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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces B

and T cell responses, contributing to virus neutralization. In a cohort of 2,911

young adults, we identified 65 individuals who had an asymptomatic or mildly

symptomatic SARS-CoV-2 infection and characterized their humoral and T cell

responses to the Spike (S), Nucleocapsid (N) and Membrane (M) proteins. We

found that previous infection induced CD4 T cells that vigorously responded to

pools of peptides derived from the S and N proteins. By using statistical and

machine learning models, we observed that the T cell response highly correlated

with a compound titer of antibodies against the Receptor Binding Domain (RBD),
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S and N. However, while serum antibodies decayed over time, the cellular

phenotype of these individuals remained stable over four months. Our

computational analysis demonstrates that in young adults, asymptomatic and

paucisymptomatic SARS-CoV-2 infections can induce robust and long-lasting

CD4 T cell responses that exhibit slower decays than antibody titers. These

observations imply that next-generation COVID-19 vaccines should be designed

to induce stronger cellular responses to sustain the generation of potent

neutralizing antibodies.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) is the etiological agent of the coronavirus disease 2019 (COVID-

19). Both humoral and cellular immune responses against SARS-

CoV-2 have major implications for the clinical outcome of COVID-

19, the risk of reinfection and the efficacy of vaccination.

Antibodies are produced from plasma cells. The B cell maturation

into plasma cells is supported by CD4 T cells via cell-cell interactions

and cytokine secretion, while CD8 T cells eliminate virus-infected

cells through cytolytic activity. B and T cells are therefore essential for

eliminating the virus and establishing immunological memory.

However, the extent to which T cell responses contribute to SARS-

CoV-2 clearance and, more importantly, long-term protection is still

under investigation. Early studies with human subjects have reported

that COVID-19 patients with X-linked or autosomal-recessive

agammaglobulinemia were able to recover from infection without

severe disease requiring intensive care (1), however, subsequent

studies also reported increased respiratory viral detection and

symptom burden among patients with primary antibody deficiency

(2). While B cells are critical for preventing infection or reducing

inoculum size, T cell responses play a prominent role in clearing the

infection (3, 4). Furthermore, immune responses to SARS-CoV-2

that generate coordinated CD4 and CD8 T cell-based immunity have

been shown to correlate with favorable outcomes in COVID-19

patients (5–7). COVID-19 patients with B cell immunodeficiencies

showed favorable outcomes upon strong CD8 T cell responses (8).

These findings underline the importance of CD8 T cell mediated

cytotoxicity in viral clearance, potentially contributing to a milder

disease course. Together, these observations indicate that T cells

provide substantial protective immunity, which limits severe disease

in settings where antibody responses are diminished, thereby being

beneficial for COVID-19 patients.

In this study, we analyzed via machine learning (ML) and

classical statistical modeling SARS-CoV-2 specific humoral and T

cell immune responses in a cohort of young convalescent adults

with asymptomatic or mildly symptomatic SARS-CoV-2 infections.

We aimed to assess if particular viral antigens induce antibody-

and/or cell-mediated immunodominance. To this end, we
02
determined which T cell subset and activation marker

combinations allow predicting the antibody status. Furthermore,

we employed ML methods in addition to conventional statistical

modeling to uncover potentially nonlinear and complex

associations among humoral and T cell immune responses. Our

integrated approach to studying B cell, CD4 and CD8 T cell

responses to SARS-CoV-2 allowed us to identify associations

between the class of immune cells responding to SARS-CoV-2

and the virus components triggering such responses. Finally, we

explored associations between T cell responses of COVID-19

patients and self-reported symptoms scores.
Materials and methods

CoV-ETH cohort

The ethical approval for the CoV-ETH study (CoV-ETH

cohort) was obtained from the Cantonal Ethics Commission

Zurich (BASEC-Nr. 2020-00949). Written informed consent was

received from all participants. The study has been performed in

accordance with the Declaration of Helsinki of 1975.

The CoV-ETH study launched in May 2020 and included 2,911

voluntary participants from the ETH Zurich community and

respective household members, aged 18 to 64 years (Figure 1,

Table 1, Supplementary Table 1). The first sampling of blood [at

time point 1 (t1)] for the collection of plasma and peripheral blood

mononuclear cells (PBMC) was in May 2020. The status of

respiratory infections prior to the sampling was assessed.

Symptoms scores were reported as 0 (without symptoms), 1 (local:

with any one or several symptoms, but no fever), and 2 (systemic:

fever alone or with any symptom or several). A compound

symptoms score was assessed across two screenings (t1 and t2) by

taking the maximum of the two scores for each participant.

