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Sperm activate TLR2/TLR1
heterodimerization to induce a
weak proinflammatory response
in the bovine uterus

Alireza Mansouri1, Mohamed Samy Yousef1,2, Rasoul Kowsar3,
Nonoka Usui1, Ihshan Akthar1 and Akio Miyamoto1*

1Global AgroMedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary
Medicine, Obihiro, Japan, 2Department of Theriogenology, Faculty of Veterinary Medicine, Assiut
University, Assiut, Egypt, 3Department of Animal Sciences, College of Agriculture, Isfahan University
of Technology, Isfahan, Iran
Toll-like receptor 2 (TLR2) signaling pathway is involved in the sperm-triggered

uterine inflammatory response at insemination, but its precise mechanism at

molecular-level remains unknown. According to the ligand specificity, TLR2

forms a heterodimer with TLR1 or TLR6 as an initial step to mediate

intracellular signaling, leading to a specific type of immune response. Hence,

the present study aimed to identify the active TLR2 heterodimer (TLR2/1 or TLR2/

6) that is involved in sperm-uterine immune crosstalk in bovine using various

models. First, in-vitro (bovine endometrial epithelial cells, BEECs) and ex-vivo

(bovine uterine explant) models were employed to test different TLR2

dimerization pathways in endometrial epithelia after exposure to sperm or

TLR2 agonists; PAM3 (TLR2/1 agonist), and PAM2 (TLR2/6 agonist). Additionally,

in-silico approaches were performed to confirm the dimer stability using de novo

protein structure prediction model for bovine TLRs. The in-vitro approach

revealed that sperm triggered the mRNA and protein expression of TLR1 and

TLR2 but not TLR6 in BEECs. Moreover, this model disclosed that activation of

TLR2/6 heterodimer, triggers a much stronger inflammatory response than

TLR2/1 and sperm in bovine uterine epithelia. In the ex-vivo model that mimics

the intact uterine tissue at insemination, sperm also induced the protein

expression of both TLR1 and TLR2, but not TLR6, in bovine endometrium,

particularly in uterine glands. Importantly, PAM3 and sperm induced similar

and low mRNA expression of pro-inflammatory cytokines and TNFA protein to

a lesser extent than PAM2 in endometrial epithelia. This implied that spermmight

trigger a weak inflammatory response via TLR2/TLR1 activation which is similar to

that of PAM3. Additionally, the in-silico analyses showed that the existence of

bridging ligands is essential for heterodimer stability in bovine TLR2 with either

TLR1 or TLR6. Altogether, the present findings revealed that sperm utilize TLR2/1,

but not TLR2/6, heterodimerization to trigger a weak physiological inflammatory

response in the bovine uterus. This might be the way to remove excess dead

sperm remaining in the uterine lumen without tissue damage for providing an

ideal uterine environment for early embryo reception and implantation.
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Introduction

In bovine, during natural breeding or artificial insemination

(AI), a massive number of sperm are introduced into the female

reproductive tract (FRT) of the estrus animal to increase the

probability of fertilization. In the course of the sperm’s journey to

the ova, sperm interact with the immune system of FRT.

Different Toll-like receptors (TLRs) have been found to be

involved in the induction of inflammatory responses in the FRT

(1–7). TLR2 play a key role in binding and immune-cross talk

between sperm and FRT (1–3, 5–8). Active sperm cells bind to the

bovine endometrium via the TLR2 and induce pro-inflammatory

responses. However, sperm attachment to bovine oviduct epithelial

cells is mediated also by TLR2 but leads to an anti-inflammatory

response. The ovum releasing from the ovary lead to a tightly

regulated sterile inflammatory response in bovine oviduct which is

rapidly resolved during early corpus luteum formation (9).

Meanwhile, TLR2 is also expressed in cumulus cells of cumulus-

oocyte complexes (COCs) and plays immune protective functions

critical for cell survival during ovulation and fertilization (10, 11).

Notably, sperm-induced weak inflammation in bovine

endometrium has an essential role in uterine clearance prior to

accept the embryo (3, 12). Despite numerous previous studies, the

detailed molecular mechanism of sperm-uterine inflammatory

signaling that regulated by TLR2 remains unclear.

TLRs are transmembrane proteins, consisting of three main

domains: Extracellular domain or leucine-rich repeats (LRR),

Transmembrane domain and Intracellular domain or Toll/IL-1R

(TIR) domain. Ligand-induced dimerization plays a critical role in

signaling through TLRs, in particular TLR2 and TLR4, due to the

need for two TLR domains in the vicinity of each other to initiate

TLR signaling cascade, consequently recruiting the main TLR

domain-containing adaptors: MyD88, MAL/TIRAP, TRIF,

TRAM, and SARM (13–15).

