
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Die Wang,
Genentech, United States

REVIEWED BY

Qi Zhao,
University of Macau, China
Haruka Handa,
Hokkaido University, Japan

*CORRESPONDENCE

Jing Dai

wzdjsx@sina.com

Dakang Xu

dakang_xu@163.com

Yiqun Hu

ichunhu@126.com

†These authors have contributed equally
to this work

RECEIVED 04 February 2023
ACCEPTED 13 April 2023

PUBLISHED 28 April 2023

CITATION

Ma J, Song Y, Zhuang T, Yang H, Yang X,
Zheng J, Luo J, Xia Y, Fei X, Chan DW,
Wu D, Xu P, Ni P, Dai J, Xu D and Hu Y
(2023) Identification of calcium and
integrin-binding protein 1 as a
reprogrammed glucose metabolism
mediator to restrict immune cell infiltration
in the stromal compartment of pancreatic
ductal adenocarcinoma.
Front. Immunol. 14:1158964.
doi: 10.3389/fimmu.2023.1158964

COPYRIGHT

© 2023 Ma, Song, Zhuang, Yang, Yang,
Zheng, Luo, Xia, Fei, Chan, Wu, Xu, Ni, Dai,
Xu and Hu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 28 April 2023

DOI 10.3389/fimmu.2023.1158964
Identification of calcium and
integrin-binding protein 1 as
a reprogrammed glucose
metabolism mediator to
restrict immune cell
infiltration in the stromal
compartment of pancreatic
ductal adenocarcinoma
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Xiaobao Yang1,2, Juanjuan Zheng5, Jiajun Luo1,2, Yihan Xia1,2,
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Peihua Ni1,2, Jing Dai1,2*, Dakang Xu1,2* and Yiqun Hu1,2*

1Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China, 2College of Health Sciences and Technology, Shanghai Jiao Tong
University School of Medicine, Shanghai, China, 3Medical Technology Department, Qiqihar Medical
University, Qiqihar, Heilongjiang, China, 4Xiangya School of Medicine, Central South University,
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An increasing body of evidence has suggested that reprogrammed metabolism

plays a critical role in the progression of pancreatic ductal adenocarcinoma

(PDAC) by affecting the tumor and stromal cellular components in the tumor

microenvironment (TME). By analyzing the KRAS pathway and metabolic

pathways, we found that calcium and integrin-binding protein 1 (CIB1)

corresponded with upregulation of glucose metabolism pathways and was

associated with poor prognosis in patients with PDAC from The Cancer

Genome Atlas (TCGA). Elevated CIB1 expression combined with upregulated

glycolysis, oxidative phosphorylation (Oxphos), hypoxia pathway activation, and

cell cycle promoted PDAC tumor growth and increased tumor cellular com-

ponents. Furthermore, we confirmed the mRNA overexpression of CIB1 and co-

expression of CIB1 and KRAS mutation in cell lines from the Expression Atlas.

Subsequently, immunohistochemistry staining from the Human Protein Atlas

(HPA) showed that high expression of CIB1 in tumor cells was associated with an

increased tumor compartment and reduced stromal cellular abundance.

Furthermore, using multiplexed immunohistochemistry (mIHC), we verified

that low stromal abundance was correlated with low infiltration of CD8+ PD-1−

T cells which led to suppressed anti-tumor immunity. Overall, our findings

identify CIB1 as a metabolic pathway-mediated factor for the restriction of
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immune cell infiltration in the stromal compartment of PDAC and highlight the

potential value of CIB1 as a prognostic biomarker involved in metabolic

reprogramming and immune modulation.
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a gastrointestinal

malignancy with a 5-year overall survival rate of only 11% in 2022,

largely due to its lethal nature and potent resistance to limited

therapeutic options (1, 2). Exocrine neo-plastic changes are

observed in the initial stages of PDAC, while pancreatic

intraepithelial neoplasms (PanINs) indicate progression toward

malignancy. Regarding genetic alternations, mutations in human

KRAS have been widely detected and linked to PDAC (3, 4). In vivo,

genetically engineered animal models have been established to

confirm the essential role of oncogenic KRAS in both PDAC

initiation and progression (3, 5, 6). Additionally, it has recently

been suggested that KRAS-mediated metabolic reprogramming acts

as an accelerator in the progression of PDAC (7).