In case of seroconversion, determined by seropositivity for RBD

using an enzyme-linked immunosorbent assay (ELISA), blood

specimens were obtained in September 2020 (at time point 2, t2)

for plasma and PBMC isolation. At this time, no vaccination

was available.
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Based on RBD IgG levels, we included 134 probands into our study,

of whom 69 were seronegative and 65 were seropositive individuals.
C+ cohort (positive controls – hospitalized
COVID-19 individuals)

The C+ cohort comprised 56 PCR-confirmed SARS-CoV-2

infected samples from 36 unique individuals aged between 18 and

70. The samples were taken between 15 and 152 days after the

symptoms’ onset. Blood sample processing was performed as

reported earlier (9). Blood collection was performed under

institutional review board approval number 2020-039 (ethics

committee of the University Medical Center Halle).
C- cohort (negative controls – pre-
pandemic individuals)

Healthy pre-pandemic control samples were collected at the

Rockefeller University Hospital, US, between 1996 and 2000 and

originated from 56 pre-pandemic healthy individuals aged between

21 and 85. Donor consent for their samples to be used in research

was obtained from all participants and the study was approved by

the Rockefeller University Ethics Committee. Plasma samples were

stored permanently at -80°C.

Further information on sample collection and processing can be

found in the Supplementary Methods section.
Frontiers in Immunology 03
Enzyme-linked immunosorbent assays
(ELISA)

All CoV-ETH cohort samples were screened for SARS-CoV-2

specific IgG, IgM, and IgA antibodies targeting the receptor-binding

domain (RBD) using a previously described SARS-CoV-2 RBD

ELISA (10). Three further in-house immunoassays were developed

for the detection of SARS-CoV-2 specific IgG antibodies targeting

Spike S1, S2 and Nucleocapsid (N), respectively (Supplementary

Table 1). To characterize seroconverted participants of the CoV-

ETH cohort, C+ and C- cohort samples, six different plasma sample

dilutions for each of the individual assays were employed to achieve

respective ED50 values. Assay details can be found in the

Supplementary Methods section.
T cell analysis

The T cell response assays were performed on PBMCs collected

at t1 and t2 of the CoV-ETH cohort individuals. Each assay plate

contained PMBCs collected from a single healthy donor as an intra-

assay control (IAC). After overnight cultivation, viability and cell

count adjusted to 5 × 106 lymphocytes/mL were assessed by flow

cytometry on a MACSQuant® Analyzer 16 (Miltenyi Biotec).

Cells were aliquoted and stimulated with a (1) PBS (negative

control), (2) SARS-CoV-2 PepTivator mix (CoV-Mix), (3) Prot_N,

(4) Prot_S1, (5) Prot_S, (6) Positive Control and (7) Prot_M. The

IACs received only the negative control, positive control and a mix

of 10 µM of each human PepTivator CMV pp65, PepTivator EBV

Consensus, PepTivator AdV5 Hexon (Miltenyi Biotec) for four

hours (Supplementary Figure 1A, B). Afterwards, cell staining was

performed against CD14-VioBlue® (Miltenyi Biotec, Cat. No.130-

110-525), CD20-VioBlue® (Miltenyi Biotec, Cat. No.130-111-531),

CD8-VioGreen™ (Miltenyi Biotec, Cat. No.130-110-684), CD4-

VioBright™515 (Miltenyi Biotec, Cat. No.130-114-535), IFNg-PE
(Miltenyi Biotec, Cat. No.130-113-496), IL-2-PE-Vio615 (Miltenyi

Biotec, Cat. No.130-111-307), TNFa-PE-Vio®770 (Miltenyi Biotec,

Cat. No.130-120-492), CD3-APC (Miltenyi Biotec, Cat. No. 130-

113-135), CD154-APC-Vio®770 (Miltenyi Biotec, Cat. No.130-

114-130), and cells were analyzed by flow cytometry. Assay

details can be found in the Supplementary Method section.

Flow data files in MQD format were directly imported to

FlowJo™ v10.6 (BD Life Sciences) for the analysis. Singlet viable

CD3 T cells, CD8 cytotoxic T cells and CD4 T helper cells were

analyzed using quadratic gating for co-expression of TNF and IFN-

g, as well as IL-2 and CD154 (Supplementary Figure 1B). Gate

thresholds were set based on negative and positive controls of each

sample. Cell counts (#; cells per quadrant), frequency of parent (%;

portion of cells in a specific quadrant) and mean fluorescence

intensity (MFI; per cells in the assigned quadrant) values were

reported for the double positive populations and calculated for

single positive populations. In total, 155 parameters were reported

for each analyzed sample well.
FIGURE 1

Study overview. The CoV-ETH study was launched in May 2020 and
comprised of 2,911 individuals without previous knowledge on
SARS-CoV-2 immune state. A serological screening assessed 65
seroconverted individuals at the first screening in May 2020. From
these and 69 randomly chosen non-seroconverted negative
controls, blood samples from May and September 2020 were
analyzed for humoral and T cell response. As positive and negative
controls, 56 samples from 36 PCR-confirmed hospitalized SARS-
CoV-2 infected individuals and pre-pandemic samples from 56
healthy individuals were used, respectively.
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Neutralizing antibodies

