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Cuproptosis-related gene
identification and immune
infiltration analysis in systemic
lupus erythematosus

Wuquan Li1, Xiaoran Guan1, Yong Wang1, Yan Lv2, Yuyong Wu1,
Min Yu1 and Yeying Sun1*

1College of Pharmacy, Binzhou Medical University, Yantai, China, 2College of Life Science, Yantai
University, Yantai, China
Background: Systemic lupus erythematosus (SLE) is an autoimmune disease

characterized by loss of tolerance to self-antigen, autoantibody production, and

abnormal immune response. Cuproptosis is a recently reported cell death form

correlated with the initiation and development of multiple diseases. This study

intended to probe cuproptosis-relatedmolecular clusters in SLE and constructed

a predictive model.

Methods: We analyzed the expression profile and immune features of

cuproptosis-related genes (CRGs) in SLE based on GSE61635 and GSE50772

datasets and identified core module genes associated with SLE occurrence using

the weighted correlation network analysis (WGCNA). We selected the optimal

machine-learning model by comparing the random forest (RF) model, support

vector machine (SVM) model, generalized linear model (GLM), and the extreme

gradient boosting (XGB) model. The predictive performance of the model was

validated by nomogram, calibration curve, decision curve analysis (DCA), and

external dataset GSE72326. Subsequently, a CeRNA network based on 5 core

diagnostic markers was established. Drugs targeting core diagnostic markers

were acquired using the CTD database, and Autodock vina software was

employed to perform molecular docking.

Results: Blue module genes identified using WGCNA were highly related to SLE

initiation. Among the four machine-learning models, the SVM model presented

the best discriminative performance with relatively low residual and root-mean-

square error (RMSE) and high area under the curve (AUC = 0.998). An SVMmodel

was constructed based on 5 genes and performed favorably in the GSE72326

dataset for validation (AUC = 0.943). The nomogram, calibration curve, and DCA

validated the predictive accuracy of the model for SLE as well. The CeRNA

regulatory network includes 166 nodes (5 core diagnostic markers, 61 miRNAs,

and 100 lncRNAs) and 175 lines. Drug detection showed that D00156 (Benzo (a)

pyrene), D016604 (Aflatoxin B1), D014212 (Tretinoin), and D009532 (Nickel)

could simultaneously act on the 5 core diagnostic markers.

Conclusion: We revealed the correlation between CRGs and immune cell

infiltration in SLE patients. The SVM model using 5 genes was selected as the
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optimal machine learning model to accurately evaluate SLE patients. A CeRNA

network based on 5 core diagnostic markers was constructed. Drugs

targeting core diagnostic markers were retrieved with molecular docking

performed.
KEYWORDS

systemic lupus erythematosus, WGCNA, machine learning, immune infiltration, biomarker
1 Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease

(1) (AID) featuring loss of tolerance to self-antigen, autoantibody

production, and abnormal immune response. It affects multiple

organs, such as skin, joints, kidneys, lungs, and hearts (2), severely

interrupting work, normal routine, and physical and mental health.

The pathogenesis of SLE is not clear. Genetic and environmental

factors and viral infection are considered possible pathogenic factors

(3–5). So far, specific drugs for SLE are very scarce, and SLE patients

are still treated with traditional anti-inflammatory drugs,

immunoregulatory drugs, and corticosteroids, often accompanied

by adverse events (AE). Therefore, investigating molecular

characteristics and mechanisms of SLE has substantial implications

for providing new strategies for SLE diagnosis and treatment.

Copper serves as a cofactor in many enzymes and has important

physiological functions in vital activities (6). Normal cells have a quite

low copper concentration, and they prevent the accumulation of free

intracellular copper ions mainly by active transport mechanisms,

thereby sustaining copper homeostasis (7, 8). Copper imbalance leads

to oxidative stress (9), aberrant autophagy (10), etc., thereby inducing

various copper/copper ion-associated diseases. Cuproptosis is a

copper-dependent programmed cell death form, and its mechanism

is different from apoptosis, pyroptosis, necrosis, and autophagy. In

cuproptosis, copper directly binds with lipoylated proteins in the

tricarboxylic acid (TCA) cycle, leading to lipoylated protein

aggregation and following iron-sulfur cluster loss, inducing

proteotoxic stress and eventually cell death (11). Research showed

that ferroptosis in neutrophils leads to the occurrence of SLE, and the

mechanism is by promoting cAMP response element modulator

CREM binding with glutathione peroxidase 4 (GPX4) promoter to

downregulate GPX4 expression (12). The significance of copper

homeostasis in immune infiltration has been reported in relevant

studies recently. It was reported that copper chelation in

macrophages can eliminate lysyl oxidase-like 4-mediated

programmed death-ligand 1 presentation, thereby suppressing cell

immune escape (13). However, currently, cuproptosis’s role in the

initiation and development of SLE is still not clear. Hence, elucidating

cuproptosis’s role in SLE has considerable implications.