Ligand-induced dimerization has been proposed as a key event

in the activation of TLR2 in human and mouse models (13, 14).

Interestingly, TLR2/1 heterodimer has been more associated with a

pro-inflammatory response compared with TLR2/6 complex, which

has been shown to be related to both pro- and anti-inflammatory

responses (13–16). Of note, TLR2 is involved in pro-inflammatory

responses in the bovine uterus against sperm (1–3, 7).

Since dimerization is a prerequisite for any TLR2 activation, we

hypothesized that the sperm-triggered physiological inflammatory

response in bovine endometrium is regulated by different types of

TLR2 dimerization (TLR2/1 or TLR2/6), though the structure of

TLR2 dimers in bovine is unknown. In-vitro cell cultures using

BEECs are considered as the starting point for studying any

biological effect in bovine uterus (2, 7). However, this model

cannot simulate the anatomical complexity of bovine uterus

especially for sperm-uterine interaction (particularly uterine

gland). Thus, the ex-vivo model using uterine explant has been

performed to mimic the in-vivo conditions to identify different

physiological interactions in bovine uterus (1).

In this study, we first employed in-vitro approach to evaluate

the sperm-triggered TLR1, 2 and 6 expressions in endometrial
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epithelial cells to determine which TLR2 heterodimer is activated

by sperm in bovine endometrium. Then using the same model, the

degree of inflammatory response by different TLR2 agonists (i.e.,

PAM3 and PAM2) was evaluated and compared to sperm induced

inflammation. Thereon, ex-vivo uterine explant culture model was

used as a powerful and more physiological tool to verify the possible

TLR2 dimerization mechanism in response to sperm in the uterine

tissue in particular in the uterine glands.

Protein–protein interactions (PPI), including dimerization and

protein complex, control all functions of the living cell during

physiological and pathological conditions (17, 18). Recently,

different in-silico approaches have been used to identify the

biological pathways of PPI and highlight possible applications

(19–21). TLRs molecular-level responses are extensively studied

using computational biology approaches (19–21). Hence, in-silico

model was employed for the first time to investigate dimerization

process of TLR2 at molecular-level in bovine model. At first, the

binding affinity of TLR2 with TLR1 and TLR6 was evaluated using

known crystal structures of both mouse and human. Afterwards, the

potential effect of PAM3 and PAM2 (TLR2/1 and TLR2/6 agonists,

respectively) on TLR2 dimerization was investigated via de novo

generated bovine TLRs.
Methodology

Study design

In-vitro, ex-vivo and in-silico investigations were conducted to

define the signaling mechanism by which TLR2 is regulated

during sperm-uterine immune interactions in non-pregnant

cattle (Figure 1).

In-vitro approaches
Experimental design and in-vitro studies

In order to elucidate the heterodimeric form of TLR2 signaling in

sperm- induced inflammation in bovine uterus at cellular level,

BEECs were co-cultured with sperm (5 million/mL) for 3h.

Furthermore, to investigate the contribution of TLR2 signaling

(TLR2/1 and TLR2/6) cascade to uterine inflammation, the

following experiments was conducted using different TLR2

agonists. Bovine endometrial epithelial cells (BEECs) were

stimulated with PAM3 (TLR2/1 agonist, ab142085, Abcam) and

PAM2 (TLR2/6 agonist, InvivoGen, USA) at 100 ng/mL

concentration for 1h. The concentration of dose and time point

were selected based on our previous reports in which those conditions

were investigated in detail (2, 7). In brief, based on dose- and time-

dependent investigations (104, 105 and 106 sperm/mL), 5 million/mL

of sperm was used to induce the weak physiological inflammation

after co-culture with BEECs for 3 h (8). As well, PAM3 (10, 100 and

1000 ng/mL) was applied, and 100 ng/ml was the first to induce the

inflammatory response in BEECs at 1h of incubation in the similar

level to that of sperm (2). Thus, 100 ng/mL of PAM3 and the same

concentration of PAM2, were used in the present study to compare

their inflammatory effects with sperm.
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BEECs Culture