The determination of neutralizing antibody titers (nAb) in all

selected samples of the CoV-ETH cohort and the samples of the C+

cohort was performed as reported earlier (9). Fourty samples of the

C- cohort as well as pre-pandemic samples reported in the previous

study (9) showed negativity.
Serological data analysis

For the re-sampling of PBMC in September, we defined a raw

optical density (OD) threshold for RBD IgG ≥ 0.7 or IgM ≥ 1.0 or

IgA ≥ 1.0. To validate the performance of the serological tests,

receiver operating characteristic (ROC) curves were constructed

from the pre-pandemic C- cohort and the SARS-CoV-2 PCR-

confirmed C+ cohort.
Statistical and machine learning analyses

Establishment of antibody level cutoffs
Antibody response was defined as a binary variable based on the

measurements acquired from the C+ and the C- cohorts. For each

antibody targeting different SARS-CoV-2 antigens and domains

(RBD, S1, S2, N and nAb), an optimal range of cutoffs maximizing

the balanced accuracy (11) was selected. Supplementary Table 2

reports optimal cutoff intervals and the corresponding balanced

accuracies attained on the control cohort, in addition to sensitivities

and specificities. ROC curves for all antibody types are plotted in the

Supplementary Figure 2. In the current analysis, we used a cutoff of

50, 20, 5, 5 and 20 for RBD, S1, S2, N and nAb, respectively. In

addition, the compound antibody response (see Table 2) was

obtained by aggregating responses across several antibodies

targeting different SARS-CoV-2 antigens and domains. A subject

was labeled positive if they had the ED50 of RBD ≥ 50 and either

ED50 of N ≥ 5, ED50 of S1 ≥ 20 or ED50 of S2 ≥ 5 in at least one of

the screenings (t1 or t2). Otherwise, the subject was assigned to the

negative group (Figure 2). The resulting compound antibody

response comprised two balanced categories: negative (n=69) and

positive (n=65). The criteria for defining antibody responses

described above are summarized in Table 2.

Preprocessing
As preprocessing steps before training and validating predictive

models, raw T cell counts, frequencies and MFIs were (i)

normalized by subtracting the corresponding T cell response to

the negative control treatment (background subtraction) and (ii)

standardized by subtracting the mean and scaling to the unit

variance across participants (standardization). No further feature

transformations were performed. During exploratory analysis, we

also considered normalization by dividing by T cell response to the

negative control treatment. Results for this normalization technique

are reported in Supplementary Table 3. Henceforth, all reported

results relate to the normalization by subtraction.
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Statistical and machine learning models
To explore relationships between the compound antibody and

T cell responses, we leveraged statistical and ML predictive models.

We trained and validated predictive models classifying negative and

positive antibody response based on T cell measurements. ML

analysis was performed in the Python programming language

(version 3.8.8) (12) and in the R programming language (version

4.2.2) (13). We performed binary classification using the (i) logistic

regression (LR) (14) as implemented in the scikit-learn library

(version 0.24.1) (15), and (ii) gradient boosting (GB) (16), as

implemented in the XGBoost library (version 1.3.3) (17). GB was

considered in addition to the LR due to its ability to model

nonlinear relationships without extensive feature engineering and

transformation. No hyperparameter tuning was performed for GB,

and default hyperparameter values were used to avoid overfitting.

Features, aka predictors or explanatory variables, were given by T

cell measurements expressed as (i) #, (ii) %, and (iii) MFIs, or a

combination thereof.

Model evaluation and comparison
The predictive performance of models was evaluated using

stratified bootstrapped train-test split. In this procedure, the

dataset was resampled with replacement 1,000 times. For every

bootstrap resample, the resampled dataset was split into the train

(80%) and test (20%) sets, stratified by the response variable, and a

predictive model was trained and tested. Test set performance was

aggregated across the bootstrap resamples, and empirical

confidence intervals (CI) were constructed. The bootstrapping

(18) was performed to construct more conservative confidence

intervals and was preferred to repeated train-test splits, standard

in the ML literature, since the latter might produce misleading CIs

and significance (19). To compare different predictive models, we

used areas under the receiver operating characteristic (AUROC)

