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Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a

hematopoietic growth factor originally identified as a stimulus that induces the

differentiation of bone marrow progenitor cells into granulocytes and

macrophages. GM-CSF is now considered to be a multi-origin and pleiotropic

cytokine. GM-CSF receptor signals activate JAK2 and induce nuclear signals

through the JAK-STAT, MAPK, PI3K, and other pathways. In addition to

promoting the metabolism of pulmonary surfactant and the maturation and

differentiation of alveolar macrophages, GM-CSF plays a key role in interstitial

lung disease, allergic lung disease, alcoholic lung disease, and pulmonary

bacterial, fungal, and viral infections. This article reviews the latest knowledge

on the relationship between GM-CSF and lung balance and lung disease, and

indicates that there is much more to GM-CSF than its name suggests.
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Introduction

Granulocyte-macrophage colony-stimulating factor (GM-CSF, or CSF2), a member of

the CSF family of hematopoietic growth factors, was originally identified as a stimulus that

induces the differentiation of bone marrow precursor cells into granulocytes and

macrophages (1). Studies now show that GM-CSF has a wide range of biological

activities in innate and adaptive immunity, and it plays a key role in many autoimmune

and inflammatory diseases (2, 3). Given that the most prominent phenotypic features of

GM-CSF-deficient mice are surfactant alveolar accumulation and impaired alveolar

macrophages (AMs) function (4), this review mainly focuses on the role of GM-CSF in

lung balance and lung disease.
Biology and receptor of GM-CSF

GM-CSF is a polypeptide growth factor with a molecular weight of 23 kDa, and its

encoding gene is located at 5q22-31, with four exons and 2.5 kb in length. Human GM-CSF
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contains 127 amino acid residues and is present in serum and most

tissues (5). GM-CSF-producing cells can be myeloid cells, such as

monocytes/macrophages, eosinophils, neutrophils. They can also be

non-myeloid cells, such as epithelial cells, endothelial cells,

chondrocytes, fibroblasts, and even tumor cells (6–10). A variety

of stimuli can induce GM-CSF production; in T cells, IL-1b, IL-12,
IL-23, and prostaglandin E2 can stimulate the production of GM-

CSF (11–14). The combination of IL-1 and TNF-a can induce GM-

CSF production in a variety of cells, such as endothelial cells,

smooth muscle cells, chondrocytes, and fibroblasts, T and B cells

(15). In lymphocytes, GM-CSF production requires activation of

the transcription factor NF-AT (16, 17), and the production of GM-

CSF by adipocytes requires activation of NF-kB (18), indicating that

a variety of transcription factors can mediate GM-CSF production.

Certain cytokines such as IFN-g, IL-4, and IL-10, and drugs such as

cyclosporine A and glucocorticoids can inhibit GM-CSF production

(19–23). The target cells of GM-CSF include a variety of myeloid

cells, such as monocytes, macrophages, eosinophils, neutrophils,

and dendritic cells (DCs) (3). GM-CSF has various effects on the

biological activity of myeloid cells, such as cell activation and

proliferation, increasing their chemotaxis and adhesion,

promoting the production of pro-inflammatory factors, and

improving cell phagocytosis and antigen presentation functions

(24–29). Tissues of GM-CSF-deficient mice, especially the lungs,

have increased susceptibility to pathogenic microorganisms (30–

33). This indicates that GM-CSF plays an important role in

maintaining immune function.

GM-CSF receptors consist of heterodimers, including a chains

that specifically bind GM-CSF and b chains responsible for signal

transduction; b chains are common chains of IL-3 and IL-5

receptors. Neither the a nor b chains of the GM-CSF receptor

contain a tyrosine kinase catalytic domain, although the b chain is

linked to the tyrosine kinase JAK2 (34, 35). After the GM-CSF

receptor a chain binds to GM-CSF, it then binds to the b chain to

form a multimer. The polymerization of the receptor leads to the

activation of JAK2, and activated JAK2 phosphorylates the tyrosine

residues on the b chain. Phosphorylated tyrosine recruits STAT-5

containing the SH2 domain, and JAK2 activates STAT-5, thereby

activating the JAK-STAT pathway. In addition, JAK2 can cause the

activation of PI3K, initiating the PI3K-Akt pathway.

Phosphorylated tyrosine on the b chain of the GM-CSF receptor

recruits the adaptor protein SHC to activate RAS and initiate the

MAPK signaling pathway to induce nuclear signaling (Figure 1).