Initially, macroscopically healthy non-pregnant bovine uteri

were carefully observed to be free of inflammation and abnormal

color or any pathological lesions in slaughterhouse (Obihiro,
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Hokkaido, Japan), then collected and directly transferred to the

laboratory under sterilized conditions and the uterine horn was

used to isolate epithelial cells (2, 7). The isolated cells were cultured

in Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12
B

C

D

A

FIGURE 1

Plan representation of the research design. (A) In-vitro model: to detect which active TLR2 dimer can be employed by sperm in bovine
endometrium at cellular level. BEECs monolayer were co-cultured with 5million sperm per mL for 3h. qRT-PCR and immunostaining analyses were
done to investigate TLRs mRNA and protein expression. (B) In-vitro model: to study inflammation intensity through the two classical TLR2 signaling
(TLR2/1 and TLR2/6 signaling cascades), BEECs monolayer were stimulated with 100 ng/mL of PAM3 (TLR2/1 agonist) and PAM2 (TLR2/6 agonist) for
1h. A time-dependent experiment (1, 6 and 12h) was done to confirm the difference between both TLR2 signaling pathway. Finally, qRT-PCR analysis
was performed to consider the pro-inflammatory mRNA expression (TNFA, IL1B, IL8 and PGES1). (C) Ex-vivo model: to compare sperm induced
inflammation in endometrium with PAM3 and PAM2. Bovine endometrial explants were co-incubated with 5milion sperm/mL, and 100 ng/mL PAMs
for 3h. First, qRT-PCR was employed to investigate the pro-inflammatory mRNA expression. Afterwards, immunostaining was used to evaluate and
localize the strong inflammatory marker (TNFA) for all groups and signaling marker proteins (TLR1, TLR2 and TLR6) in endometrium for sperm group.
(D) In-silico model: we investigated dimerization process for TLR2 in different condition, in absent and presence of TLR2 agonists. Additionally, we
predict the effect of agonist on bovine TLR dimerization.
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(DMEM/F12, Gibco, Grand Island, USA) supplemented with 1%

amphotericin B, 0.1% gentamicin (Sigma-Aldrich, Steinheim,

Germany), 10% heat-inactivated fetal calf serum (FCS) (Biowest

USA) and 2.2% NaHCO3 using flask. The culture medium was

replaced regularly with new media every 48 h. Upon reaching 70–

80% confluence, the cells were collected with trypsinizing (0.05%

trypsin EDTA; Amresco, Solon, OH, USA), transferred in 24-well

and 12-well plates (Nalge Nunc International, Roskilde, Denmark)

and cultured up to around 90% confluence (first passage). Estrogen

(E2) and progesterone (P4) were added at preovulatory

concentrations in the cell culture media (DMEM/F12, 1%

amphotericin B, 0.1% gentamicin and 5% FCS) (2, 7).

BEECs co-cultured with sperm

The sub-confluent BEEC monolayers (after first passage) were

washed twice with PBS and cultured in a medium supplemented by

0.1% FCS and gentamicin. The BEECs were co-cultured with 5

million/mL washed sperm, followed by washing cell twice with PBS,

lysing with Trizol (Invitrogen, Carlsbad, USA), and storing at −80°

C until RNA extraction. This experiment was repeated seven times

using epithelial cells from seven different uteri (n=7). For preparing

washed sperm, frozen semen straws (obtained from three Holstein

bulls kept in the Genetics Hokkaido Association, Hokkaido, Japan)

were thawed at 38.5°C for 30 sec, followed by washing three times at

200g for 10 min using sp-TALP (2, 7, 8). The sp-TALP consisted of

99 mM NaCl, 3.1 mM KCl, 25 mM NaHCO3, 0.39 mM NaH2PO4,

10 mM HEPES free acid, 2 mM CaCl2, 1.1 mM MgCl2, 25.4 mM

sodium lactate, 0.11 mg/ml sodium pyruvate, 50 µg/ml gentamycin

and 6 mg/ml BSA (Sigma-Aldrich, USA) pH 7.4.

Stimulation of BEECs with agonists

The sub-confluent BEEC monolayers (after first passage) were

washed twice with Phosphate Buffered Saline (PBS) and cultured in

a medium supplemented by 0.1% FCS and gentamicin. The BEECs

were either stimulated by 100 ng/mL PAM3 and PAM2 for 1, 6, 12

h. At the end of BEECs stimulation, cells were washed twice with

PBS, lysed with Trizol (Invitrogen, Carlsbad, USA), and stored at

−80°C until RNA extraction. This experiment was repeated seven

times using epithelial cells from seven different uteri (n=7).

Ex-vivo approaches
Experimental design

In order to compare the endometrial response toward sperm

and TLR2 agonists at the preovulatory phase, an ex-vivo model

(bovine endometrial explants) was used, due to the advantage of

investigating the protein localization in different compartments of

the endometrium and the links between whole-animal condition

and cellular function.

Sperm and agonist co-incubation with endometrial
explants

Bovine endometrial explants were prepared as described

previously (1). Briefly, pre-ovulatory bovine uteri were observed

to be free of inflammation and abnormal color or any pathological

lesions in slaughterhouse (Obihiro, Hokkaido, Japan), then
Frontiers in Immunology 04
collected and directly transferred to the laboratory for ex-vivo

investigations under sterilized conditions. Afterwards, using an 8

mm biopsy punch, endometrial explant tissue disks were extracted

from the glandular (intercaruncular) endometrial regions. Next,

explants disks were placed into a plate with sp-TALP and put in the

incubator (38.5°C and 5% CO2) for 15 min (1).

