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Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) Omicron variant has prevailed globally since November 2021. The extremely

high transmissibility and occult manifestations were notable, but the severity and

mortality associated with the Omicron variant and subvariants cannot be

ignored, especially for immunocompromised populations. However, no

prognostic model for specially predicting the severity of the Omicron variant

infection is available yet. In this study, we aim to develop and validate a

prognostic model based on immune variables to early recognize potentially

severe cases of Omicron variant-infected patients.

Methods: This was a single-center prognostic study involving patients with

SARS-CoV-2 Omicron variant infection. Eligible patients were randomly

divided into the training and validation cohorts. Variables were collected

immediately after admission. Candidate variables were selected by three

variable-selecting methods and were used to construct Cox regression as the

prognostic model. Discrimination, calibration, and net benefit of the model were

evaluated in both training and validation cohorts.

Results: Six hundred eighty-nine of the involved 2,645 patients were eligible,

consisting of 630 non-ICU cases and 59 ICU cases. Six predictors were finally

selected to establish the prognostic model: age, neutrophils, lymphocytes,

procalcitonin, IL-2, and IL-10. For discrimination, concordance indexes in the

training and validation cohorts were 0.822 (95% CI: 0.748-0.896) and 0.853 (95%

CI: 0.769-0.942). For calibration, predicted probabilities and observed

proportions displayed high agreements. In the 21-day decision curve analysis,

the threshold probability ranges with positive net benefit were 0~1 and nearly

0~0.75 in the training and validation cohorts, correspondingly.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1157892/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1157892/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1157892/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1157892/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1157892/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1157892&domain=pdf&date_stamp=2023-03-01
mailto:shibojiang@fudan.edu.cn
mailto:lizexiong@tongji.edu.cn
https://doi.org/10.3389/fimmu.2023.1157892
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1157892
https://www.frontiersin.org/journals/immunology


Lu et al. 10.3389/fimmu.2023.1157892

Frontiers in Immunology
Conclusions: This model had satisfactory high discrimination, calibration, and

net benefit. It can be used to early recognize potentially severe cases of Omicron

variant-infected patients so that they can be treated timely and rationally to

reduce the severity and mortality of Omicron variant infection.
KEYWORDS
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Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) Omicron variant has predominantly circulated worldwide,

accounting for almost 100% of the newly emerging strains since

February 2022 and causing nearly 300 million infections (1).

Among all the variants of concern (VOCs), the Omicron variant

has exhibited the most mutations (>60 non-synonymous

mutations) (2). Most of the mutations are localized in the S

protein, especially the receptor-binding domain (RBD),

responsible for entering host cells, eliciting immune responses,

and acting as the target for drug and neutralizing antibodies (2–

4). Such mutations contributed to some unique characteristics of

the Omicron variant, such as stronger transmissibility, lower

virulence, more remarkable immune evasion, and milder

symptoms, including nasal obstruction, fatigue, and sore throat

(5). Nonetheless, the severity and fatality brought by the Omicron

variant could not be underestimated. During the pandemic wave of

the Omicron variant, Hong Kong reported 9,148 deaths as of May

2022, and Japan’s cumulative death toll reached 20,000 till February

2022 (6, 7). Additionally, approximately 2,400 patients with

coronavirus disease 2019 (COVID-19) died each day in the

United States based on the survey in February 2022 (8).

Especia l ly , the e lder ly , ch i ldren, neoplasm pat ients ,

transplantation recipients, and patients with other comorbidities

who had compromised immunity were extremely vulnerable to

SARS-CoV-2 infection, and these populations would increase the

proportion of severe cases and fatality among infected patients (9).

Therefore, how to early recognize underlying severe patients and

conduct timely and accurate treatment would favor the prevention

of severity progression and reduction of patients’ mortality.

Noteworthy, immunity plays a key role in the occurrence,

development, defense, and recovery of SARS-CoV-2 infection.