The JAK2-STAT-5 pathway mainly controls cell differentiation and

inflammatory signaling, whereas PI3K signaling promotes cell

proliferation and survival, and the MAPK pathway is involved in

cell growth, proliferation, and differentiation (6, 36, 37).

The GM-CSF receptor consists of a dimer of a and b common

chains. Binding of GM-CSF to the a chain results in polymerization

of the b subunit of the receptor; this causes the transactivation of

JAK2, which phosphorylates multiple tyrosine sites on the b chain.

Phosphorylated tyrosine recruits STAT5, which is then

phosphorylated by JAK2. The two phosphorylated STAT5

molecules form a homologous dimer that translocates into the

nucleus and initiates target gene transcription. In addition,

activation of PI3K can be accomplished by JAK2-mediated
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phosphorylation of the regulatory subunit p85, thereby activating

the PI3K-Akt pathway. Activation of the MAPK pathway is

triggered by the recruitment of SHC by a phosphorylated tyrosine

on the b subunit, which catalyzes RAS activation, leading to

continuous activation of RAF, MEK, and ERK. JAK2-STAT5

signaling controls differentiation and inflammation, PI3K

promotes cell proliferation and survival, and MAPK is involved

in cell growth, proliferation and differentiation.
GM-CSF and alveolar macrophages

AMs are lung-specific tissue-resident macrophages that play an

important role in maintaining alveolar homeostasis by engulfing

inhaled bacteria and removing excess surfactant and cellular debris

(38, 39). AMs mainly originate from fetal liver (FL) monocytes, but

yolk sac (YS) monocytes and circulating monocytes can also be used

as AMs precursors, indicating that there is a compensatory

mechanism for the development of AMs (40). When FL

monocytes differentiate into AMs in response to inflammation,

the body can compensate by inducing YS monocytes or circulating

monocytes to differentiate into AMs. Studies analyzing GM-CSF-

deficient and GM-CSF receptor b chain-deficient mice in the 90s
FIGURE 1

GM-CSF receptor and signaling.
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demonstrated a functional link between GM-CSF and AMs (4, 41).

Lung histology of GM-CSF-deficient mice show amorphous

eosinophilic accumulation and foamy AMs, similar to the

pathological features of human pulmonary alveolar proteinosis

(PAP). However, exogenous GM-CSF infusion can restore the

AMs population in GM-CSF-deficient mice, suggesting that GM-

CSFs play a key role in AMs development (42). GM-CSF is involved

in the development of AMs from the embryonic stage, and the level

of GM-CSF in the lungs is higher after the 17.5th day of the embryo.

Increased levels of GM-CSF in the lungs are temporally consistent

with the differentiation of AMs precursors into AMs (40). GM-CSF

induces the expression and functional activity of PPAR-g in fetal

monocytes, and PPAR-g regulates the developmental process of

AMs as a master transcription factor. The amount of AMs in PPAR-

g deficient mice is relatively low and they show abnormalities that

are similar to the abnormalities of AMs in GM-CSF-deficient mice

and GM-CSF receptor b chain-deficient mice. This suggests that the

GM-CSF signaling-induced PPAR-g plays an important role in

the development of AMs (43). Shibata et al. showed that the

transcription factor PU.1 not only mediated the dependence of

the final differentiation of AMs on GM-CSF, but also regulated

innate immune functions such as pathogen killing of AMs and the

catabolism of surfactants (44).

Normally, the sources of lung GM-CSF include both immune

and non-immune cells, such as type 2 innate lymphocytes (ILC2),

basophils, and epithelial cells (9, 45, 46). Among neonatal immune

cells, ILC2 produces the highest level of GM-CSF, followed by gdT
cells (45). The depletion of lymphocytes or basophils has no effect

on the amount of AMs in neonatal and adult lungs, suggesting that

GM-CSF derived from immune cells is dispensable for the

development and maintenance of AMs. When GM-CSF in

alveolar type 2 epithelial cells (AT2s) is depleted, AMs in

neonatal and adult mice are almost completely depleted,

indicating an integral role of AT2-derived GM-CSF in AMs

development (47).
GM-CSF and surfactant homeostasis

Pulmonary surfactant is composed of approximately 90% lipids

and 10% proteins. Approximately 80–90% of the lipids are

phospholipids, and surfactant-related proteins include SP-A, SP-

B, SP-C, and SP-D. These proteins are involved in the intracellular

transport of phospholipid components and contribute to the

maintenance of surfactant properties in the alveoli (48, 49).