and precision-recall (AUPRC) curves (20) computed on held-out

test data. In addition, we evaluated the models’ balanced accuracy

(BA) (11), sensitivity, and specificity by considering a threshold of

0.5 on predicted probabilities. The latter evaluation metrics are

reported in Supplementary Table 6.
Results

Descriptive statistics of the cohort and
primary serology data

The descriptive statistics of the total number of 2,911

participants of the CoV-ETH study and the subgroup used in this

study are shown in Table 1. Overall, the cohort is young (50% of

participants younger than 30) and healthy (>90% of participants

without any underlying cardiovascular risk factors). In May 2020,

we found 4% of seropositive cases, which is in line with the reported

numbers in Geneva in April 2020 (21). Interestingly, more than

80% of seropositive participants had no prior history of COVID-19

symptoms and therefore are considered asymptomatic, while 20%

of individuals exhibited mild to moderate disease symptoms.
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We next assessed the antibody titers against RBD, S1, S2 and N

in the plasma of 165 donors, including 96 seropositive, and 69

randomly chosen donors displaying antibody levels below all

positivity thresholds, and thus considered as seronegative

(Figure 1). Thirty-one donors that, based on RBD measurements,

were initially included in the study, were subsequently excluded

because of a false-positive RBD cross-reactive signal. The cross

reactivity was identified through a lack of additional seropositivity

for S1, S2 or N and an absence of RBD decay over a period of 1 year.
Frontiers in Immunology 05
Finally, 65 individuals were identified as seroconverted. The details

related to the distinct antibodies of the individual participants are

shown in Supplementary Figure 3.
Basic exploratory data analysis

T cell responses were assessed by stimulating isolated

PBMCs with SARS-CoV-2 protein-derived peptide pools and by
TABLE 1 The age distribution, function at ETH Zurich, COVID-19 contact in the last three months prior to sampling, and smoking status of the
participants, and number of SARS-CoV-2 tested participants are shown.

CoV-ETH Current Study

May 2020 Sept. 2020 Total

# % # % # % # %

Total # participants 2911 100 134 100 134 100

# surveys answered 2911 100 131 98 120 90 Function at ETH

Student 37 28

PhD student 36 27

Affiliation Scientist 15 11

ETH 2106 72 95 71 95 71 Professor 4 3

Household members 804 28 39 29 39 29 Administrative 6 4

Sex Technician 5 4

female 1439 49 69 52 69 52 Other 31 23

male 1470 51 65 48 65 48 Smoking

other 1 0 0 0 0 0 Yes 11 8

Age range No 123 92

18-30 1660 57 91 68 91 68 Comorbidities

31-50 901 31 31 23 31 23 Respiratory 5 4

51-65 349 12 12 9 12 9 High BP 1 1

Covid tested Obesity 1 1

No 2845 98 124 93 90 93 Cardiovascular 0 0

Yes, negative 53 2 1 1 16 1 Diabetes 1 1 1

Yes, positive 8 0 7 5 14 5 Diabetes 2 0 0

– 4 0 2 1 14 1 Immune 1 1

COVID-19 seroconverted HIV 1 1

Yes 113 4 65 49 65 49 Cancer 0 0

COVID-19 contact before sampling Blood cancer 0 0

Not known of 2673 92 98 75 96 80 Kidney 0 0

Probably 125 4 11 8 8 7 Liver 0 0

Yes 107 4 22 17 16 13 Neurological 1 1

Symptoms before sampling Spleen 0 0

No symptoms 1343 46 31 24 55 46 Stroke 0 0

Symptoms, no fever 1239 43 72 55 58 48 None 123 94
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determining frequencies of reacting T cells via flow cytometry. We

(i) evaluated whether flow cytometry read-out alternatives were

impacted by normalization strategies accounting for background

noise, (ii) assessed the test specificity and (iii) determined the

repeatability of the measurements. A considerable proportion of

measurements resulted in numerically negative values after

normalization (Supplementary Figure 4), a procedure that is

strongly recommended to account for background noise,

particularly in a low-input PBMC setting. We found that the

general stimulation of T cells did not lead to a spurious

association with humoral antibody status against SARS-CoV-2.

Lastly, there was considerable variation for the cytokine assays

measuring T cell responsiveness, especially in the negative control

stimulation, due to only few cells per target quadrant

(Supplementary Table 4). Nevertheless, all variances were lower

than the differences between the infected and non-infected

individuals found later. The detailed analysis can be found in the

Further Results Supplementary section.
B and T cell responses against SARS-CoV-2
proteins

Correlation analysis
To assess associations between antibody and T cell responses we

initially performed a Pearson’s correlation analysis displayed in

Figure 2. Figure 2A shows correlations among humoral and cellular

parameters at time points t1 and t2 for CD3, CD4 and CD8 T cells.