First, innate, humoral, and cellular immunity, e.g., activation of

Toll-like receptors, SARS-CoV-2-specific antibodies, plasmacytes,

or reactive CD4/CD8+ T cells, potently defended against SARS-

CoV-2 infection and were tightly associated with disease severity

and prognosis (10–12). Second, the Omicron variant infection

tended to be mild, and the presence or absence of symptoms was

correlated with 1) functional cellular immunity, 2) balance between

proinflammatory and anti-inflammatory cytokines, and 3) sera
02
viral-specific IgA, IgM, IgG, or memory B-cell levels (13, 14). Third,

immune evasion, one prominent characteristic of the Omicron

variant and subvariants, led to decreased efficacy of vaccines and

drugs, failed treatment, and the occurrence of severe cases (15, 16).

Also, the Omicron variant and subvariants had higher odds of

reinfection and breakthrough infection, which are also determined

by viral immune evasion and host immune status (17–19).

Therefore, immune factors could effectively reflect the severity

and prognosis of Omicron variant infection.

For the prediction of COVID-19 patients’ severity and survival,

several prognostic models have been established (20–22). However,

these models were established based on the results from previously

prevailing strains, like Wuhan-Hu-1. The Omicron variant is

currently the most dominantly circulating strain worldwide,

including subvariants like BA.2.75, XBB, BA.5.2, and BF.7. By its

unique etiological features, the Omicron variant differs from the

SARS-CoV-2 ancestral strain and other VOCs. Notably, patients

with Omicron variant infection have lower hospitalization,

intensive care unit (ICU) admission, and mortality rates, as well

as shorter rehabilitation time compared with those infected by the

SARS-CoV-2 ancestral strain and other VOCs like the Delta variant

(23–25). Thus, previously established models may not be applicable

to Omicron variant infection. Indeed, no prognostic models

anticipated the unique etiological and clinical characteristics of

the Omicron variant and were specially developed for Omicron

variant-infected COVID-19. Additionally, many countries have

terminated COVID-19 quarantine and management, possibly

resulting in an expansion of infected populations and a wider

pandemic of the Omicron variant in the future. These facts call

for the development of a prognostic model that specifically predicts

the severity and prognosis of Omicron variant infection.

As suggested above, immune factors are useful indicators of

SARS-CoV-2 Omicron variant infection; thus, to predict patients’

severity accurately and sensitively, we aimed to construct a prognostic

model based on serial immune factors. To accomplish this, a

prognostic study was performed and included COVID-19 patients

from the 2022 Omicron subvariant BA.2 epidemic in Shanghai.

Clinical and immune indexes were collected, and predictors were

selected by different methods to develop the model. The model was

assessed from the aspects of discrimination, calibration, and net

benefit to ensure its performance.
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Materials and methods

Participants

This was a single-center prognostic study conducted in Shanghai

Fourth People’s Hospital from 12 April 2022 to 17 June 2022. Omicron

variant-infected patients were diagnosed and confirmed by the

Shanghai Center for Disease Control and Prevention with positive

real-time polymerase chain reaction results. Those patients needing

further treatment were transferred from temporary treatment centers

and admitted to Shanghai Fourth People’s Hospital. Patients were

routinely treated according to the Diagnosis and Treatment Scheme of

Pneumonia Caused by Novel Coronavirus of China (the ninth

version). The eligibility criteria were as follows: 1) having intact basic

information to be retrieved (names, gender, ages, and diagnosis) and 2)

having examination results of immune cytokines.
Predictors and outcomes

All the basic clinical information including age, gender,

preliminary severity degree when admitted [severity (admitted)],

and vaccination was documented upon patients’ hospitalization.

