

The results showed that Bacteroidetes and Firmicutes were dominant

phyla in both groups, and the relative abundance of phyla

Actinobacteriota, Proteobacteria, and Desulfobacterota was slightly

more than 1% (Figure 2C, ST3). Lachnospiraceae and

Muribaculaceae were dominant families, approximately accounting

for two-thirds of the total abundance (Figure 2D, ST3). We further

discovered that the relative abundance offive phyla, 11 families, and 35

species was significantly different between the CI and CC groups, while

one phylum, six families, and 42 species were significantly different

between the AI and AC groups (p < 0.05, Figures 3A–C, ST4). In the

chronic period, the ratio of Firmicutes to Bacteroideteswas decreased in

the infected animals, but the abundance of Actinobacteriota and

Proteobacteria was significantly increased (p < 0.05). Nevertheless, no

similar trends were seen in the acute period. At the family level,
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Acutalibacteraceae, Bacteroidaceae, CAG-465 (belonged to class

Clostridia), and Gastranaerophilaceae were significantly enriched,

whereas Burkholderiaceae and Clostridiaceae were depleted in the

infection group compared to the control group in the acute phase. In

addition, Atopobiaceae, Burkholderiaceae, Enterobacteriaceae,

Erysipelotrichaceae, Muribaculaceae, and Pasteurellaceae were

enriched in CI mice, and Anaeroplasmataceae, Lachnospiraceae,

Muribaculaceae, Marinifilaceae, and Oscillospiraceae were enriched in

the CC group.We observed that 16 and 18 species were enriched in the

AI and CI groups, respectively. For example, Parasutterella

sp900552195 (MAG077), assigned to Gammaproteobacteria class,

was visibly enriched in the infection group in the chronic phase but

was depleted in the acute stage. Therefore, our findings indicated that

T. gondii infection induced alterations of the gut microbial community.
Functional alteration of the gut
microbiome in diseased mice

To characterize the microbial function against T. gondii

infection in mice, a gene catalog was constructed and gene

abundance was profiled. The rarefaction curve tended to attain
Frontiers in Immunology 04
the saturation plateau, suggesting that the sequencing data were

great enough to detect majority of the genes (Figure 4A). We noted

that the number of genes was decreased after infection at both acute

and chronic stages (AI vs. AC, p < 0.01; Figure 4B). PCoA based on

the KO profile revealed apparent differences in microbial functions

between pre- and post-infection (PERMANOVA, R2 = 0.30, p <

0.004; AI vs. AC: R2 = 0.21, p < 0.0.089; CI vs. CC: R2 = 0.36, p <

0.003; Figure 4C). In total, 1,305 and 1,873 out of 8,006 KOs were

differentially abundant between infected individuals and controls in

the acute and chronic periods, respectively (p < 0.05, ST5). The

corresponding 43 and 86 KEGG pathways showed significant

differences in the acute and chronic stages, respectively

(Figures 4D, E; ST). Overall, in the acute infection phase, we

found 19 pathways that had higher abundance in diseased mice,

including lipid metabolism (three pathways), metabolism of other

amino acids (three pathways), glycan biosynthesis and metabolism

(two pathways), etc., whereas 24 pathways were significantly

enriched in healthy cohorts, mainly including pathways related to

metabolism (eight pathways), environmental information

processing (four pathways), and cellular processes (four

pathways). At the chronic infection stage, the abundance of 49

pathways was significantly higher in diseased mice than that in
FIGURE 1

Phylogenetic tree of 241 metagenome-assembly genomes (MAGs) from the cecal contents of mice, with color filling on branches representing
phylum-level classification. The stars mark the caudal end of the branches, indicating species-level genome bins (SGBs). The three rings from inside
to outside represent family-level classification, GC content, and genome size of each MAG, respectively.
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healthy ones, such as metabolism of cofactors and vitamins (five