Surfactant phospholipids and proteins are synthesized and

secreted by AT2s (50, 51). Surfactants form single and multiple

layers at the gas-liquid interface to reduce surface tension and

prevent alveolar collapse. Surfactants become inactive small

aggregate particles through mechanical or biological action, and

are absorbed, reused, or decomposed by AT2s and AMs (52).

Studies on the relationship between GM-CSF and surfactant

balance have demonstrated the significant accumulation of

phospholipids and proteins in the lung of GM-CSF- deficient

mice (53–55). Lung histology show a large number of inclusion

bodies and enlarged AMs with amorphous eosinophilic substances.
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These characteristics are similar to the typical manifestations of

human PAP (56, 57). GM-CSF is required for cholesterol clearance

and that reduced cholesterol clearance is a primary macrophage

defect in PAP pathogenesis (58). The expression of GM-CSF in the

lungs completely corrects the alveolar protein deposition caused by

endogenous GM-CSF gene-targeted ablation, and likewise, inhaled

rather than systemic administration of GM-CSF corrects PAP in

GM-CSF-deficient mice (57, 59–62). These findings suggest that the

presence of GM-CSF locally in the lungs is necessary and sufficient

to restore homeostasis of pulmonary surfactant.

Metabolic studies in GM-CSF-deficient mice have shown that

the accumulation of surfactant in the alveoli of GM-CSF-deficient

mice is due to the fact that the lack of GM-CSF signaling impairs the

catabolism of the surfactant, whereas it does not directly alter its

phospholipid and protein synthesis or secretion (5). In vitro studies

of AMs isolated from GM-CSF-deficient mice identified significant

defects in the catabolism of SP-A and surfactant phospholipids, as

well as a marked reduction in the degradation of SP-A and DPPC by

AMs (63). In addition, mice with increased GM-CSF expression in

the lungs show an increased surfactant catabolic rate in AMs,

whereas the uptake of surfactant components by GM-CSF-

deficient mouse AMs is not hindered (5). These results suggest

that in the absence of GM-CSF signaling, the main defect in

surfactant homeostasis is caused by insufficient catabolism of

surfactant proteins and lipids by AMs (5), which may be related

to the need for GM-CSF signaling from AT2 for the development

and differentiation of AMs. This also shows that there is a mutually

beneficial symbiotic relationship between AT2 and AMs. AT2-

derived GM-CSF guides the development of AMs by promoting

PU.1 and PPAR-g expression; in turn, mature AMs are essential for

breaking down the surfactants produced by AT2 and maintaining

the balance of the alveolar environment (Figure 2).

Surfactant proteins and phospholipids are synthesized in AT2s,

transported through the endoplasmic reticulum to the Golgi

apparatus for processing, and then transported to the lamellar

body. The lamellar bodies are secreted into the alveolar fluid,

where they form tubular myelin. Tubular myelin forms a surface-

active phospholipid film at the air-liquid interface that spreads

along the surface of the alveoli. Small aggregates of surfactants that

have been inactivated by mechanical and biological processes are

partially absorbed and reused by alveolar AT2s, and the other part is

taken up and broken down by AMs. GM-CSF, which mainly

originates from AT2s in the alveoli, promotes the differentiation

and function of AMs by binding to the AMs surface GM-CSF

receptor and initiates intracellular signals to stimulate the

expression and activation of the transcription factors PU.1 and

PPAR-r, thereby enhancing the catabolism of small aggregates.
GM-CSF and interstitial lung disease

Interstitial lung disease (ILD) includes a group of heterogeneous

lung diseases characterized by pulmonary parenchymal

inflammation and fibrosis. GM-CSF is involved in the progression

of pulmonary fibrosis. GM-CSF production in bronchoalveolar

lavage fluid is increased in patients with pulmonary fibrosis (64).
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GM-CSF stimulates macrophages to produce profibrotic cytokines

and can directly induce airway smooth muscle cell fibrosis (3, 65).

Autoimmune or inflammatory mechanisms play an important

central role in the pathogenesis of connective tissue disease-

associated with ILD (CTD-ILD) (66, 67).