Severity (admitted) was judged according to the Diagnosis and

Treatment Scheme of Pneumonia Caused by Novel Coronavirus of

China (the ninth version): the asymptomatic and light types were

defined as the moderate category, and other types were defined as the

severe category. After admission, immune-related diagnostic indexes

were collected immediately, including 1) absolute numbers of

immune cells: leukocytes (×109/L), neutrophils (×109/L),

lymphocytes (×109/L), monocytes (×109/L), eosinophils (×109/L),

and basophils (×109/L) (BC-75000 Fully Automated Hematology

Analyzer, Mindray, Shenzhen, China); 2) inflammatory factors: C-

reaction protein (CRP, mg/L) (turbidimetric inhibition

immunoassay, Mindray BC-75000 Fully Automated Hematology

Analyzer), procalcitonin (PCT, ng/ml) (double-antigen sandwich

immunoassay, ECL8000 Automated ECL Immunoassay Analyzer,

Lifotronic, Shenzhen, Chnia), serum amyloid A (SAA, mg/L)

(turbidimetric inhibition immunoassay, UPPER Automatic Protein

Analyzer), and interleukin (IL)-6 (pg/ml) (double-antigen sandwich

immunoassay, Lifotronic ECL8000 Automated ECL Immunoassay

Analyzer); 3) immune cytokines: IL-17A (pg/ml), IL-10 (pg/ml),

interferon (IFN)-g (pg/ml), IL-2 (pg/ml), IL-1b (pg/ml), IL-5 (pg/

ml), IL-12 (pg/ml), IL-8 (pg/ml), IL-4 (pg/ml), and tumor necrosis

factor (TNF)-a (pg/ml) (flow cytometry, DxFLEX, Beckman, Bria,

USA); and 4) the index reflecting antibody levels: globulin (g/L)

(globulin = total protein-albumin, as measured by the Biuret method

and the bromocresol green colorimetric method, correspondingly).

All the variables listed above were collected before the onset of ICU

admission. The outcome of this study was admission to the ICU for

the determination of severe cases.
Statistical analysis

For variables, outliers were identified as values less than 25th

percentile minus 1.5-fold of the interquartile range (1.5 × IQR) or
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more than 75th percentile plus 1.5 × IQR. Outliers were winsorized

as 5th percentile or 95th percentile, respectively. Variables with

>10% missing values were excluded from the study. Since missing

values were missed at random, multiple imputation was applied to

variables missing <10% using the R package mice, and one

imputation result was finally used. Patients were randomly

divided into the training cohort (70%) and the validation cohort

(30%). Three methods, namely, stepwise regression, least absolute

shrinkage and selection operator (LASSO) regression, and best

subset selection regression, were used to select predictors in the

training cohort. To select variables by stepwise regression,

univariate Cox regression was first performed for each variable,

and variables with P-value <0.1 were included in multivariate Cox

regression. Then, the backward stepwise regression was performed,

and variables were finally determined by it. In LASSO regression,

the variations of partial-likelihood deviance and the coefficients of

all the variables with the change of l were studied. When partial-

likelihood deviance was lowest, variables with non-zero coefficients

included in LASSO regression were selected. In best subset selection

regression, variations of b, l(b), Akaike information criterion (AIC),

and Bayesian information criterion (BIC) with the changes of the

model’s complexity were studied. Predictors in the regression with

the minimum AIC were selected.

Eventual predictors were considered based on the results of

the three methods and used to establish Cox regression as the

optimal model. The model was appraised from three perspectives:

discrimination, calibration, and clinical net benefit. Discrimination

was determined by the concordance index (C-index) with 95%

confidential interval (95% CI) calculated by 1,000 replicates of

bootstrap resampling and area under the receiver operating

characteristic curve (AUROC). The calibration curves were

graphically plotted to evaluate the agreement between predicted

probabilities and actual proportions. Net benefit in clinical practice

under different threshold probabilities was calculated using the

decision curve analysis (DCA) method. A nomogram was

displayed for detailed clinical usage of the optimal model. The

risk score plot was plotted to display patients’ risk scores in an

ascending order, their outcomes with the follow-up time, and the

standardized level of each predictor in all patients. For each

predictor, the grouping cutoff value was determined by the R

package survminer, which was used to separate patients into two

groups, and the difference between the two groups was evaluated by

the Kaplan–Meier method and the log-rank test.
Results

Participants

Corresponding to the eligibility criteria, a total of 689 eligible

patients were included (Figure S1). Among these patients, 59

(8.56%) of them developed into severe cases after hospitalization

and were admitted to the ICU (defined as the ICU group), and the

remaining 630 (91.44%) patients were not admitted to the ICU until

their discharge (defined as the non-ICU group). Patients with intact

data accounted for 84.33% with the other 15.67% missing one or
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more indexes (Figure S2). To characterize the patients, baseline

characteristics including demographic and clinical features,

immune indexes, and outcomes were listed (Table 1).