Figure 2B provides correlation analysis results for different

stimulating peptides of CD4 cells. The analysis of multiple

populations of circulating T cells reactive to SARS-CoV-2

revealed specific responses in the total CD3 T cell compartment,

as well as the CD4 and CD8 T cell subsets in response to peptide

pools covering S1, S2 as well as the N and M proteins. We found a

high correlation of frequency of responding CD3 and CD4 T cells

against the different respective peptide pools between t1 and t2,

indicating that SARS-CoV-2 induces a stable cellular immune

response over four months. Cytokine production of IFN-g, TNF
and CD154 correlated strongly in CD4 T cells within and between t1
and t2. Stimulation of CD8 T cells resulted in IFN-g and TNF

release, which showed a positive correlation within t1 and t2 and
Frontiers in Immunology 06
between these time points. Furthermore, there was a high

correlation of IL-2 production between CD3, CD4 and CD8 T

cells at t1, which largely disappeared at the later time point t2,

demonstrating that the IL-2 response was short-lived.

When searching for associations between humoral and T cell

responses to SARS-CoV-2 infection, we found moderate

correlations of RBD and S1 with CD4 T cells for all cytokines at

t1. However, this correlation was lost at t2. A positive correlation of

nAb was only detected with IL-2 production in CD3, CD4 and CD8

T cells at t1. This association however was also lost at t2, most likely

due to a faster decay of RBD/S1 antibodies. We observed almost no

correlations between CD4 and CD8 T cells, neither between nor

across time points t1 and t2. A greater correlation of CD4 T cells

across t1 and t2 than for CD8 T cells may suggest that CD4 T cells

have a longer half-life.
General predictive relationships
In the next step, we assessed if a statistical model and ML

approach would relate T cell stimulation to antibody status. We

modeled the relationship between T cell and compound antibody

responses using LR and GB models. Table 3 summarizes the test-set

performance of the predictive models trained on numbers [#],

frequencies [%] and mean fluorescence intensity [MFI] data.

The data indicate that both LR and GB were able to capture a

significant association of T cell counts and frequencies to the

antibody response. Note that for all models, the lower bound of

the empirical CI was above the expected performance of a random

guess. Moreover, the found association was remarkably strong; for

instance, the GB model trained on counts had an average test-set

AUROC and AUPRC of 0.96 (95% empirical CI [0.80, 1.00]) and

0.96 (95% CI [0.81, 1.00]), respectively. MFI measurements featured

a slightly weaker association, resulting in lower average AUROC

and AUPRC and wider CIs. Thus, there was an overall significant

association between T cell reactivity and antibody titer.

Predictors of B cell and T cell association
We next assessed which variables contributed the most to the

association between T cell stimulation and antibody status. To this

end, we explored the most important predictor variables in LR and

GB. In GB, a feature’s importance was quantified by the gain in
TABLE 2 Definitions of the response with respect to different antibody types.

Antibody Response Definition of Positivity

RBD ED50 of RBD ≥ 50 at t1 OR ED50 of RBD ≥ 50 at t2

N ED50 of N ≥ 5 at t1 OR ED50 of N ≥ 5 at t2

S1 ED50 of S1 ≥ 20 at t1 OR ED50 of S1 ≥ 20 at t2

S2 ED50 of S2 ≥ 5 at t1 OR ED50 of S2 ≥ 5 at t2

nAb ED50 of nAb ≥ 20 at t1 OR ED50 of nAb ≥ 20 at t2

Compound (ED50 of RBD ≥ 50 at t1 AND [ED50 of N ≥ 5 at t1 OR ED50 of S1 ≥ 20 at t1 OR ED50 of S2 ≥ 5 at t1])
OR
(ED50 of RBD ≥ 50 at t2 AND [ED50 of N ≥ 5 at t2 OR ED50 of S1 ≥ 20 at t2 OR ED50 of S2 ≥ 5 at t2])
For RBD, N, S1, S2, and nAb, the subject was defined as positive if ED50 exceeded the specified threshold at either time point t1 or t2. The compound antibody response was defined by combining
criteria based on RBD, N, S1, and S2.
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A

B

FIGURE 2

Correlation analyses relating to the assessed humoral and cellular parameters at time points t1 and t2 relating to (A) CD3, CD4 and CD8 T cells and a
detailed analysis of (B) the different stimulating peptides in CD4 T cells. Text color indicates serology and T cell assay measurements at t1 and t2. The
magnitude of correlation coefficients is indicated by the color bar to the right. Statistically non-significant correlations are not displayed (t-test at
significance level a=0.05). Correlation test p-values were adjusted for multiple comparisons using the Benjamini-Hochberg method.
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accuracy from adding the variable of interest to the set of all the

other variables. In LR, the conventionally used absolute value of the

rescaled coefficient was utilized. Figures 3A, B show each model’s

top 5 most important variables. For the GB, the most important

predictors were the frequencies of CD4 IL-2+/CD154+ T cells at

both time points. The LR model also ranked the percentage of CD4

IFN-g+/TNF+ T cells at t2 alongside total frequencies of CD4 and

CD8 T cells even higher. In conclusion, after stimulation with

specific SARS-CoV-2 antigens, multifunctional IL-2+/CD154+ or

IFN-g+/TNF+ CD4 T cells clearly reveal a relationship between

seropositivity and T cell reactivity.