SKG mice, which are a model of autoimmune arthritis, treated

with yeast polysaccharides develop chronic progressive ILD. These

mice exhibit massive lung infiltration of Th17 cells, GM-CSF-

producing CD4+ T cells, and CD11b+Gr1+ neutrophils,

accompanied by pulmonary fibrosis. Naive SKG mouse T cells

differentiate into GM-CSF-producing cells; these enhance

macrophage production of IL-6 and IL-1b, thereby promoting the

differentiation of IL-17A and/or GM-CSF-producing T cells and the

infiltration of neutrophils into the lungs. Neutralization of GM-CSF

blocks the development of ILD, whereas neutralization of IL-17A

does not, suggesting that GM-CSF, rather than IL-17A, is critical for

the development of ILD in SKG mice (68). Kwon et al. also showed

that GM-CSF played an important role in ILD development, but

these authors believed that IL-17A+GM-CSF+ neutrophils were the

main inflammatory cells infiltrated in the lungs of curdlan-treated

SKG mice (69).
GM-CSF in allergic disease

GM-CSF mediates allergen-induced Th2 sensitization and

airway eosinophil inflammatory responses (70). The use of GM-

CSF receptor a (Csf2ra)-deficient mice illustrates that GM-CSF

signaling, although not necessary for the development of

eosinophils in normal mice, promotes eosinophil accumulation in

the lungs and aggravates airway inflammation in the allergic asthma

model; this may be associated with GM-CSF-induced chemotaxis

and could promote eosinophil survival (71). In a mouse model of
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asthma, allergen-stimulated airway epithelial cells release GM-CSF,

which activates DCs and prolongs eosinophil survival (72).

Intranasal administration of GM-CSF-neutralizing antibodies

during allergen inhalation significantly reduces airway

hyperreactivity and inhibits airway inflammation (73). In a

chronic allergic airway inflammation model, although the GM-

CSF signal could not regulate neutrophil migration, GM-CSF

promoted antigen uptake by lung DCs, processed and transported

to draining lymph nodes, thus enhancing the Th2/Th17 immune

response, which in turn increased the recruitment of granulocytes

to the lung and aggravated lung inflammation (74).
GM-CSF signaling and alcoholic lung

AMs in alcoholics are defective in cell adhesion, cytokine

production, and phagocytosis (75, 76). Alcohol may affect lung

immune function by affecting GM-CSF signaling (77, 78). Although

the GM-CSF concentration in the blood and lungs of alcoholics is

not markedly different from that in non-alcoholics, chronic alcohol

exposure significantly decreases the levels of the GM-CSF receptor

for AMs (77), and this decrease is mediated by a decrease in the

activity of the transcription factor PU.1 (44, 78). GM-CSF increases

PU.1 activity in alcohol-exposed AMs and restores agonist-induced

cytokine production and phagocytosis in AMs (78).

The mechanism underlying the decreased activity of PU.1 in

alcoholic lungs may be associated with a decrease in antioxidant

defense mechanisms (79). Chronic alcohol exposure decreases the

lung levels of Nrf2, a major transcription factor that regulates

the expression of many antioxidant genes in cells. Nrf2 regulates the

expression of PU.1 in the lungs, suggesting that the decrease in

antioxidant response function may be related to the decrease in GM-

CSF activity in alcoholic lungs and lung immunodeficiency (76).
FIGURE 2

GM-CSF and surfactant homeostasis.
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Chronic alcohol exposure can also lead to reduced levels of