Comparisons between the ICU and non-ICU groups revealed

several differential variables: age, severity (admitted), leukocytes,

neutrophils, lymphocytes, eosinophils, basophils, CRP, SAA, IL-6,

PCT, IL-10, IL-2, TNF-a, and globulin. Since the total 689 patients

were randomly separated into the training and validation cohorts,

comparisons were made between them to investigate whether such

separation caused biases in data distribution (Table S1). From this

table, the P-values of all the comparisons were >0.05, indicating that

no significant difference existed between the training and

validation cohorts.
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Predictor selections and verification

Via stepwise regression (Table 2), six variables were eventually

retained in the regression, namely, age, leukocytes, lymphocytes,

PCT, IL-10, and IL-8, and they were used to construct Cox

regression named the STEPWISE model (Figure 1A). In LASSO

regression (Figures 2A, B), when partial-likelihood deviance was

lowest, variables with non-zero coefficient were gender, severity

(admitted), neutrophils, lymphocytes, SAA, PCT, IL-10, IL-2, and

IL-8. They were included in Cox regression named the LASSO

model (Figure 1B). In best subset selection regression (Figures 2C,

D), age, neutrophils, lymphocytes, PCT, IL-10, IL-2, IL-8, and IL-4

were included when the AIC was minimum. Cox regression
TABLE 1 Demographic and clinical features, immune indexes, and outcomes of the 689 patients.

Variables Total (n = 689) Non-ICU (n = 630) ICU (n = 59) P-valuea

Age (years) 76.4 (64.5, 86.7) 75.35 (63.92, 86.3) 86.2 (77.55, 90.35) <0.001

Gender (n) 0.81

Male 308 (45) 283 (45) 25 (42)

Female 381 (55) 347 (55) 34 (58)

Severity (admitted) (n) <0.001

Moderate 495 (72) 466 (74) 29 (49)

Severe 194 (28) 164 (26) 30 (51)

Leukocytes (×109/L) 5.24 (4.19, 6.81) 5.18 (4.17, 6.66) 7.08 (5.05, 9.73) <0.001

Neutrophils (×109/L) 3.31 (2.39, 4.58) 3.2 (2.36, 4.33) 5.09 (3.19, 9.31) <0.001

Lymphocytes (×109/L) 1.21 (0.86, 1.72) 1.27 (0.89, 1.78) 0.9 (0.5, 1.26) <0.001

Monocytes (×109/L) 0.43 (0.32, 0.57) 0.43 (0.33, 0.56) 0.44 (0.3, 0.58) 0.73

Eosinophils (×109/L) 0.05 (0.01, 0.1) 0.05 (0.02, 0.11) 0.02 (0, 0.05) <0.001

Basophils (×109/L) 0.01 (0.01, 0.02) 0.02 (0.01, 0.02) 0.01 (0, 0.01) <0.001

CRP (mg/L) 8.33 (2.93, 23.01) 7.4 (2.67, 20.06) 48.12 (12.2, 110.47) <0.001

SAA (mg/L) 27.28 (7.87, 107.18) 23.55 (7.31, 85.72) 268.7 (58.32, 320) <0.001

IL-6 (pg/ml) 28.84 (14.78, 76.66) 27.17 (14.39, 65.79) 48.88 (27.81, 154.95) <0.001