To compare the sperm induced inflammation with agonists,

explants were incubated with sperm (5 million sperm/mL) and

TLR2 agonists (100 ng/mL) for 3h in the incubator (38.5 0C, 5%

CO2, 0.5mL sp-TALP per well in 24-well plate) and at the end of the

incubation period the explants were processed for RNA extraction

and immunofluorescence analysis. This experiment was repeated

five times using explants from five different uteri (n=5).
PCR protocol

BEECs and uterine explants were subjected to RNA extraction,

cDNA synthesis, and quantitative real-time PCR were done through

following previous protocol (8). Trizol reagent (Thermo Fisher

Scientific) were used to extract total RNA, followed by measuring

RNA concentration using a spectrophotometer (Eppendorf,

Munich, Germany), after that stored in RNA storage solution

(Ambion, Austin, TX, USA) at −80°C until cDNA conversion

step. The cDNA synthesis was performed as previously described

(8), and the synthesized cDNA was stored at −30°C. Quantitative

real-time PCR of target genes (TNFA, IL1B, TLR2, TLR1, TLR6, IL8,

PGES1 and b-actin, Supplementary Table 1) was carried out by

QuantiTect SYBR Green PCR Master Mix (QIAGEN GmbH,

Hilden, Germany) using an iCycler iQ (Bio-Rad Laboratories,

Tokyo, Japan) (8). The calculated cycle threshold values were

normalized using b-actin as an internal housekeeping gene by

applying the Delta-Delta comparative threshold method to

quantify the fold change between samples.

Immunofluorescence protocol

a) IF for monolayer cells

At first, monolayer cell was cultured on 24-well plates with

13mm diameter glass coverslips and grow to 90% confluence then

co-cultured with 5 million sperm per mL for 3h. Cells were washed

with PBS twice and fixed with 2 mL of 4% formaldehyde for 15 min

at RT, followed by washing twice with PBS. After that, the cells were

permeabilized with 2 mL of 0.1% Triton-X10 in PBS for 15 min on

ice, followed by washing three times with PBS. Afterwards, the

monolayer cells were blocked using 2mL blocking buffer (5% BSA in

PBS) for 1h at RT. The cells were incubated with primary antibodies

for TLR1, TLR2 and TLR6 (Supplementary Table 2) in humid

chamber at 4°C overnight. After washing five times with PBS, the

cells were incubated with Alexa Flour conjugated secondary

antibody (Supplementary Table 2) for 1h at 4°C. After that, the

cells were washed six times with PBS, followed by mounting in

VECTASHIELD mounting medium containing DAPI (H-1200,

Vector Laboratories, CA, USA).

b) IF for explant tissue

After the incubation, explants were rinsed in sp-TALP and fixed

in 4% paraformaldehyde solution. Then, the fixed tissue samples were

dehydrated using ethanol gradient (70, 80, 90, 95 and 100%), cleared
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in absolute alcohol and xylene, followed by embedding in paraffin

and sectioning in 5 mm thick slices. The endometrial sections were

deparaffinized and rehydrated through placing on xylene, absolute

alcohol and grades series of alcohol, in turn. After that, the tissue

sections were blocked with normal goat serum (1:50, S-1000, Vector

Laboratories, CA, USA) for 30 min at RT and followed by incubating

overnight with primary antibodies for TLR1, TLR2, TLR6 and TNFA

(Supplementary Table 2) at 4°C in a humidified chamber. Afterwards,

the sections were incubated with Alexa Fluor conjugated secondary

antibodies (Supplementary Table 2) for 30 min. Sections were

washed, and coverslips were mounted using VECTASHIELD

mounting medium containing DAPI. Finally, the sections were

observed under fluorescence microscope (BZ-X800, Keyence).

In-silico approaches
Preparation of the molecules

In order to investigate TLR2 dimerization under both

physiological state and agonist stimulation in a bovine model, an

in-silico approach was conducted. To aim that, the TLR2/1-PAM3

(PDB ID: 2Z7X) and TLR2/6-PAM2 (PDB ID: 3A79) were selected

for this research. The crystal structures of the TLRs extracellular

domain of human (Homo sapiens) and mouse (Mus musculus)

species are known (PDB ID of 2Z7X and 3A79, respectively) but

have not yet been crystallized in bovine species (Bos taurus). Hence,

we carried out Basic Local Alignment Search Tool (BLAST) to

calculate the local similarity between bovine TLRs with human and

mouse TLRs. It revealed an identity of 77.6% (Human - Bovine

TLR2), 78.5% (Human - Bovine TLR1), 66.7% (Mouse - Bovine

TLR2) and 72.1% (Mouse - Bovine TLR6).