alveolar epithelial GM-CSF receptors, suggesting that alcohol can

extensively disrupt GM-CSF signaling in the lungs (78), and that the

absence of GM-CSF signaling disrupts the epithelial barrier

function in the distal lung epithelium. This could explain why

alcoholics are more likely to develop acute respiratory distress

syndrome (ARDS) based on increased alveolar wall permeability

(76, 80, 81). Therefore, the lack of GM-CSF signaling plays a key

role in pulmonary dysfunction in patients with alcoholism, and

GM-CSF replacement therapy has been used to improve lung

complications in patients with alcoholism (82).
GM-CSF in lung infections

In bacterial, fungal, and viral infections of the lungs, first-line

defense cells such as AMs and airway epithelial cells (AECs) initiate

an immune response to the microbial challenge (83). Because

prolonged or excessive immune responses can damage the

respiratory tract, it is important to modulate the inflammatory

response to maintain an appropriate airway immune response

(84, 85).
GM-CSF and Streptococcus
pneumoniae infection

Streptococcus pneumoniae is the most common pathogen causing

pneumonia and fatal pneumonia (86). Recombinant GM-CSF

delivered through the airway improved the defense response against

Group B streptococcus in GM-CSF-deficient mice, and wild-type mice

cleared Group B streptococcus faster when receiving aerosol GM-CSF

(32). Pulmonary delivery of GM-CSF 2 to 4 weeks prior to infection

significantly reducedmortality in S. pneumoniae infectedmice, and this

increased survival was accompanied by an increase in the expression of

inducible nitric oxide synthase and antibacterial activity in lung sentinel

cells, as well as a significant decrease in caspase-3-dependent apoptosis

and secondary necrosis. This suggests that prophylactic delivery of

GM-CSF into the lungs triggers a lasting immunostimulatory response

that improves alveolar immunity against pneumococcus (87). In mice

intranasally infected with influenza A virus (IAV), followed by

treatment with atomized recombinant GM-CSF and re-infection

with S. pneumoniae, inhalation of GM-CSF had significant survival

benefits against the secondary attack of S. pneumoniae and significantly

reduced the incidence of S. pneumoniae bacteremia (88).
GM-CSF and pulmonary
fungal infections

Patients with acquired GM-CSF deficiency are susceptible to

Cryptococcus and other opportunistic fungi (89–91). In GM-CSF-

deficient mice, control of cryptococcal lung infection is impaired.
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Deficiency of GM-CSF decreases the following processes: 1) total

lung leukocyte recruitment; 2) Th2 and Th17 responses; 3) the

number of CD11b (+) DCs and macrophages; and 4) the activation

and localization of DCs and macrophages in alveoli. These results

indicate that GM-CSF promotes the local activation, differentiation,

accumulation, and alveolar localization of DCs and macrophages in

the lungs of cryptococcus lung-infected mice, suggesting that GM-

CSF is a core factor in the protective immune response against

mycosis (91).
GM-CSF and influenza virus

Influenza virus (IV) infection is a common cause of acute

respiratory failure in the pediatric intensive care unit (92). The

primary target cells for human IV invasion are AECs (93). GM-CSF

secreted by AECs plays an important role in preventing influenza-

induced pneumonia (94). The ability of GM-CSF-deficient mouse

AMs to clear pathogenic microorganisms is damaged, which

reduces resistance to influenza virus infection. However, alveolar

GM-CSF increases the proliferation and resistance of mouse AMs,

thus protecting mice from the deadly IV infection (85). Pulmonary

CD103+DC is a key factor mediating GM-CSF-dependent lung

protection after IV infection (95, 96). After IV infection, lung

CD103+DC is activated and expanded, and GM-CSF mediates its

migration and antigen presentation in draining mediastinal lymph

nodes. This is associated with better viral clearance and Ag-specific

T-cell recruitment. Therefore, GM-CSF-dependent crosstalk

between IV-infected AECs and CD103+DCs is important for

effective IV clearance (96).
GM-CSF and SARS-COV-2

Coronavirus disease 2019 (COVID-2), which is caused by

severe acute respiratory syndrome coronavirus type 2 (SARS-

CoV-2), has evolved into a global pandemic and treatments are

urgently needed (97–100). GM-CSF, an important hematopoietic

growth factor and pro-inflammatory cytokine, has attracted

attention as a therapeutic target in COVID-19 (99). The

circulating levels of GM-CSF are increased in patients with

COVID-19 compared with healthy controls (101, 102). Patients

with COVID-19 have an increased percentage of white blood cells

expressing GM-CSF (103). As an important immunomodulatory

cytokine, GM-CSF helps clear respiratory microorganisms by

activating AMs, suggesting that it could help clear SARS-CoV-2

early in the course of COVID-19 (104, 105). However, GM-CSF is

harmful as part of the cytokine storm in the late stage of severe lung

injury caused by COVID-19. Therefore, blocking GM-CSF or the

GM-CSF receptor may be an effective treatment strategy to block

the progression of acute respiratory failure in patients with COVID-

19 by reducing the cytokine storm and the infiltration of

inflammatory myeloid cells (102).
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Discussion