PCT (ng/ml) 0.02 (0.02, 0.06) 0.02 (0.02, 0.05) 0.45 (0.05, 0.45) <0.001

IL-17A (pg/ml) 1.07 (0.33, 2.66) 1.02 (0.32, 2.58) 1.5 (0.49, 3) 0.29

IL-10 (pg/ml) 4.28 (2.38, 7.56) 4.12 (2.33, 6.9) 8.12 (3.83, 12.48) <0.001

IFN-g (pg/ml) 1.73 (0.4, 5.68) 1.82 (0.41, 5.5) 1.27 (0.33, 5.89) 0.55

IL-2 (pg/ml) 0.08 (0.04, 0.88) 0.08 (0.04, 0.88) 0.1 (0.06, 15.12) 0.01

IL-1b (pg/ml) 0.89 (0.27, 2.03) 0.89 (0.27, 2.02) 0.89 (0.27, 2.5) 0.72

IL-5 (pg/ml) 0.07 (0.04, 0.14) 0.07 (0.04, 0.12) 0.08 (0.04, 1.64) 0.36

IL-12 (pg/ml) 0.07 (0.04, 0.5) 0.07 (0.04, 0.49) 0.07 (0.04, 0.62) 0.66

IL-8 (pg/ml) 101.7 (30.49, 239.7) 104.11 (30.24, 244.74) 94.09 (39.42, 180.94) 0.36

IL-4 (pg/ml) 0.7 (0.07, 2.91) 0.7 (0.07, 3.03) 0.68 (0.08, 1.65) 0.78

TNF-a (pg/ml) 5.98 (2.62, 12.25) 6.35 (2.77, 12.87) 3.25 (1.02, 7.14) <0.001

Globulin (g/L) 22.25 (19.83, 25.11) 22.05 (19.65, 24.85) 23.89 (21.52, 26.52) 0.002
fro
aFor normally distributed continuous variables, the unpaired t-test (two-tailed) was used; for non-normally distributed continuous variables, theWilcoxon signed-rank test (two-tailed) was used;
for categorical variables, Pearson’s chi-squared test (two-tailed) was used.
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established using these variables was named the SUBSET model

(Figure 1C). Moreover, to verify whether introducing immune

predictors into the prognostic model would improve the

predictive efficacy, a model named the BASIC model, only

including basic demographic and clinical variables (age, gender,

and severity (admitted)), was established and compared with the

STEPWISE, LASSO, and SUBSET models (Figure 1D).

To observe the reliability of predictors selected by these methods,

the performance of the three models was firstly evaluated. First, the

models’ C-indexes with 95% CI and AUROC were calculated

(Figures 3A–D). Accordingly, the C-indexes of the STEPWISE,

LASSO, and SUBSET models and the majority of their 7-, 14-, and

21-day AUROCs were over 0.8, and all the values were higher than

those of the BASIC model. Thus, all three models had quite

satisfactory discrimination which was apparently better than that of

the BASIC model. Then, the models’ calibration in the training and

validation cohorts was displayed (Figures 3E, F). All the models’

calibration curves closely approached the diagonal edge (ideal line),
Frontiers in Immunology 05
indicating that their predicted probabilities of no ICU admission

(NIA) were in agreement with actual NIA proportions. In the DCA

curves of 7, 14, and 21 days, the STEP, LASSO, and SUBSET models

had more net benefit in a wider range compared with the BASIC

model (Figure 4). Conclusively, the STEP, LASSO, and SUBSET

models exhibited good performance in discrimination, calibration,

and net benefit, and therefore, predictors selected by their

corresponding methods were reliable in predicting ICU admission.

Meanwhile, all three models had obviously better performance than

the BASIC model, demonstrating that introducing immune variables

into the model could improve the model’s predictive ability.
Model development and validation

Considering all predictors selected by the three models, we

chose predictors emerging more than twice to be included in the

eventually optimal model: age, neutrophils, lymphocytes, PCT, IL-
TABLE 2 Results of univariate and multivariate Cox regression calculating HR values for ICU admission before stepwise regression.