Distinct cellular metabolism is under regulation by numerous

factors. KRAS, a GTPase family member, is mutated at a high

frequency in pancreatic cancer and is permanently activated to

continuously stimulate downstream effectors, notably PI3K and

RAF (3, 7). Consequently, the key enzymes and glucose

transporters associated with glucose metabolism, such as GLUT1,

are upregulated. The KRAS-drivenMAPK pathway and transcription

factor MYC are thought to be essential to the regulation process,

although the underlying mechanism for the refined regulation of the

related enzymes requires further investigation (8–10). In addition to

the reprogramming of glycolysis, mutant KRAS signaling contributes

to phosphoglycerate kinase 1 (PGK1) translocation in

mitochondrion, leading to PDHK1 phosphorylation and Oxphos

restriction in pancreatic cancer cells (11). Intriguingly, KRAS

mutations are also induced as a consequence of glucose

deprivation, indicating mutual interplay between the oncogene and

metabolism (12). Furthermore, some overexpressed enzymes

upregulated by KRAS, such as RPIA, remain unchanged in some

pancreatic cancer cell lines with KRAS deletion to maintain non-

oxidative pentose phosphate pathway (PPP) and cancer cell survival

via a KRAS-independent pathway (13). Therefore, further

investigation must be conducted to reveal the mutual regulation

pathways between KRAS and metabolic reprogramming.

Given that the metabolic reprogramming process is closely

related to tumor cell survival, progression, and immune evasion,

reprogrammed metabolism may play a critical role in tumor

microenvironment (TME) modulation in PDAC. First, the

competitive uptake of glucose by tumor cells restricts immune cell

activation, differentiation, and function by robbing immune cells of
02
energy substances (14). Second, a mass of lactate produced by the

aberrant glycolysis of tumor cells establishes an acidified TME,

which favors tumor progression and immune suppression (15).

Additionally, lactate directly impairs the immunosurveillance

function of T cells (16, 17). Beyond immunomodulation,

enhanced glucose metabolism also leads to resistance to

gemcitabine-induced apoptosis of PDAC cells (18). Taken

together, the reprogramming of glucose metabolism plays a

pivotal role in PDAC progression and immune evasion.

Calcium- and integrin-binding protein 1 (CIB1), also known as

calmyrin, is an intra-cellular Ca2+-binding protein with EF-hand

domains (19). CIB1 has no enzymatic activity, but it has various

binding partners, such as sphingosine kinase 1 (SK1), and is involved in

a broad spectrum of cellular processes (20). SK1-expressing cells show a

significant increase in glucose uptake and induction of aerobic

glycolysis, affecting metabolic pathways related to the biosynthesis of

macromolecules. Overexpression of CIB1 has been shown to correlate

with oncogenic mutations of KRas, drive the localization of SK1 to the

plasma membrane, and enhance the membrane-associated enzymatic

activity of SK1 with its oncogenic signaling and is also related to glucose

metabolism. CIB1 has also been confirmed to contribute to two

common oncogenic pathways, PI3K/AKT and Ras/MEK/ERK, which

are essential for tumor cell survival and proliferation (21–23). Here, we

hypothesized that CIB1 may be associated with metabolic

reprogramming in PDAC and may thus affect the TME via

modulating tumor and stromal cellular components and immune

cells to establish an immunosuppressive TME.

Metabolic reprogramming, the KRAS pathway, and relevant

molecules may modulate the tumor, immune, and stromal

components. Here, by analyzing these pathways, we identified

that CIB1 was upregulated and associated with poor prognosis in

patients with PDAC from The Cancer Genome Atlas (TCGA)

database. We further identified that CIB1 was positively

correlated with the glycolysis, oxidative phosphorylation

(Oxphos), and hypoxia pathways, as well as the cell cycle, which

reflected increasing numbers of tumor cellular components in the

TME. The results of immunohistochemistry staining demonstrated

that high expression of CIB1 in tumor cells was associated with

increased tumor compartments and reduced stromal cellular

abundance. Moreover, multiplexed immunohistochemistry

(mIHC) verified that low stromal abundance also correlated with

the low infiltration of CD8+PD-1- T lymphocytes. These results

reveal the linkage between CIB1, reprogrammed glucose

metabolism, and the KRAS pathway, as well as the relevance of
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CIB1 expression to tumor and stromal cellular components and

immune cell modulation in the TME.
2 Methods and materials

2.1 Data acquisition

The mRNA expression profile and the related clinical data were

collected from the Gene Expression Omnibus (GEO) and TCGA

databases. The selected samples met the following criteria: 1) an

overall survival > 2 months; 2) complete survival status information;

and 3) diagnosed with PDAC. Under these criteria, 116 samples from

GSE183795, 109 samples from GSE71729, and 134 samples from

TCGA were selected for further analysis. The accession number of

murine mRNA expression profile is GSE127891.