Machine learning is being widely applied in the medical field,

particularly in disease diagnosis, prediction, and treatment. With its

high efficiency in thousands of types of diseases, machine learning

can be divided into three main types: supervised learning (14), semi-

supervised learning (15), and unsupervised learning (16) each being
02
used to train artificial intelligence models with different types of data

in different circumstances. Among these, the prediction of disease

biomarkers is one important application of machine learning in

disease prediction, which can provide doctors with more accurate

diagnostics and treatment decisions, ultimately increasing the cure

rate and prognosis of the disease. The future of medicine will place

increasing emphasis on machine learning. For instance, it could be

used to quickly and accurately detect lung cancer in chest CT scans,

improving patient survival rates (17). Machine learning can also

predict the risk of heart disease in electrocardiograms (18), detect

early retinal lesions using semi-supervised learning techniques (19),

and assist in diagnosing Alzheimer’s disease (20). By incorporating

machine learning, we can gain better insight into the underlying

mechanisms of diseases and provide potential targets for future

treatments. However, machine learning is just a tool, and we still

need to combine it with practical disease research to effectively

address specific problems.

In this study, we analyzed differentially expressed cuproptosis-

related genes (CRGs) between healthy people and SLE patients

using the Gene Expression Omnibus (GEO) database and

conducted a bioinformatics analysis of immune characteristics.

Based on the CRG expression profile, we assigned SLE patients to

two cuproptosis-related clusters and further compared the CRGs of

the two clusters. Subsequently, we identified key modules associated

with SLE initiation using the weighted gene co-expression network

analysis (WGCNA) algorithm. Furthermore, we constructed a

predictive model that can reveal the prognoses of patients with

different molecular clusters by comparing multiple machine-

learning methods. Nomogram, calibration curve, decision curve

analysis (DCA), and an external dataset were adopted to verify the

performance of the predictive model. Additionally, we established a

competing endogenous RNA (CeRNA) regulation network, and

selected drugs that act on key biomarkers using the CTD database,

which were used as candidate drugs for SLE.
2 Materials and methods

2.1 Data acquisition and preprocessing

The flow chart of this study is shown in Figure 1. The GSE61635

(21), GSE50772 (22), and GSE72326 (23) datasets were retrieved

from the GEO database (Table 1), and CRGs (11) were collected

from published studies. GSE61635 and GSE50772 were merged as
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one dataset (GSEM) serving as the training cohort since the two

datasets were obtained from the same platform, and the GSE72326

dataset was used as the validation cohort. The raw data were

normalized and annotated with background subtracted, and batch

effects from the merged dataset were removed using the

“SVA” package.
2.2 WGCNA

WGCNA was performed using the R “WGCN”package (24).

The optimal value of the weighting parameter in the adjacent

function was obtained using the pickSoftThreshold function and

served as soft-thresholding power for following network

construction (25). Subsequently, weighted adjacency matrices

were established, and gene modules were created by hierarchical

clustering based on a 1-TOM dissimilarity matrix (26). Each

module was assigned a unique color identifier, and the module

eigengene represents the expression profile of the entire module.

Module–disease state relationships represent module significance

(MS), and gene significance describes a gene’s correlation with

a phenotype.
Frontiers in Immunology 03
2.3 Predictive model construction based
on multiple machine-learning methods

Machine-learning predictive models include the support vector

machine (SVM) model, random forest (RF) model, generalized linear

model (GLM), and extreme gradient boosting (XGB) model. The SVM

algorithm seeks the separating hyperplane that yields the maximal

margin to discriminate positive instances from negative instances (27).