pathways), signal transduction (four pathways), amino acid

metabolism (three pathways), and biosynthesis of other secondary

metabolites (three pathways). Nonetheless, 37 pathways were

remarkably enriched in healthy individuals. Intriguingly,

homologous recombination (ko03440) and pyrimidine

metabolism (ko00240) pathways of the gut microbiota in mice

were significantly enriched in the phase of acute T. gondii infection,

and this effect could last until 33 days. DNA repair- and synthesis-

related pathways were apparently activated, perhaps reflecting a
Frontiers in Immunology 05
strategy utilized by the gut microbiota to contend with environment

stress after infected intervention. However, the cell motility-related

pathway was depleted in diseased mice in the whole infection period

(ko02030, ko02040). In terms of CAZy families, 38 and 23 enzymes

were significantly enriched or depleted in the AI group, respectively

(p < 0.05; Figures 4F, G; ST6). In the chronic infection phase, 44

enzymes were significantly enriched in the controls (p < 0.05),

whereas 54 enzymes had the opposite trend. It had become clear

that changes of the microbial function were larger in chronic

compared to acute infection periods.
A B

C

D

FIGURE 2

The diversity and composition of the microbial community. (A) The Shannon index of the mouse gut microbiota in each group, and asterisks indicate
a statistical significance: * indicates p < 0.05; ** indicates p < 0.01. (B) PCoA shows the beta diversity of the microbial community. Community
differences are verified by PERMANOVA. (C, D) The bar chart shows the taxonomic composition at the phylum and family levels.
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Discussion

The cardinal symptom of T. gondii infection is inflammatory

response, and the progression of disease is related to the gut

microbiota (40). Although a growing body of research has

characterized the diversity and structure of the gut microbiota in
Frontiers in Immunology 06
hosts infected with T. gondii, little is known about gut microbial

functions against T. gondii infection in mice. Metagenomic

sequencing can map out a landscape of microbial functions and

understand the relationship between microbial genes and functions,

exhibiting more advantages compared to 16S amplicon sequencing.

Therefore, we characterized the gut bacterial community using the
A B

C

FIGURE 3

Comparison of the gut microbiota between infected and control groups at the phylum, family, and species levels. (A, B) Bar plots show the value of
log2 (FoldChange) of each feature (phyla and family) that has a significant difference. Orange displays taxa enriched in the infected group, and light
blue indicates taxa enriched in the control group. The left part of each panel (left of the dashed line) represents the acute period of infection, and
the right part of each panel (right of the dashed line) represents the chronic period of infection. Signatures indicate a statistical significance: *
indicates p < 0.05; + indicates p < 0.01. (C) The heatmap displays the relative abundance of each MAG in each sample. The white to green transition
denotes low to high relative abundance. In grids of intermediate and the rightmost parts, orange indicates features enriched in the infected group
and light blue indicates features enriched in the control group. Signatures indicate a statistical significance: * indicates p < 0.05; + indicates p < 0.01.
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mouse T. gondii infection model in acute and chronic periods and

further analyzed the microbial function before and after infections.

In this study, a T. gondii infection-related genome catalog of mouse

microbiome representing 241 MAGs and 156 SGBs was recovered,

which provided us the species-level perspective to understand the

relationship between the mouse microbiome and T. gondii

infection. In addition, a nonredundant gene catalog (5,234,851

genes) was constructed to comprehensively understand the

association between T. gondii infection and microbial function.

The diversity of gut bacteria was decreased after T. gondii

infection and was increased over time (Figure 2A). Despite the

temporal sampling strategy being different from this study, a

previous study demonstrated that the bacterial diversity was

decreased in the T. gondii-infected intestine after 5 days

compared to the controls and was increased after 5 months (40).

Another study considered that the diversity of the gut microbiota

was increased after 13 days in infected mice, and the diversity was

less than that of the controls after 21 days (20). These

inconsistencies may be due to the surviving environment,

infective dose, different parasite genotypes, and sampling time. It
Frontiers in Immunology 07
can confirm that the diversity of the gut microbiota is visibly altered

after T. gondii infection.