GM-CSF is a cytokine of multiple cellular origins and pleiotropy,

and in the lungs, it is mainly derived fromAT2s (47). TNF-a and IL-1b
can also induce the production of GM-CSF by endothelial cells and

fibroblasts in the lung. The GM-CSF produced by these cells in

response to stimulation helps guide leukocyte infiltration into the

tissues (106–109). Quiescent alveolar epithelial cells produce very

little GM-CSF, whereas AT2s are the main source of GM-CSF in the

alveoli in response to stimulation by factors such as infection or

inflammation (47). However, the molecular mechanism of GM-CSF

production remains unclear. GM-CSF can affect the plasticity of AT2s

in an autocrine manner and influence the differentiation of AT2s to

alveolar type 1 epithelial cells (AT1s) by regulating cell cycle genes

(110–112). GM-CSF also decreases the susceptibility of AT2s to

oxidative stress damage, protecting AT2s from the effects of

hyperoxia (112).

GM-CSF induces the transcription factors PU.1 and PPAR-g to
drive AM differentiation and maintenance (43, 44). Moreover, GM-

CSF can drive the innate immune function of AMs such as

pathogen clearance (44). GM-CSF-deficient mice are prone to

respiratory infections, and restoring GM-CSF expression reverses

this susceptibility, suggesting that GM-CSF-driven AMs play an

important role in the innate immunity of the lungs.

Pulmonary surfactant is synthesized and secreted by AT2s.

GM-CSF deficiency has little effect on the production or secretion

of surfactant lipids or proteins from AT2s, although it has a

significant inhibitory effect on the ability of AMs to clear

surfactant substances (proteins and lipids) (104, 113–115). The

decrease in surfactant clearance of AMs is largely due to disruption

of signaling events mediated by the transcription factor PU.1 or

PPAR-g (116, 117). Therefore, GM-CSF signaling drives the

differentiation and development of AMs through the PU.1 and

PPAR-g transcription factors and mediates the catabolism of

surfactant proteins and lipids. It should be noted that AT2s can

also be involved in the catabolism of surfactants. Therefore, future

studies will confirm whether GM-CSF affects the catabolism of

surfactant in AT2s.

In addition tomaintaining surfactant balance and promoting AM

differentiation and metabolism, GM-CSF signaling plays an

important role in lung infection or inflammation. GM-CSF protects

against pneumococcal pneumonia in the lungs by upregulating iNOS

expression through PU.1 and STAT5 signals, which contribute to the

antibacterial activity of AMs against pneumococcal pneumonia (87).

In GM-CSF-deficient mice, control of fungal lung infections is

impaired (118). GM-CSF is involved in host defense against fungal

lung infections by promoting the differentiation, accumulation,

activation and alveolar localization of lung DCs and macrophages

(91). Lung CD103+DC is a key factor mediating GM-CSF-dependent

lung protection after IV infection. IV induces the production of GM-

CSF in alveolar epithelial cells, which leads to the activation and

migration of CD103+DCs to drainage mediastinal lymph node

(MLN). This increases the accumulation of IFN-g+CD4+ and IFN-

g+CD8+T cells to the alveoli, accelerates IV clearance, and mediates
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recovery from epithelial damage (96). In the early stages of SARS-

CoV-2 infection, the role of GM-CSF may be protected as it helps

limit virus-related damage. Therefore, the inhaled formulation of

human recombinant GM-CSF, sargramostim, is being tested in

patients with acute hypoxic respiratory failure associated with

COVID-19. In the later stages of SARS-CoV-2 infection, the

severity of the disease appears to be driven by improper release of

cytokines such as GM-CSF. These inflammatory mediators are

involved in inflammatory lung injury, making patients prone to

respiratory failure and eventually leading to ARDS. Therefore,

inhibition of GM-CSF signaling may be a reasonable treatment in

the late stages of COVID-19 (102).

GM-CSF was first known as a hematopoietic growth factor that

is used to boost bone marrow production; however, as described in

this review, its function goes far beyond what was identified in

earlier studies. In addition to promoting the metabolism of

pulmonary surfactant and the maturation and differentiation of

AMs, GM-CSF plays a key role in lung bacterial, fungal, and viral

infections, interstitial lung disease, allergic lung disease, alcoholic

lung, and other disease states. Therefore, GM-CSF would be an

attractive target for future research on lung balance and

lung disease.
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The role of pulmonary surfactant phospholipids in fibrotic lung diseases. Int J Mol Sci
(2022) 24(1). doi: 10.3390/ijms24010326
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