Investigating the affinity between TLRs in
heterodimer forms

The crystal structure of TLRs in the presence and absence of

agonist, and the obtained initial structure from Haddock online

server were used to investigate the affinity between TLRs (three

repeats). For applying TLRs to the Haddock 2.4 web server (22), the

residues involved in h-bond in TLRs interaction obtained through

Ligplot analysis (23) were selected as active residues at the

contacting site of TLRs. To obtain the initial structure for MD

simulation, cluster 1 was selected as the best docked complex based

on the highest HADDOCK score (according to the following

formula: Score: 1.0 * Evdw + 0.2 * Eelec + 1.0 * Edesol + 0.1 *

Eair). To calculate the binding free energies between TLRs in

heterodimer forms, 150 ns MD simulation were applied to obtain

trajectory MD simulation, followed by calculating binding free

energy using molecular mechanics/Poisson–Boltzmann surface

area (MM/PBSA) method (24–32) (Supplementary Data;

Supplementary Figures 1–4).

The prediction of binding pockets of TLRs in human,
mouse and bovine

The possible binding pockets on TLRs were identified through

DoGSite Scorer web server, which is a strong tool for investigating

potential binding pockets (33, 34). The DoGSite Scorer web server is

used for mapping the possible binding pockets based on descriptors
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calculation (such as depth (A), surface (A2), volume (A3)).

Furthermore, the druggability score is estimated through the

support vector machine (SVM) method. The score of druggability

classified from 0 to 1 while higher values are the potential pockets

for the main binding sites. The pocket detection and analysis were

performed for TLRs of three mammalian species (crystal structures

of human, mouse, and de novo modeling of Bovine TLRs). Bovine

TLR protein 3-D structure prediction was carried out after applying

amino acid sequences of extracellular domain (Uniprot code:

Q95LA9, B5TYW4 and Q704V6 for TLR2, TLR1 and TLR6,

respectively) to I-TASSER server (27), followed by optimizing 3-

D structures using 100 ns MD simulation.
Statistical analysis

The statistical analysis was conducted with SPSS® software

version 22 (IBM, Armonk, Ny, USA). The data were first tested

for normality using Kolmogorov–Smirnov test. A non-parametric

Kruskal–Wallis test followed by a Mann–Whitney test were applied

for non-normally distributed data of mRNA gene expressions.

While One-way analysis of variance (ANOVA) and post hoc

Tukey’s test were used for normally distributed data obtained

from TNFA immunofluorescence analysis. An unpaired two-

tailed parametric Student’s t-test was performed to evaluate the

differences between two unpaired groups. The statistical

significance was defined as P< 0.05.
Result

TLR2/1 heterodimer employed by sperm to
induce inflammation in BEECs

In BEECs, sperm induced TLR2 (P <0.001) and TLR1 (P <0.01)

mRNA expression, but not TLR6 (Figure 2A). Moreover, the

immunofluorescence analysis showed similar expression profiles

for TLR2 (P <0.01) and TLR1 (P <0.05) after sperm co-culture with

BEECs (Figure 2B).
The varying degrees of inflammatory
reaction following endometrial activation
of TLR2/1 and TLR2/6

The PAM3 increased the mRNA expression of TNFA and IL8

(P <0.05) compared to the control. Meanwhile PAM2 significantly

increased the mRNA expression of TNFA (P <0.01), IL1B (P <0.01),

IL8 (P <0.001), and PGES1 (P <0.001) compared to the control.

Compared to PAM3, PAM2 treatment significantly (P <0.05)

increased the transcription levels of the pro-inflammatory genes

(TNFA, IL1B, IL8, and PGES1). For instance, TNFA, IL1B, and IL8

expressions were roughly 3-fold higher in the PAM2 group than in

the PAM3 treatment (Figure 3). Additionally, a time-dependent

exposure revealed that PAM2 over PAM3 increased TNFA mRNA
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expression in BEECs at various time points. (1, 6 and 12h)

(Supplementary Figure 5).
Sperm induced the TLR2/1 protein
expression in endometrial explants

The immunofluorescence analysis revealed that, TLR1, TLR2

and TLR6 is localized in the bovine endometrium, particularly in

surface and glandular epithelium. It was obvious that sperm induce

the protein expression of TLR2 (P <0.01) alongside TLR1 (P <0.05)

in similar manner, in particular in the uterine gland and in the

surface epithelium. On the other hand, for TLR6 expression, the

intensity was not modulated compared to the control in the uterine

gland and surface epithelium after sperm interaction with

endometrial epithelia (Figure 4).
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Sperm-induced inflammation in bovine
endometrium is similar to that of PAM3
(TLR2/1 pathway)