Univariate Multivariate

Variables P-value HR (95% CI) P-value HR (95% CI)

Age (years) 0.01 1.04 (1.01~1.07) 0.15 1.03 (0.99~1.06)

Gender: female 0.16 1.56 (0.85~2.86)

Severity (admitted): severe 0.008 2.22 (1.23~4.01) 0.23 1.48 (0.78~2.81)

Leukocytes (×109/L) <0.001 1.27 (1.13~1.42) 0.46 1.2 (0.74~1.96)

Neutrophils (×109/L) <0.001 1.35 (1.21~1.5) 0.89 1.04 (0.63~1.71)

Lymphocytes (×109/L) 0.003 0.38 (0.2~0.72) 0.12 0.5 (0.2~1.2)

Monocytes (×109/L) 0.91 1.09 (0.24~4.94)

Eosinophils (×109/L) 0.11 0.01 (0~2.85)

Basophils (×109/L) 0.04 0 (0~0.2) 0.73 471.58 (0~4.1 × 1017)

CRP (mg/L) <0.001 1.01 (1.01~1.02) 0.31 0.99 (0.98~1.01)

SAA (mg/L) <0.001 1.01 (1~1.01) 0.36 1 (1~1.01)

IL-6 (pg/ml) 0.34 1 (1~1)

PCT (ng/ml) <0.001 50.43 (11.84~214.82) 0.03 9.64 (1.21~77.05)

IL-17A (pg/ml) 0.59 1.02 (0.95~1.1)

IL-10 (pg/ml) 0.002 1.08 (1.03~1.13) 0.29 1.03 (0.97~1.09)

IFN-g (pg/ml) 0.41 1.01 (0.98~1.05)

IL-2 (pg/ml) 0.04 1.05 (1~1.1) 0.17 1.04 (0.98~1.09)

IL-1b (pg/ml) 0.25 1.06 (0.96~1.17)

IL-5 (pg/ml) 0.66 1.1 (0.73~1.65)

IL-12 (pg/ml) 0.57 0.89 (0.6~1.33)

IL-8 (pg/ml) 0.03 1 (1~1) 0.05 1 (0.99~1)

IL-4 (pg/ml) 0.76 1 (0.97~1.02)

TNF-a (pg/ml) 0.17 0.98 (0.94~1.01)

Globulin (g/L) 0.06 1.08 (1~1.16) 0.44 1.03 (0.95~1.13)
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10, IL-2, and IL-8. Additionally, IL-8 was removed because of its

insignificant HR value (1 (1, 1)). Cox regression was developed

using the remaining six variables as the optimal model (Figure 5A).

Afterward, its performance was assessed. The optimal model’s C-

indexes in the training and validation cohorts were more than 0.8,

and its AUROCs of 7, 14, and 21 days were over 0.7, suggesting its

excellent discrimination (Figure 5B). In its calibration plot, the

predicted NIA probabilities were proximal to actual NIA

proportions (Figure 5C). From 7 to 14 days and then to 21 days

in the DCA curves (Figure 5D), the ranges of threshold probability

with positive net benefit extended over time, and in the 21-day DCA

curves, the ranges in the training and validation cohorts were 0~1

and nearly 0~0.75, retrospectively, suggesting a considerable clinical

benefit of the model.
Model specification

Based on Cox regression of the optimal model, a nomogram was

developed to calculate the detailed NIA probability in 1, 2, and 3

weeks after hospitalization (Figure 6). According to the risk score

plot, ICU-admitted patients appeared intensively in the high-risk

groups with correspondingly higher risk scores (Figures 7A, B).
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Moreover, higher values of age, neutrophils, PCT, IL-2, and IL-10

appeared in patients with higher risk scores, and higher values of

lymphocytes appeared in patients with lower risk scores, indicating

their specific promotive or inhibitive functions in ICU admission

for patients (Figure 7C). The significant differences between groups

with high and low values were also proven by the Kaplan–Meier

method and the log-rank test, and all the predictors’ P-values in the

log-rank test were less than 0.05 (Figure 7D).
Discussion

Since December 2021, the SARS-CoV-2 Omicron variant has

rapidly preempted the shares of other VOCs like the Delta and

Gamma variants and become the predominant variant globally. The

enhanced ability of the Omicron variant to evade vaccine or

infection-induced immunity and bind with angiotensin-

converting enzyme 2 receptor confers its exceedingly potent

infectivity and high odds of reinfection and breakthrough

infection (18, 26, 27). Moreover, more and more countries

canceled their previously strict COVID-19 management, thus

leading to a surge of infected cases. Considering that newly

infected patients mainly have symptoms like fever, fatigue, runny
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FIGURE 1