Moreover, PCoA revealed significant variation in the gut

microbial communities of mice in both acute and chronic

infection periods (Figure 2B). In line with previous studies, the

structure and composition of the gut microbiota showed a dramatic

variation after T. gondii infection (20, 22, 40). Previous studies have

shown that during T. gondii infection, Firmicutes, Proteobacteria,

and Bacteroidetes were the primarily affected phyla. However, the

Actinobacteriota was found to be susceptible after T. gondii

infection in this study. There are a few studies investigating the

relation of Actinobacteriota and parasitic infection. In the chronic

infection period, a reduced ratio of Firmicutes and Bacteroidetes was

observed in the gut of infected mice compared to that of healthy

mice (Figure 2C). A decreasing ratio of Firmicutes and Bacteroidetes

is associated with a variety of enteric diseases and intestinal

inflammation, such as irr i table bowel syndrome and

inflammatory bowel disease (IBD) (41–43). Nevertheless, a

similar phenomenon was not observed in the acute period. We

observed a higher abundance of opportunistic pathogens in the
A B

D E F G

C

FIGURE 4

Construction of the gene catalog and comparison of the microbial function. (A) Rarefaction curves for the gene number in the gene catalog after
100 random samplings. (B) Comparison of the microbial gene count in the four groups, and asterisks indicate a statistical significance: * indicates p <
0.05; ** indicates p < 0.01. (C) PCoA based on the Bray–Curtis distance of the KO profile shows the beta diversity of microbial function. Microbial
functional differences were verified by PERMANOVA. (D, E) Bar plots show the relative abundance of the top 20 remarkably different KEGG pathways
(p < 0.05). Deep orange indicates the infected group in the acute period, and light orange indicates control. Deep green indicates the infected group
in the chronic period, and light green indicates control. (F, G) Bar plots show the relative abundance of the top 20 remarkably different CAZy family
(p < 0.05). Deep orange indicates the infected group in the acute period, and light orange indicates control. Deep green indicates the infected group
in the chronic period, and light green indicates control.
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mouse gut after infection, such as Parasutterella, Rodentibacter, and

Escherichia of phylum Proteobacteria in the catalog (44–47). In fact,

some evidence proved that the relative abundance of Proteobacteria

was associated with an ecological imbalance in the gut microbial

community of enteritis hosts and could be used as a diagnostic

marker for the instability of the gut microbiota (48). Additionally,

evidence shows a positive relationship between the severity of

intestinal inflammation and the abundance of Proteobacteria (49–

51). In particular, Wang et al. (52) considered that the bacterial

dysbiosis and enrichment of Proteobacteria and Enterobacteriaceae

in the distal small intestine of mice infected orally by T. gondii were

mediated by CD4+ T cells, and when depleting CD4+ T cells, the

pathology and microbial community were ameliorated. It was a

valid scientific evidence that supported the hypothesis of complex

interplays among T. gondii, microbes, and the host immune system.

As anticipated, Enterobacteriaceae was enriched in both infected

periods and may be attributed to this interaction effect. Despite the

gut microbiota having substantial variations in both acute and

chronic periods, it is of concern that few detected taxa had

similar expression patterns (enrichment or depletion in the same

direction) whether at family or species level. A possible explanation

was that gut microbiota played distinct roles during the infection

process. More reasonable longitudinal experiments and

manipulation of the microbiota in the T. gondii-infected mice

should be performed in the future to address this limitation.