PAM2 induced a higher (P < 0.05) mRNA expression of pro-

inflammatory cytokines (TNFA, IL1B and IL8) in uterine explant

compared to the control and sperm treatments. Of note, there was

no significant difference (P > 0.05) between sperm and PAM3

groups for mRNA expression of the investigated cytokines

(Figure 5A). However, PGES1 gene expression did not show a

significant change after stimulating the uterine explant with

PAM3, PAM2 or sperm. In the same way, the intensity of

TNFA protein expression was highly significant after PAM2

treatment in comparing to sperm and control (P < 0.05)

particular in uterine gland of the endometrium compared to the

control (Figure 5B).
B

A

FIGURE 2

Sperm induce TLR2 and TLR1 (not TLR6) expression in BEECs. (A) Relative mRNA expression of TLR1, 2 and 6 in BEECs after 3h co-culture with 5
million/mL sperm. (B) Immunofluorescence staining of TLR1, 2 and 6 in BEECs monolayer. This experiment was repeated seven times using epithelial
cells from seven different uteri. Asterisks show a significance of difference (*P < 0.05, **P < 0.01, or ***P < 0.001) in the treatment group when
compared to the control group. Bar = 50 µm.
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Identical TLR2 dimerization process in
human, mouse and bovine

In the present study, the in-silico analysis confirmed that TLR2

is not able to interact with TLR1 at cellular level in human and

mouse models (Supplementary Results; Supplementary Table 3;

Supplementary Figure 6). In contrast, TLR6 has a low affinity with

TLR2. Our in-silico analyses clearly indicate that the affinity

between TLRs is not considerable to stabilize dimer forms. Thus,

the bridging molecules (ligands) are vastly required to stabilize

TLR2 dimers (Supplementary Table 4).
Frontiers in Immunology 07
The ectodomain of TLRs are split into three subdomains: N-

terminal (LRRNT), central and C-terminal (LRRCT) (Figure 6A).

The DoGSite Scorer predicted several binding pockets for all TLRs

in humans, mouse and bovine (Figures 6B–D). The volume, surface

and drugScore of the first predicted binding pockets (yellow pocket)

of the all TLR proteins in the three species were indicated in

Supplementary Table 5. The druggability score for this pocket in

all TLRs is >0.7. Moreover, the physicochemical descriptors showed

that TLRs of different species were almost identical (Figure 6).

Based on phyciso–chemical properties, the volume (V) of internal

pocket was 1803 Å3 (LRR9-12), 1490 Å3 (LRR7-12) and 1418 Å3
FIGURE 3

PAM3 and PAM2 induce a weak and strong inflammatory response, respectively, in BEECs. The relative mRNA expression of pro-inflammatory
cytokines and PGES1, after stimulation with 100 ng/mL PAM2 and PAM3 for 1h. This experiment was repeated seven times using epithelial cells from
seven different uteri. Asterisks show a significance of difference (*P < 0.05 or **P < 0.01, Mann–Whitney test).
FIGURE 4

Sperm induce TLR2 and TLR1 (not TLR6) protein expression in bovine endometrial explants. The intense expression of TLR1 and TLR2 in uterine
glands (UGs) and surface epithelium (SE) in sperm group. This experiment was repeated three times using explants from three different uteri.
Asterisks show a significance of difference (*P < 0.05 or **P < 0.01) in the treatment group when compared to the control group. when compared to
the control group. ST, stroma. Bar = 100 µm.
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(LRR9-12) in human, mouse and bovine TLR2, respectively.

Predicting the main binding pocket for TLR1 in the three species

showed that the main binding pockets were located between

LRR10-12 for human (V~533 Å3) and LRR11-12 for both mouse

(V~370 Å3) and bovine (V~500 Å3). The first predicted binding site

of bovine TLR1 was almost identical to human and mouse.

However, the volume and the surface were slightly different

between species for TLR6 in bovine compared with TLR6 in

human and mouse (Supplementary Table 5). Supplementary

Figure 7 demonstrated that in the main binding site of TLR2 in
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three species, the type and sequence of amino acids were identical

and conserved (in particular, the residue in the entrance of

binding pocket).

Looking at the details of the present data, Phe 322 and Phe 349

in three species were selected as the entrance of binding pockets.