Given the findings above, we were interested in defining which

viral antigens triggered the strongest CD4 T cell response. In

addition, we explored if the time-point of sampling led to varying

outcomes indicating decay of T cell responsiveness over time.

Furthermore we addressed the question if a repeated

measurement of T cell stimulation added benefit to the T cell

stimulation read-out. Figure 3C shows changes in the normalized

and standardized percentage of CD4 IL-2+/CD154+ T cells

responding to CoV-Mix (peptide pool mix against Prot_N,

Prot_S1, Prot_S) across t1 and t2. The unstandardized percentages

are reported in Supplementary Figure 6. Participants without

previous SARS-CoV-2 infection tended to have a considerably

lower percentage of CoV-Mix-responding CD4 T cells than

infected participants. Neither the change across two time points

nor the slope of change were associated with the antibody response.

In conclusion, CD4 T cells that are dual-positive for IL-2+/CD154+

and stimulated to CoV-Mix alone can be used to discriminate

between healthy and infected individuals. The mix of peptides from

all three antigens triggered the strongest CD4 T cell response,

followed by S1 and N, which were second most strongly

associated with the humoral response. As there was no change in

T cell responsiveness across the two time points, only one sampling

would have been sufficient to discriminate an infected from a non-

infected individual.
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T cell sublineages
We next assessed which T cell subtype featured the best

concordance with T cell response and antibody titer. We trained

GBmodels only on the subsets of % corresponding to CD3, CD4, and

CD8 T cell data. Table 4 reports the test-set performance of these

models in terms of AUROC and AUPRC.We found that stimulation

of CD4 T cells alone allowed discriminating between healthy and

infected individuals, while CD8T cells did not. Interestingly, we drew

a similar conclusion from the sparse principal component analysis on

the T cell data (see the Supplementary Material and Supplementary

Figure 5), showing that the first principal component strongly

correlated with the antibody response and mainly comprised CD4

T cell measurements.
Specific antigens and antibody types
To investigate which antigens were associated with the strongest

correlation of humoral and T cell response, we performed a more

detailed analysis evaluating how predictive the separate treatment

with peptide pools covering the SARS-CoV-2 S1, S2, M and N were

for different antibody responses. Figures 3D, E show the

corresponding test-set AUROCs and AUPRCs achieved by GB

models trained on the T cell frequency.

Considering the six different antibody responses to RBD, S1, S2

and nAb (Table 2), we found that GB models that were based on cell

responses stimulated with S- and M-peptide pools, tended to have

lower average AUROCs and AUPRCs at predicting all of the

response types and larger performance variability across bootstrap

resamples. These results suggest that the simultaneous presence of

antibodies against RBD, S1, S2, and N most strongly correlated with

the T cell response. The antibody response against RBD alone

resulted in a comparable association. Neither N nor nAb alone gave

conclusive evidence. Yet, here the number of positive cases was low,

displaying a high variability (in the case of N due to the fast

antibody decline between t1 and t2).
TABLE 3 Test-set bootstrapped areas under receiver operating characteristic (AUROC) and precision-recall (AUPRC) curves of logistic regression (LR)
and gradient boosting (GB) models predicting the compound antibody response based on T cell data.

Model AUROC AUPRC

Rand. guess 0.50 0.50

LR # 0.92; [0.73, 1.00] 0.93; [0.74, 1.00]

LR % 0.91; [0.69, 1.00] 0.92; [0.71, 1.00]

LR MFI 0.87; [0.64, 1.00] 0.88; [0.61, 1.00]

LR #,% 0.95; [0.79, 1.00] 0.95; [0.77, 1.00]

GB # 0.96; [0.80, 1.00] 0.96; [0.81, 1.00]

GB % 0.95; [0.76, 1.00] 0.95; [0.75, 1.00]

GB MFI 0.93; [0.73, 1.00] 0.93; [0.69, 1.00]

GB #,% 0.96; [0.80, 1.00] 0.96; [0.76, 1.00]
Models were trained on different data types, namely, ‘#’ denotes models trained on counts; ‘%’ denotes models trained on percentages; ‘#,%’ denotes models trained on both counts and
percentages; and ‘MFI’ denotes models trained on mean fluorescence intensities. AUROCs and AUPRCs are reported as the average over 1,000 bootstrap resamples and a 95% empirical
confidence interval. As a naïve baseline, we report the expected AUROC and AUPRC of a random guess.
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Symptoms and T cell reactivity
Finally, we assessed if the occurrence of symptoms during SARS-