The RF is an ensemble learning method yielding several independent

decision trees to predict classification or regression (28). The GLM is an

extension of the multiple linear regression model, and it can flexibly

assess the relationship between normally-distributed dependent

characteristics and continuous or categorical independent

characteristics (29). XGB is a collection of gradient-boosted trees that

can carefully compare and analyze complexity and classification error

(30). The four machine learning models were explained using the

“DALEX” package, and residual distribution and feature importance

among the models were visualized. The AUC of the ROC curve was

visualized using the “pROC” R package. Eventually, we confirmed the

optimal machine learning model and selected the top 5 factors as SLE-

related key predictors.
2.4 Nomogram construction and validation

A nomogram was established to evaluate SLE occurrence in

clusters using the “RMS” R package. Each predictor contributes to a

score, and the “total score” represents the sum of the score of the

above predictors. The calibration curve and DCA were adopted to

evaluate the predictive performance of the nomogram.
2.5 Immune cell infiltration analysis

The CIBERSORT algorithm (https://cibersort.stanford.edu/)

was performed to estimate the relative abundance of 22 kinds of

immune cells for each sample using the LM22 signature matrix and

gene expression data. CIBERSORT uses Monte Carlo sampling to

obtain a p‐value for the deconvolution of each sample. Only

samples with P < 0.05 were considered to have accurate immune

cell fractions, and the sum of the 22 immune cell compositions in

each sample was 1 (31).
FIGURE 1

The Study flow charts.
TABLE 1 Basic Information of Gene Expression Profiling.

GEO ID Platform Samples Number of Controls Number of Cases Country Year Author

Training set

GSE61635 GPL570 110 30 80 USA 2015 Greidinger EL

GSE50772 GPL570 81 20 61 USA 2015 Kennedy WP

Validation set

GSE72326 GPL10558 177 20 157 USA 2022 Chiche L

CRGs NFE2L2, NLRP3, ATP7B, SLC31A1, FDX1, LIAS, LIPT1,
DLD, DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A, DBT, DLST

Tsvetkov
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2.6 lncRNA-miRNA-mRNA CeRNA
network construction

miRNA-miRNA interactions were predicted using TargetScan

(http://www.targetscan.org), miRDB (http://www.mirdb.org/), and

miRanda (http://www.microrna.org/) databases, and miRNA-

lncRNAs were predicted using the SpongeScan database (http://

spongescan.rc.ufl.edu/). Based on lncRNA-miRNA-mRNA

interactions, a ceRNA network was constructed using Cytoscape

software (3.8.2).
2.7 Identification of candidate
small-molecule drugs

Drugs corresponding to those diagnostic biomarkers were

retrieved using the CTD database (http://ctdbase.org/) to confirm
Frontiers in Immunology 04
potential SLE drugs. Drug-gene network was constructed and

visualized. Molecular docking was performed between selected

drugs and sites of key biomarkers using Autodock vina software

V1.1.2, and the results were visualized using Pymol V3.9.2.

3 Results

3.1 CRG expression and immune infiltration
analysis in SLE patients

We evaluated the expression profile of 17 CRGs in SLE and

normal Control samples using the merged dataset GSEM to

investigate CRGs’ biological functions in SLE patients. SLE

samples presented higher expression of NFE2L2, NLRP3, ATP7A,

MTF1, and CDKN2A genes and lower expression of LIAS, LIPT1,

DLD, DLAT, PDHA1, PDHB, GLS, DBT, and DLST genes versus

the Control group (Figures 2A, B). Subsequently, we conducted
B

C D

E F

A

FIGURE 2

Identification of the expression of CRGs and Immune infiltration analysis in SLE. (A) Boxplots showed the expression of 14 CRGs between SLE and
Control. (B) The expression patterns of 14 CRGs were presented in the heatmap. (C) The correlation of CRGs. (D) The relative abundance of immune
cells between SLE and Control. (E) Boxplots showed the difference of Immune infiltration in SLE and Control. (F) The correlation analysis between 14
CRGs and immune cells. (* p≤ 0.05, ** p≤ 0.01, *** p≤ 0.001, ns, no significance).
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correlation analysis for differentially expressed CRGs (Figure 2C) to

probe CRGs’ role in SLE development. Notably, some CRGs like

PDHB and PDHA1 exhibited synergistic effects (R = 0.62).