Additionally, the data obtained from Ligplot analysis indicated that

these Phe residues (349 and 322) play an important role in TLRs

interaction with agonist and dimerization process (Supplementary

Figures 6, 8). As for TLR1, the predicted main binding pocket for all

three species was identical (approximately between Central LRR
B

A

FIGURE 5

Sperm and PAM3 induce a weaker inflammation in bovine endometrial explants, compared with PAM2. (A) Relative mRNA expression of pro-
inflammatory cytokines and PGES1 after stimulation with 5 million/mL sperm, 100 ng/mL PAM3 and PAM2 for 3h. This experiment was repeated
seven times using epithelial cells from seven different uteri. (B) Immunofluorescence staining for TNFA in endometrial explants (C: Negative control,
C: Control, S: Sperm, P3: PAM3 and P2: PAM2). This experiment was repeated three times using explants from three different uteri. Asterisks show a
significance of difference (*P < 0.05, **P < 0.01 or ***P < 0.001 , Mann–Whitney test) between the means of each two independent groups. Bar =
100 µm.
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and c-terminal LRR). With regards to TLR6, in mouse

experimentally crystal structure, the Phe 343 and Phe 365 block

the internal channel of TLR6, compared with TLR1, consequently,

this channel cannot be recognized as main binding site. This

structural analysis supposed that the main binding sites of TLRs

were similar and located in same place for the studied mammalian

species (Figure 6).
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Discussion

In this study, using a combination of experimental and in-silico

modeling, we were able to demonstrate that the sperm-induced

inflammatory response activates TLR2/1 heterodimer, but not

TLR2/6 in bovine endometrium. Importantly, we revealed that

sperm could induce a weak inflammatory response in bovine
B

C

D

A

FIGURE 6

Structural analysis of TLRs in three mammalian classes (human, mouse, bovine). (A) Three subdomains of TLRs having 20 LRR units, namely N-
terminal (LRRNT), central and C-terminal (LRRCT) in the ectodomain of TLRs. LRRNT (LRR 1~5), central (LRR 6~12) and LRRCT (LRR 13~20) colored
by red, cyan and magenta, respectively. (B) Predicted potential binding pockets of human TLRs. C) Predicted potential binding pockets of mouse
TLRs. (D) Predicted potential binding pockets of bovine TLRs. Different potential binding pockets of TLRs are shown by yellow (first pocket), violet
(second pocket), green (third pocket), red (fourth pocket). The main binding site (yellow pocket) of TLR2 is similar (localized between LRR9-12, and
the entrance is in LRR11-12) in the three species. Concerning TLR1, the main binding site (yellow pocket) is between central and LRRCT domains for
all species. However, this internal channel is blocked by two phenalene in TLR6.
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endometrium through ‘‘PAM3-like-weaker’’ TLR2/1 signalling

rather than “PAM2-like-stronger’’ TLR2/6 pathway.

In fact, the TLR2 has an essential role in balancing pro- and

anti-inflammatory immune responses in different cell types (2, 10,

16, 35–37). We previously reported that sperm induce transient and

weak inflammatory response via the regulation of TLR2 signaling in

bovine endometrium. On the other hand, heterodimerization of

TLR2 with TLR1 or TLR6 has been extensively studied to develop a

deep understanding of different immune responses resulted from

TLR2 activation. With selective TLR2 heterodimerization, it was

important to determine the active TLR2 heterodimer which is

involved in sperm-induced inflammation in bovine uterus. Thus,

in this study, at first, in-vitro BEECs co-culture was employed to

assess the expression of TLR1, TLR2 and TLR6 by sperm. Notably,

sperm upregulated the mRNA and protein expression of TLR1 and

TLR2, but not TLR6 in BEECs, suggesting that sperm utilize TLR2/1

during sperm-uterine interactions. Moreover, the present data

showed that the activation of TLR2/6 signaling pathway could

lead to a stronger inflammation compared to TLR2/1 in uterine

epithelial monolayer using specific agonists. Similarly, Murgueitio

et al. (38) indicated that activating TLR2/6 signaling pathway

resulted in 4-fold stronger inflammation than TLR2/1 in human

embryonic kidney cells. To get the same level of inflammation in

this kind of cells, they used 50 ng/mL of PAM2 versus 200 ng/mL

PAM3 for 5h (38). In our in-vitro model, identical concentration

from both PAMs (100 ng/mL) was applied to induce inflammation
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in bovine endometrial epithelia and interestingly, PAM2 induced a

3-fold higher inflammatory response compared to PAM3 and

sperm. Altogether, in-vitro studies provided the initial evidence

that sperm employ TLR2/1 signaling and activation of TLR2/1

signaling pathway led to a weak inflammatory response in BEECs.