CoV-2 infections correlated with the magnitude of the T cell

response, e.g. if individuals with different compound symptoms

scores had comparable or different SARS-CoV-2-specific T cell

responses. We examined T cell frequencies and self-reported

compound symptoms scores across t1 and t2. Figure 4 shows

normalized T cell frequencies against the compound symptoms

score for CD4 IL-2+/CD154+ and CD4 IFN+/TNF-a+, which

revealed to be most important for the prediction of compound

antibody responses (see Figures 3A, B). Participants with a

compound symptoms score of 2 had a higher average T cell

frequency and higher variability than those with a compound

symptoms score of 0, particularly for CD4 IL-2+/CD154+ T cells.

We trained and validated a GB model to predict the compound

symptoms score based on T cell percentages, however, the model’s

test-set AUROC (0.52; 95% CI: [0.27, 0.78]), computed by averaging

over all possible one-vs-one pairwise class combinations and

balanced accuracy (0.36; 95% CI: [0.17, 0.66]), were not

significantly different from the expected performance of a random

guess. To conclude, the frequency of dual positive IL-2+CD154+ CD4

T cells tended to be higher in COVID-19-positive individuals with

mild symptoms, and was highest in individuals with fever. However,

our moderately-sized dataset falls short of providing evidence for a

significant association between T cell response and symptoms score.
Discussion

Supervised machine learning approaches have been gaining

increased attention in many application domains, including

immunology (22) and the analysis of COVID-19 data (23). They

can be easily applied to large high-dimensional datasets and could

help discover predictive patterns and associations among measured

covariates and response variables. This approach is especially

helpful in studying the complex interactions of antibodies and T

cell subsets during an immune response. In addition, it can inform

regarding differences in the kinetics between the different arms of

the immune response. Uncovering such interactions could facilitate

the optimization of vaccines and the identification of potentially

critical COVID-19 cases, which require special and time-sensitive

medical care. The current study exemplified the use and benefit of

ML techniques to describe complex, nonlinear, and nonadditive

relationships between humoral and T cell responses.

The major results of our correlation analysis on the antibody

levels are in line with previous findings on COVID-19 immune

responses, as we found that antibodies targeting the S1-subunit of

the SARS-CoV-2 spike protein, which exhibits a high mutation rate

and mediates the binding to the receptor on the surface of target

cells, make up the largest fraction of nAbs (24). Antibodies targeting

the S2-subunit, which has a relatively low tolerance for sequence

variation and mediates viral cell membrane fusion, only contributes

a comparably small fraction of nAb (25).

Correlation analysis of the measured soluble and cellular

responses revealed a yet underestimated role of T lymphocytes,

especially of CD4 T helper cells to predict antibody titers. It
A B

D E

C

FIGURE 3

Results of applying logistic regression (LR) and gradient boosting (GB) to
relate T cell and antibody responses. (A, B) Variable importance values
for the top 5 most relevant predictors in the (A) GB and (B) LR models,
trained on T cell percentages. Box plots were obtained by resampling
the dataset 1,000 times with replacement. We attribute large variations
in importance and coefficient values to the small sample size and
correlations among features. (C) Changes in the normalized and
standardized percentage of CD4 IL-2+/CD154+ T cells stimulated with
CoV-Mix at t1 and t2. Participants with negative and positive compound
antibody responses can be differentiated quite well based on this
measurement alone. (D, E) Test-set bootstrapped areas under (D)
receiver operating characteristic (AUROC) and (E) precision-recall
(AUPRC) curves of GB models predicting various antibody responses
based on different treatments. For reference, we plotted the expected
performance of a random guess in red.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1158905
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Marcinkevics et al. 10.3389/fimmu.2023.1158905
confirmed previous reports suggesting SARS-CoV-2 specific

antibodies decline faster than SARS-CoV-2 reactive T cells, which

showed a much longer persistence (26–28). However, our analysis

revealed a strong correlation between antibody and CD4 T cell

responses. Thus, solely based on the strength of the CD4 T cell

response, it was possible to identify individuals who mounted high

SARS-CoV-2 antibody titers. The identification of such correlations

might depend on the underlying antigen but could nevertheless

prove valuable for the improvement or development of novel
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vaccines, to reach higher antibody titers and reduce vaccination

failure rates. Moreover, our CoV-ETH study consisted of a young

study population that lacked severe cases. SARS-CoV-2-reactive

CD4 T cells predisposing to favorable disease courses have been

described in young and unexposed individuals, but with declining

numbers in risk groups (29–31). Generally, CD4 T cells are critical

for the activation and maturation of B cells into antibody-producing

plasma cells. Since CD4 memory T cells are generated after

infection and vaccination, they are considered beneficial to mount
TABLE 4 Test-set bootstrapped areas under receiver operating characteristic (AUROC) and precision-recall (AUPRC) curves of gradient boosting (GB)
models predicting the compound antibody response based on T cell percentages.