Meanwhile, NFE2L2 and DLST displayed significant antagonistic

effects (R = 0.53). Moreover, we performed an immune infiltration

analysis to illustrate the difference in immune systems between the

normal Control group and SLE patients. The CIBERSORT

algorithm revealed a significant distinction in the proportions of

22 kinds of immune cells between the Control and SLE groups such

as neutrophils, plasma cells, CD8+ T cells, naive CD8+ lymphocytes,

M1 macrophages, activated dendritic cells (DC), resting mast cells,

etc. (Figures 2D, E), suggesting that immune system alteration

might be the primary cause of SLE occurrence. Additionally,

correlation analysis demonstrated that neutrophils and CD8+ T

cells were correlated with cuproptosis (Figure 2F).
Frontiers in Immunology 05
3.2 Identification of SLE cuproptosis cluster

To understand the expression patterns of CRGs in SLE, we

conducted a consensus clustering analysis with the expression of

the 14 CRGs, and the consensus index fluctuated within a minimal

range of 0.2-0.6 (Figures 3A, B, Figure S1). When k = 2-9, the area

under the CDF curve is presented as the difference between two CDF

curves (k and k-1) (Figure 3C). Furthermore, only when k = 2, the

consistency score of all subtypes was> 0.9 (Figure 3D). Combining

the consensus matrix heatmap, we divided 141 patients into two

clusters, including Cluster 1 (n = 98) and Cluster 2 (n = 43)

(Figure 3E). Patients were clustered by t-distributed stochastic

neighbor embedding (t-SNE), showing a significant difference

between the two clusters (Figure 3F). We generally evaluated the

expression difference in 14 CRGs between Clusters 1 and 2 to
A B

D

E

F

G

C

FIGURE 3

Identification of cuproptosis-related molecular clusters in SLE. (A) Consensus clustering matrix when k=2. (B, C) Representative cumulative distribution
function (CDF) curves (B), CDF delta area curves (C), the score of consensus clustering (D). (E) T-SNE visualizes the distribution of two subtypes. (F) Boxplots
showed the expression of 14 CRGs between two cuproptosis clusters. (G) The expression patterns of 14 CRGs were presented in the heatmap. (* p ≤ 0.05,
*** p ≤ 0.001, ns, no significance).
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investigate the molecular characteristics of clusters. Distinct CRG

expression patterns were observed between two Clusters. Cluster 1

showed high expression of FDX1, DLD, DLAT, PDHA1, PDHB, and

GLS, while Cluster 2 showed enhanced expression of LIPT1, MTF1,

CDKN2A, and SLC31A1 (Figure 3G). Next, our analysis focused on

the immune cell infiltration differences between the two groups,

revealing distinct levels of four immune cells. T cells CD8 and M0

macrophages were found to be higher in cluster 2, while neutrophils

and M2 macrophages were lower (Figures S2, 3). Further analysis

using GSVA revealed functional differences in cluster-specific DEGs

between the two clusters. Cluster 1 showed up-regulation in Glycine

serine and threonine metabolism, Cysteine and methionine

metabolism, and Pathogenic Escherichia coli infection signal

activity, whereas cluster 2 showed enhancement in inflammation,

metabolism, immune response, and TGF-b signal activity (Figure S4).
Additionally, the functional enrichment results revealed that cluster 1

was significantly associated with positive regulation of ATPase
Frontiers in Immunology 06
complex of proton transport, mitosis, vitamin D metabolism, and

smooth muscle cell apoptosis. In contrast, H3K9me2 demethylase

activity, aminophospholipid transferase activity, regulation of RNA

binding, and negative regulation of cytoplasmic translation were

enriched in cluster 2 (Figure S5).
3.3 Weighted co-expression network
construction and core module selection

Co-expression network and module were constructed for the

Control and SLE groups using the WGCNA algorithm to identify

SLE-related core gene modules. We calculated the variance of gene

expression in the GSEM dataset and selected the top 25% of genes

with the highest variance for further analysis. When Soft was set to 7,

scale-free R2 = 0.9, and co-expression modules were identified

(Figure 4A). Altogether 9 co-expression modules with different
B

C D

E F

A

FIGURE 4

Identification of weighted gene co-expression network modules associated with SLE in GSEM. (A, B) Soft threshold selection. (C) Dynamic shearing tree
merging similar module genes. (D) Correlation analysis between module eigengenes and clinical status. (E) The correlation between genes and traits
between modules. (F) The correlation between module membership and genetic importance. cor represents the correlation between GS and MM.
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colors were obtained using the dynamic cut-tree algorithm, and TOM

Heatmap was generated (Figures 4B–D). Subsequently, genes were

consecutively applied in 9 color modules with module-clinical

characteristics (Control and SLE) co-expression similarity and

adjacency analyzed. The blue module presented the strongest

correlation with SLE, including 263 genes (Figure 4E, Table S1).