Further, ex-vivo experimental model (i.e., preovulatory

endometrial explants that physiologically mimic the intact uterine

condition at insemination) was used to investigate the localization of

TLR1, 2 and 6 in endometrium and to compare the inflammatory

intensities of sperm and TLR2 agonists. We previously reported that

sperm interact with the uterine glands to induce an acute and weak

inflammatory response. This inflammatory response has been

detected by the upregulation of key inflammatory markers TNFA,

IL1B, IL8 and PGES as well as by the recruitment of inflammatory

cells (i.e., neutrophils) (1–3, 7, 12). Notably, in cattle, sperm trigger

the inflammatory cascade primarily via the TLR2 signaling of uterine

glands (1). The present ex-vivo protein expression data showed

similar upregulation profiles for TLR2 and TLR1, after sperm co-

culture with uterine explants. Even though, TLR1, TLR2 and TLR6

localized in surface epithelium and uterine glands, sperm enhanced

the expression of TLR1 and TLR2 but not TLR6 in these

compartments, which strongly support a co-regulation of TLR2

and TLR1 receptors in particular in uterine glands during sperm-

induced inflammatory response. Herein, TLR6 was not modulated

after sperm exposure, possibly to prevent strong and long-term

inflammatory reactions and tissue damage as high TLR6 that may
FIGURE 7

A graphic demo of our working hypothesis on the activation of possible TLR2 pathway signaling in sperm-induced inflammation in bovine
endometrial epithelia. The model demonstrating that the stimulation of endometrial epithelia with different TLR2 agonist (PAM3: TLR2/1 and PAM2:
TLR2/6) results in different intensity in inflammation response. In fact, initiating TLR2/1 signaling cascade could lead to weaker inflammation
compared to TLR2/6. As for sperm-endometrial epithelial interaction, sperm induce TLR2/1 heterodimerization signaling, to trigger the weak and
acute inflammation. We suppose that sperm may use small molecules from its surface (such as lipopeptides or glycans) to enhance TLR2/1
dimerization. However, further investigations are required to define the specific ligand(s) on the sperm cell membrane that regulate the initiation of
TLR2/1 heterodimerization. “?” shows the unknown molecules form sperm surface side which may link TLR1 to TLR2.
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correlate with higher-risk disease (39). Prominently, the mRNA and

TNFA protein profiles of ex-vivo model clearly showed that sperm

trigger a weak physiological inflammatory response in endometrial

epithelia similar to that of the specific ligand of TLR2/1 heterodimer

(PAM3). TNFA is one of the key inflammatory markers in the bovine

uterus towards sperm in both physiological and pathological

conditions (1, 7). Meanwhile, activation of TLR2/6 heterodimers

led to a stronger inflammatory response in endometrial explants

which assumed to be far from physiological sperm-triggered

inflammation. Thus, these ex-vivo evidence reveal that, sperm

employ TLR2/1 heterodimerization, in particular in uterine glands

of the bovine uterus, to activate the specific inflammatory cascade. In

fact, this kind of weak and transient inflammation is required to

remove excess and dead sperm remaining in the uterine lumen and to

complete this clearance within several hours without tissue damage

for providing the ideal uterine environment for acceptance of early

embryo and implantation.

Quite recently, Kar et al. (40) predicted the 3-D structure of

bovine TLR2 as a reliable computational tool. However, the

structures of bovine TLR1 and TLR6 are unavailable. Hence, in

the present study, the binding affinity of TLR2 with TLR1 and TLR6

was evaluated using known crystal structures of both mouse and

human. The in-silico models showed the evidence for the stabilized

interactions between TLR2/1 and TLR2/6 heterodimers in presence

of their agonists. Notably, the present study provided the first

insight for bovine TLR2 heterodimerization at molecular level.

Furthermore, the data revealed that the main binding sites of

bovine TLRs were identical to human and mouse and occupied

by their specific ligands. Therefore, in complementary with the

experimental investigations, it could be concluded that TLR2/1

dimerization occurs in bovine uterus in the presence of sperm.

However, the sperm surface molecule/(s) which could initiate and/

or regulate this TLR2/1 dimerization process for the specific

inflammatory cascade remained to be investigated.

Conclusion

Our results revealed that sperm utilize TLR2/1 pathway to induce

a weak inflammatory response in bovine endometrium. Activation of

TLR2/6 heterodimer could lead to an excessive inflammatory

response compared to that of sperm or TLR2/1 (Figure 7). Further,

in-silico findings revealed that the ectodomains of bovine TLR2

formed a hetero-dimer upon ligand binding to initiate cell signaling

pathway. Altogether, our data strongly suggested that sperm utilize

TLR2/1, but not TLR2/6, heterodimerization to induce the weak

physiological inflammatory responses in the bovine uterus. However,

further investigations are required to define the specific ligand(s) on

the sperm cell membrane that is required to bridge and stabilize the

TLR2/1 heterodimer.
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