The gene repertoire showed a decreased trend of the observed

gene number in infected individuals compared to that of healthy

cohorts and an increasing trend over time. Some studies have

reported that bacterial community compositions varied

significantly as the change in overall gene richness, and a loss of

gene richness was associated with IBD (53, 54). Although no case of

low microbial gene richness in T. gondii infection has been reported,

the trends of gene richness and diversity of microbiota were

remarkably consistent and might be associated with gut

inflammation and dysbiosis. To the best of our knowledge, gut

microbial functions in mice after infection have not been explored

yet. We found that microbial functions were remarkably altered in

infected mice whether in acute or chronic infected periods as

compared with those in control mice, and the functions in

diseased mice varied even more at the chronic infected stage. A

large number of KOs and KEGG pathways were differentially

abundant between infected cohort and healthy control. In the

chronic infected period, an enrichment of genes involved in

lipopolysaccharide (LPS) biosynthesis in infected mice was

observed. LPS, a pro-inflammatory microbial product, can

stimulate cytokine cascades and caspase activation, which are

mediated by Toll-like receptor (TLR)-4. It not only causes local

intestinal inflammation but also, along with cytokines, makes its

way across the damaged barrier into the circulation, thus causing

systemic inflammation (55–57). Intestinal inflammation

about clinical presentation of post-infection was possibly

attributed to a larger number of LPS-related genes bound with

inflammasome sensors.

Thus, one possible explanation was that enteritis caused by T.

gondii infection may be attributed to the accumulation of LPS

produced by the gut microbiota. And we need to find more specific
Frontiers in Immunology 08
experimental evidence to confirm or reject this hypothesis. If so, the

key target of microbes and microbial genes will be identified to

prevent and control intestinal inflammation, even to remedy. In

addition, bacterial toxins (ko02042) and pathogenic Escherichia coli

infection (ko05130) pathways were significantly enriched in

chronically infected mice, which may favor microbial infection

(58). According to the aforementioned findings, we observed that

families Enterobacteriaceae and Escherichia flexneri were

significantly enriched in chronically diseased mice (Figures 3B, C;

ST4). A higher abundance of pathways for pathogenic E. coli

infection was consistent with findings in the aspect of species

composition, which may contribute to gut inflammation and

functional dysbiosis after T. gondii infection (59). In another

interpretation, the interferon-gamma (IFN-g)/Signal transducer

and activator of transcription 1 (STAT1)/inducible nitric oxide

synthase (iNOS) axis was activated against T. gondii during

infection; meanwhile, host-derived nitrate also gave assistance to

the expansion of Enterobacteriaceae via nitrate respiration (52).

Unfortunately, no sufficient relevant evidence was found for our

study of function to verify this result, although the reduction of the

nitrate-related gene had somewhat different contents between per-

and post-infection due to a lack of experimental facts. Moreover, a

great deal of metabolic pathways was changed between infected and

healthy groups. Consequently, modulating dietary or colonizing

beneficial bacteria for controlling amino acid and energy intakes

may provide a strategy to affect host metabolism, thereby

preventing or treating toxoplasmosis. In terms of the CAZy

family, for example, GT19 (lipid-A-disaccharide synthase) and

GT30 (3-deoxy-D-manno-octulosonic-acid transferase) that were

enriched in chronically infected mice were involved in LPS

biosynthesis, which appears to be the cause of intestinal

inflammation (60, 61).

In conclusion, we characterized taxonomic and functional

signatures of the microbial community that associated with T.

gondii acute infection. Our findings indicated that microbial and

functional spectrums were more disordered in the chronic period

compared with that in the acute period. In addition, we speculated

several indications that might in part contribute to exacerbate

intestinal inflammation and disease severity, including depression

of the Firmicutes-to-Bacteroidetes ratio, infection-enriched

Proteobacteria, and activation of LPS biosynthesis-related

pathways. Therefore, we propose a hypothesis that both

modulation of the composition of beneficial and harmful bacteria

and inhibition of LPS biosynthesis might ameliorate toxoplasmosis

through inhibiting inflammation. Future experiments will aim to

verify this hypothesis. Taken together, our findings broaden our

previous knowledge and provide new insights into temporal

variations of microbial functions, which may facilitate to prevent

or treat parasitic infections.
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