We also observed the correlation between modules and module-

related genes (Figure 4F, Table S2).
3.4 Machine learning model construction
and evaluation

To further identify critical markers with high diagnostic value,

we established 4 machine-learning models based on the blue core

module expression profile, including SVM, RF, GLM, and XGB

models. The 4 models were explained using the “DALEX” package,

and residuals from each model in the training cohort were plotted.

The SVM model had a relatively low residual (Figures 5A, B). The

top 10 important variables of each model were obtained according

to root-mean-square error (RMSE) (Figure 5C). Moreover, ROC

curves of the 5-fold cross-validation were plotted to appraise the
Frontiers in Immunology 07
diagnostic performance of the 4 machine learning algorithms in the

training cohort. SVM model had the highest AUC (SVM, AUC =

0.998; RF, AUC = 0.976; XGB, AUC = 0.960; GLM, AUC = 0.943,

Figure 5D). Combining those results, the SVM model had the best

performance in distinguishing patients from different clusters. The

top 5 variables (IFIT3, PLSCR1, CCR1, IL1RN, and ETV7) were

selected from the SVM model as critical predictive markers for the

following analysis.

A nomogram was constructed to assess the predictive efficiency

of the SVM model using 141 SLE cases to predict the risk of

cuproptosis aggregation (Figure 6A). The predictive efficiency of the

nomogram was assessed using the calibration curve and DCA.

According to the calibration curve, in the SLE cluster, the error

between the actual risk and the predicted risk was very small

(Figure 6B). DCA revealed that the nomogram had high accuracy

that can provide evidence for clinical decisions (Figure 6C).

Subsequently, we validated the predictive capability of the 5 core

markers using the validation cohort GSE72326. The ROC curve

revealed that the predictive model with 5 core markers had a

favorable performance with an AUC of 0.943 (Figure 6D),

suggesting that our diagnostic model can effectively discriminate

SLE patients from normal cases. Meanwhile, the diagnostic value of
B

C D

A

FIGURE 5

Construction and evaluation of SVM, RF, GLM, and XGB machine models. (A) Cumulative residual distribution of each machine learning model. (B) Boxplots
showed the residuals of each machine learning model. Red dot represented the root mean square of residuals (RMSE). (C) The important features in SVM,
RF, GLM, and XGB machine models. (D) ROC analysis of four machine learning models based on 5-fold cross-validation in the testing cohort.
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single markers was verified as well, and IL1RN had the highest AUC

(AUC = 0.918, Figure 6E). The expression of the 5 core diagnostic

markers was all upregulated in SLE patients (Figures 6F–J).
3.5 CeRNA network establishment of core
diagnostic markers

A CeRNA network was constructed using miRanda, targetScan,

miRDB, and SpongeScan databases with 5 core diagnostic markers.

The CeRNA network contains 166 nodes (5 core diagnostic

markers, 61 miRNAs, and 100 lncRNAs) and 175 lines (Figure 7).

Eventually, 47 lncRNAs can competitively bind with IL1RN

regulated by hsa-miR-650, hsa-miR-515-5p, hsa-miR-377-3p, hsa-

miR-185-3p, and hsa-miR-1205, among which lncRNA SNHG14

can simultaneously target hsa-miR-515-5p and hsa-miR-185-3p. 23

lncRNA can target IFIT3 regulated by hsa-miR-876-3p, hsa-miR-

127-5p, hsa-miR-34a-3p, hsa-miR-143-3p, hsa-miR-1207-5p, and

hsa-miR-876-5p. Additionally, 19 lncRNA can regulate CCR1
Frontiers in Immunology 08
expression by competitively binding with hsa-miR-149-3p. In the

ceRNA network of PLSCR1, LINC00662 can bind with hsa-miR-28-

3p and hsa-miR-708-3p to regulate PLSCR1. 8 lncRNAs competing

with hsa-miR-342-5p to regulate ETV7 expression.
3.6 Prediction of targeted drugs for core
diagnostic markers