The forest plots of the STEPWISE, least absolute shrinkage and selection operator (LASSO), SUBSET, and BASIC models. Cox regression results of the
STEPWISE model (A), LASSO model (B), SUBSET model (C), and BASIC model (D) were displayed in the forest plots as HR values with 95% CI and
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nose, and sore throat, the key point of handling COVID-19

becomes how to recognize potentially severe cases and prevent

illness progression, especially in immunocompromised and

vulnerable populations. To address this problem, we aimed to

construct a prognostic model to early predict an Omicron

variant-infected patient’s probability of developing into a severe

case using immune-related predictors. First, three methods were

used to select the appropriate predictors to establish a model. Then,

the model was assessed from aspects of discrimination, calibration,

and net benefit. Also, a nomogram was given for detailed use.

The optimal model established by us provided several

meaningful implications. First, host immunity plays a critical role

in the occurrence, development, and defense of SARS-CoV-2

infection. Early and coordinated immune responses are tightly

associated with effective viral clearance and milder symptoms in

COVID-19 patients; however, dysregulated and delayed immune

responses induce serious pulmonary damage, sepsis, cytokine

storm, and even multiorgan failure (28–30). Therefore, immune
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factors could directly and powerfully reflect the severity and

prognosis of COVID-19, and they were used in our study to

maximize the model’s predictive power. Many of the previous

studies have focused on other kinds of predictors like saturation

of oxygen, estimated glomerular filtration rate, dyspnea, d-dimer,

prothrombin time, NT-proBNP, and myoglobin, while no studies

constructed prognostic models specially from the aspect of

immunity (21, 22, 31). Second, the number of Omicron variant-

infected patients would increase continuously with the evolution

and transmission of the Omicron variant over time. Given the huge

proportion (over one-third) of the elderly and children in the world,

along with other immunocompromised populations, this

prognostic model is expected to have promising prospects for

clinical application. Third, values of all the predictors in this

study were collected immediately after the patients’ admission;

therefore, it will facilitate the early recognition of the potential

severe cases upon their hospitalization and allow the timely

initiation of suitable treatment. It would also benefit the rational
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allocation of medical resources to maximize their usage. The

examination of these six predictors is inexpensive and easy to

apply. Additionally, this prognostic model is particularly

developed for the Omicron variant and subvariants, thus being

more applicable than previous models based on the ancestral strain

or other VOCs.

In our prognostic model, higher levels of neutrophils, PCT, IL-2,

and IL-10 and lower levels of lymphocytes, along with advanced age,

were considered factors contributing to ICU admission. Neutrophils,

the main driver of innate immunity, could eliminate SARS-CoV-2 via
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phagocytosis, extracellular traps, and cytokine release, and it could

also result in hyperinflammation and immunopathological damage in

COVID-19 patients, which was tightly associated with patients’

severity and survival (32). PCT was an immune factor elevated

after bacterial, fungal, and parasitic infection, reflective of serious

infection and sepsis (33). Its apparently promotive effect on ICU

admission of Omicron variant-infected patients [HR with 95% CI:

11.72 (2.29~60.06)] suggests that comorbid infection or

inflammation is an important factor exacerbating the prognosis of

Omicron variant infection. Actually, comorbid bacterial infection was
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FIGURE 3