Model AUROC AUPRC

Rand. guess 0.50 0.50

GB CD3,4,8 0.95; [0.76, 1.00] 0.95; [0.75, 1.00]

GB CD3 0.94; [0.74, 1.00] 0.94; [0.72, 1.00]

GB CD4 0.96; [0.79, 1.00] 0.96; [0.78, 1.00]

GB CD8 0.52; [0.20, 0.83] 0.58; [0.28, 0.87]
Models were trained on different subsets of features, namely, ‘CD3’ denotes the model trained only on CD3 T cell type data; ‘CD4’ denotes the model trained only on CD4 T cell type data; ‘CD8’
denotes the model trained only on CD8 T cell type data; and ‘CD3,4,8’ denotes the model trained on all T cell types. AUROCs and AUPRCs are reported as the average over 1,000 bootstrap
resamples and a 95% empirical confidence interval. As a naïve baseline, we report the expected AUROC and AUPRC of a random guess.
B

C D

A

FIGURE 4

Boxplots of normalized and standardized T cell percentages against the compound symptoms score across two time points (by taking the maximum
score) for (A, B) CD4 IL-2+/CD154+ and (C, D) CD4 IFN-g+/TNF+ T cells, which were previously found to be important predictors of the compound
antibody response. Herein, symptoms scores were reported as 0 for subjects without symptoms, 1 for subjects with any one or several symptoms
but no fever, and 2 for subjects with fever alone or with any other symptoms. A compound symptoms score was assessed across t1 and t2 by taking
the maximum of the two scores for each participant.
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a faster antibody response upon reinfection. As we show almost no

decline in antigen-specific T cells within the study period, future

vaccines might employ techniques to induce a long-lasting CD4

memory T cell compartment. This could be instrumental in

providing immune protection via fast stimulation of SARS-CoV-2

nAb production. However, such approaches would require

determining the extent of sufficient protection from infection via

a memory CD4 T cell compartment, when antibodies are no longer

detectable and when antibody epitopes have undergone mutations.

Of note, the antigen-specific CD8 T cell responses did not correlate

with CD4 T cell responses. This might be partly due to the different

decay rates of the two T cell subsets, suggesting a faster turnover of

antigen-specific CD8 T cells. However, CD4 and CD8 T cell responses

have been previously found to correlate with the severity of the disease

in a different fashion. While a CD8 T cell response is more prominent

in mild courses, a CD4 T cell response is dominant in more severe

disease courses, as previously reported (32, 33). We detected a higher

percentage of antigen reactive CD4 T cells in individuals that recovered

from COVID-19 with mild local symptoms as compared to

asymptomatic disease courses, and highest in individuals with fever.

Since the CoV-ETH study group did not include severely ill or ICU

patients, the role for CD4 T cells in individuals with severe COVID-19

outcomes could not be established. Additional data are therefore

required to address the functional role for CD8 T cells, especially

since these might also be a target of future vaccines.

Given the presented correlation of CoV-Mix-, S1-, and N-

induced T cell stimulation and antibodies, our analysis indicates

the feasibility of developing a model that can predict structures of

the SARS-CoV-2 proteome and that could be considered as future

vaccine targets. Furthermore, our analysis may be useful beyond the

scope of this specific research question, as it showcases a machine-

learning-based analysis pipeline for immunological data and may

interest domain experts seeking to enrich their data analysis toolset.

To facilitate this, we made our data analysis readily replicable by

publishing the deidentified data and the code (available at https://

github.com/i6092467/t-cells-response-sars-cov-2).

Taken together, by applying machine learning we suggest T cells

might play a substantial yet underestimated role in the virus-specific

immune response. T cell responses might bear the potential of

improving future vaccine development, as antibody responses alone

are insufficient to provide long-lasting protection (27).
Limitations

This study does not provide information on acute viral

diagnostic in individuals with a previous SARS-CoV-2 infection.

No seronegative individuals were included in the study, as these

were not screened for within the study design. From the statistical

and machine learning perspective, the sample size of 134 subjects is

small, particularly given the large number of conducted model

comparisons and statistical correlation tests. Therefore, the
Frontiers in Immunology 11
reported findings are exploratory and need to be interpreted

cautiously. A larger cohort would allow corroborating reported

results and facilitate using potentially more powerful models, such

as neural networks. It would be helpful to validate the resulting ML

models and findings on the external data obtained under a similar

experimental setup but from a more diverse set of individuals.
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