We further predicted drugs of the 5 core diagnostic markers

using the CTD database, extracted drug-marker interactions, and

constructed a drug-marker network containing 226 knots and 319

edges, in which 5 core diagnostic markers and 221 drugs were

included. The results were visualized using the Cytoscape software

(Figure 8A, Table S3). Drug detection showed that D00156 (Benzo

(a) pyrene), D016604 (Aflatoxin B1), D014212 (Tretinoin), and

D009532 (Nickel) could simultaneously act on the 5 core diagnostic

markers. And a molecular docking was performed between drugs

and predicted molecular targets (Figures 8B–E, Figure S7, Table S4).
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FIGURE 6

Validation of the 5-gene-based SVW model. (A) Construction of a nomogram for predicting the risk of SLE clusters based on the 5-gene-based SVW
model. (B, C) Construction of calibration curve (B) and DCA (C) for assessing the predictive efficiency of the nomogram model. (D, E) ROC analysis
of the 5-gene-based SVW model based on 5-fold cross-validation in GSE72326. (F-J) The expression levels of 5-genes were verified with validated
dataset GSE72326. (*** p ≤ 0.001).
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4 Discussion

At present, the pathogenesis of SLE has not been fully

elucidated. It is widely accepted that SLE develops on a specific

genetic background and epigenetic modifications upset the immune

system balance, leading to aberrant immune cell proliferation,

massive production of autoantibodies, and eventually multiple

organ damage (32, 33). However, a single causal gene has not

been identified. Conversely, currently, mounting studies reported

that multigenic interactions were closely related to SLE initiation

and multi-organ involvement (34, 35). Therefore, searching for core

molecular clusters is crucial to instruct SLE diagnosis and

individualized treatment. Cuproptosis is a newly reported copper-

dependent cell death form, mainly manifesting mitochondrial

aggrecanase lipoylation, and is closely associated with disease

progression (36). However, the specific mechanism and regulatory

role of cuproptosis in various diseases have not been further delved

into. Hence, we endeavored to elucidate the role of CRGs in SLE

phenotype and immune microenvironment.In this study, we

analyzed the expression profile of CRGs in the peripheral whole

blood of SLE patients. The aberrant gene expression level in SLE

patients was higher than in normal individuals, suggesting that

CRGs play a significant role in SLE initiation. The correlation

among CRGs was calculated to reveal the relationship between

CRGs and SLE. Significant synergistic or antagonistic effects were

identified among CRGs. Meanwhile, differentiation was observed in

immune cell abundance between the control group and SLE

patients. SLE patients exhibited a higher infiltration level of

neutrophils, memory B cells, plasma cells, and activated DC.

Neutrophils play a pathogenic role in multiple AIDs, including

SLE (37). Neutrophils can induce plasmacytoid dendritic cells
Frontiers in Immunology 09
(pDC) to generate interferon (IFN), thereby advancing disease

progression (38). Furthermore, the complex genetic background

of SLE patients could provide multiple amplification steps for the

perpetuation and subsequent pathogenicity of neutrophil-pDC

interactions (39). ISG15 in neutrophils may also induce the

production of Th1 lymphocytes with pro-inflammatory properties

(40). Moreover, by applying unsupervised clustering analysis, we

confirmed two distinct clusters based on CRG expression to

illustrate the different regulatory patterns of SLE patients. These

results demonstrated that CRGs might be the key factors that

regulate SLE occurrence and immune infiltration status.

Machine learning is a multidisciplinary discipline, and

modeling using the machine learning method can explore the

underlying value of data. Additionally, machine learning plays an

indispensable role in effectively utilizing data and supporting

clinical decisions. In this study, we compared the predictive

performance of the 4 machine learning methods (SVM, RF, GLM,

and XGB), and constructed a predictive model based on SVM (best

performance, AUC = 0.998), suggesting that the SVM model had

favorable performance when predicting SLE. An SVM model was

established using the 5 important factors (IFIT3, PLSCR1, CCR1,

IL1RN, and ETV7). Research showed that IFIT3 belongs to the

interferon-induced protein family and is an anti-viral protein (41).