Discrimination and calibration of the STEPWISE, LASSO, SUBSET, and BASIC models. (A–D) Receiver operating characteristic (ROC) curves of the
STEPWISE model (A), LASSO model (B), SUBSET model (C), and BASIC model (D) with AUROC and C-indexes with 95% CI. Red: the 7-day ROC
curve; blue: the 14-day ROC curve, yellow: the 21-day ROC curve. (E, F) Calibration plots of 7, 14, and 21 days displaying the relationship between
predicted no ICU admission (NIA) probabilities and actual NIA proportions in the training (E) and validation (F) cohorts. Red: the STEPWISE model;
blue: the LASSO model; yellow: the SUBSET model; green: the BASIC model.
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common in COVID-19 patients due to the damaged functions of T

cells, B cells, and NK cells caused by SARS-CoV-2 infection,

intubation treatment, or basically compromised immunity, which

could aggravate systemic inflammation and increase disease severity

and death rate, as previously reported (34–36). IL-2, a stimulator of

T-cell proliferation and effector/memory T-cell production, is a

proinflammatory cytokine. Its expression level was elevated after

SARS-CoV-2 infection and associated with disease severity (37, 38).

IL-10, a multifunctional cytokine modulating many cytokine releases
Frontiers in Immunology 09
and immune cell functions, is also a promotive factor for critical

illness of COVID-19 (39, 40). It was reported that the levels of risk

factors like IL-2, IL-6, IL-7, IL-10, and TNF-a in the patients infected

with the Wuhan-Hu-1, Alpha variant, Delta variant, or Omicron

variant were different (41). Here, we also noticed that the levels of IL-

2 and IL-10 in severe Omicron variant-infected patients were lower

than those in Wuhan-Hu-1-infected patients (42). These findings

suggest that these factors’ contribution to the severity of patients

infected with different SARS-CoV-2 variants may be different because
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of their different virulence and pathogenicity. Therefore, it is essential

to develop different prognostic models based on immune variables in

patients infected with the SARS-CoV-2 ancestral strain or

other VOCs.

Certainly, some limitations existed in our study. First,

considering the 10 events per variable criterion of sample sizes, a

total of 60 ICU-admitted patients were needed in this Cox

regression. The training cohort had 44 ICU-admitted patients,

lower than the satisfactory sample size. However, since ICU

admission is a low-frequency event in the Omicron epidemic

area, such sample size is still acceptable. Second, many patients

lacked examination results of immune cytokines, and thus, a

selection bias might exist. Third, patients in our study were

mainly infected by Omicron subvariant BA.2, thus being unable
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to comprehensively include more patients infected by other

Omicron subvariants (43). However, the Omicron subvariants’

pathogenic, antigenic, and immune properties have many

similarities, and therefore, the differences in immune responses

induced by them are limited (44, 45). To solve these issues, a further

external validation study containing sufficient samples, less missing

values, and patients infected by different Omicron subvariants

is warranted.

In general, we have developed and validated a prognostic model

to predict the severity of Omicron variant infection based on six

predictors: older age, higher numbers of neutrophils, lower

numbers of lymphocytes, and higher levels of PCT, IL-2, and IL-

10. This prognostic model has high discrimination, calibration, and

net benefit with good potential for a wide clinical application.
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FIGURE 5

The optimal model and its performance evaluation. (A) The forest plot displaying Cox regression results of the optimal model as HR values with 95%
CI and P-values. (B) ROC curves of the optimal model with AUROC and C-indexes with 95% CI. Red: the 7-day ROC curve; blue: the 14-day ROC
curve, yellow: the 21-day ROC curve. (C) Calibration plots of 7, 14, and 21 days displaying the relationship between predicted NIA probabilities and
actual NIA proportions. Red: the training cohort; blue: the validation cohort. (D) Decision curves of the optimal model showing the net benefit under
different threshold probabilities in 7, 14, and 21 days. Yellow: the training cohort; black: the validation cohort; blue: all patients receiving treatment;
brown: no patient receiving treatment.
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FIGURE 7

The risk score and each variable’s risk contribution in the optimal model. (A–C) The X-axes represented all the patients ranked by their risk scores
calculated from the optimal model. (A) The Y-axis displayed the detailed risk score of each patient; (B) the Y-axis displayed the follow-up time since
admission along with the patients’ outcomes; (C) heatmap showing the standardized level of each variable in all patients. (D) Kaplan–Meier survival
curves of variables in the optimal model with P-values of the log-rank test. Blue: the high-value group; red: the low-value group.
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