IFIT3 can block the synthesis of type I IFN and other inflammatory

cytokines via the cGAS/STING pathway (42). PLSCR1 shows

increased expression in multiple systemic AIDs, such as primary

antiphospholipid syndrome, rheumatoid arthritis, idiopathic

inflammatory myopathies, and SLE (43, 44). A correlation was

identified between PLSCR1 expression and type I interferon-

stimulated genes (45), and PLSCR1 is highly expressed in

neutrophils, DC, and macrophages (46). CCR1 is a member of
FIGURE 7

lncRNA-miRNA-mRNA regulatory network. The red represent the mRNAs, the green represent the miRNAs and the blue represent the lncRNAs.
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the b-chemokine receptor family and can interact with numerous

ligands, such as CCL5, and suppressing CCR1 could improve lupus

nephritis progression in New Zealand black/white mice (47). IL1RN

is a natural IL-1 inhibitor that can regulate multiple IL-1-related

immune and inflammatory responses. IL1RN polymorphism is a

factor that affects SLE severity, and IL1RN might be a potential

biomarker for SLE (48). Transcription factor ETV7 exhibited

elevated expression in SLE (49), which might be induced by IFN-

a/g (50, 51). The SVM model accurately predicted SLE in the

validation cohort (AUC = 0.943), providing new insights for SLE

diagnosis. More importantly, a nomogram was plotted based on

IFIT3, PLSCR1, CCR1, IL1RN, and ETV7 for diagnosing SLE

subtypes. The nomogram displayed significant predictive value,

suggesting that the model has clinical utility.

In addition, we constructed a CeRNA network using the 5 core

diagnostic markers to explore the regulatory mechanism of the core

markers. MicroRNA (miRNA) is one of the major epigenetic

regulators of SLE-related genes. Remarkable research progress has
Frontiers in Immunology 10
been made in miRNA-based biomarkers and therapies (52). The

CeRNA network illustrated that lncRNA SNHG14 could

simultaneously interact with hsa-miR-515-5p and hsa-miR-185-3p,

lncRNA SNHG14 could participate in the production of

proinflammatory cytokines in rheumatoid arthritis by regulating

the MINK1/JNK pathway (53). It was reported that hsa-miR-515-

5p regulated WISP1 expression, inhibited the TLR4/JNK signaling

pathway, and reduced apoptosis in fibroblast-like synoviocytes

(RAFLS) of rheumatoid arthritis (54). The hsa-miR-185-3p

modulating transcription factor Foxo1 plays a foremost role in

AIDs and can serve as a diagnostic marker of SLE (55–57). We

also predicted diagnostic markers-associated drugs using the CTD

database, constructed the drug-gene network, and predicted targets of

action by constructing molecular docking models. This offered a

reference for devising new protocols or investigating potential

pathogenic factors for SLE (58). For instance, tretinoin

simultaneously targets 5 core diagnostic markers and is a reactive

derivative of vitamin A, which can regulate cellular proliferation,
B C

D E

A

FIGURE 8

Predicting the drugs targeting the diagnostic biomarkers. (A) Drug-gene network. (B- E) Molecular docking analysis. Aflatoxin B1 was docked with
IFIT3, PLSCR1, CCR1, and IL1RN.
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differentiation, and maturation (59). Previous studies have indicated

that the imbalance of Th17/Treg cells was closely related to the

pathogenesis and disease activity of SLE (60). Tretinoin can regulate

the balance of Th17/Treg cells by downregulating IL-6Ra expression,

which affects the binding of IL-6 to IL-6Ra and gp130, leading to the

recruitment of STAT3 and promotion of its phosphorylation to

induce ROR gt expression, and ultimately inhibits Th17 cell

differentiation and promotes Treg cell proliferation (61, 62).

Tretinoin is a potent inhibitor of Pin1, effectively blocking the

TLR-7/TLR-9/Pin1/IRAK-1/IRF-7 signaling pathway by inhibiting

and degrading activated Pin1, making it an attractive candidate for

treating SLE, as Pin1 plays a key role in preventing the progression of

the disease (63). Although the potential therapeutic effects of tretinoin

are still being explored in this field, it has gained increasing attention,

and more research can be carried out to explore its potential

therapeutic effects and bring more medical progress.

Nevertheless, there are some limitations to this study. First, this

current study is based on bioinformatics, and additional clinical

data and experiments are required to verify CRG expression levels.

Second, more detailed clinical characteristics are required to

identify the performance of the predictive model, and more SLE

samples are required to demonstrate the accuracy of the CRG-based

model. The correlation between CRGs and immune response needs

to be further explored.
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