The mRNA expression profile of pancreatic cancer cell lines and

KRAS mutation information were obtained from the Cancer Cell

Line Encyclopedia (CCLE) database (https://sites.broadinstitute.org/

ccle/datasets, accessed on January 14, 2023),

Immunohistochemistry slice images of CIB1 in pancreatic cancers

were obtained from the Human Protein Atlas (HPA) database.

The HALLMARK gene sets and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways gene sets were obtained from the

GSEA Molecular Signature Database (https://www.gsea-

msigdb.org/gsea/msigdb/inde x.jsp, accessed on January 14, 2023).
2.2 Prediction of immune cell infiltration

The prediction’ of immune cell infiltration was conducted via xCell

(https://xcell.ucsf.edu/, accessed on September 22, 2022). A higher

score estimated by the immune score or stromal score indicated a

larger number of immune or matrix cellular components in the TME.
2.3 Survival analysis

The “Survival Analysis” module of GEPIA2 was used to

generate survival plots with log-rank P-values. The survival plots

for CIB1 in pancreatic adenocarcinoma in TCGA database were

obtained via the GEPIA2 website. High- and low-expression CIB1

cohorts were obtained through the expression threshold of the

cutoff-high (75%) and cutoff-low (25%) values. To validate the

discovery in TCGA cohort, a survival test of CIB1 was also

performed in GSE71729, with the median value of expression as

the cutoff, via the R “survival” package. Survival analysis of the 8-

gene signature was performed in GEPIA2 with the “Signatures”

option in the “Survival Analysis” module.
2.4 Non-negative matrix factorization
(NMF) and immunophenotype detection

NMF clustering was performed to virtually microdissect the

immunophenotypes of PDAC based on the immune cell infiltration.
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The rank of clusters was determined based on cophenetic indicators,

and the optimal clustering number was selected as 3.
2.5 Patient cohort and tissue microarray
construction

Human PDAC specimens were obtained from Ruijin Hospital,

Shanghai Jiao Tong University School of Medicine (Shanghai,

China), with written informed consent from all participants. The

study was approved by the Human Ethics Committees of Ruijin

Hospital, Shanghai Jiao Tong University School of Medicine. The

human tissue specimens were formalin-fixed and paraffin-

embedded (FFPE). Based on the H&E staining results examined

by a pathologist, cancer FFPE tissue samples from 35 patients were

punched and arranged in tissue microarray (TMA) blocks. The

clinical sample information of each patient is presented in

Supplementary Table 1. The diameter of each block core used in

this TMA assessment was 1.5 mm.
2.6 Multiplex IHC staining and
image acquisition

We used the Ultivue UltiMapper Immuno 8 kit to conduct the

mIHC staining according to the manufacturer’s instructions

(#ULT20101, Ultivue, Cambridge, MA, USA) (24). Paraffin-

embedded sections were heated in an oven set to 60°C for 1 h,

deparaffinized with xylene, and rehydrated through a gradient of

ethanol solutions. Antigen retrieval was performed in a pH 9 buffer,

and antibody diluent was used to block the binding of nonspecific

antibodies. The commercialized primary antibodies used were pre-

designed panels for identifying specific cells in the TME and included

anti-CD8a, anti-PD-1 and anti-pan-keratin antibodies. All

antibodies were diluted in the ratio 1:100 in the antibody diluent

and combined. The sections were then incubated for 1 h in the

antibody mixture. After applying the Pre-Amplification Mix and the

amplification enzyme solution to detect antibody staining, the tissues

were incubated with Nuclear Counterstain solution, and the first-

round fluorescent probe solution was used to detect CD8 and PD-1.

A coverslip was then mounted over the tissue chip using ProLong

Gold Antifade Mountant (Thermo Fisher, MA, United States). The

sample was loaded onto the Vectra Polaris Automated Quantitative

Pathology Imaging System (Akoya Biosciences, MA, United States),

and whole slide scanning was employed to capture the first-round

images at 20× magnification. After acquiring the first-round images,

an exchange solution was used to remove the fluorescent probes.

Subsequently, the second round of staining was conducted (pan-

keratin), and images were captured as described above.
2.7 Image analysis

The HALO Image Analysis Platform (Indica Labs,

v3.3.2541.345 was used for image overlay, tissue segmentation,

and cell phenotype analysis. Positive thresholds for each marker
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were set based on the nuclear (DAPI) or cytoplasmic (CD8, PD-1

and pan-keratin) staining intensity and were examined across all

tissue samples. Combined results for cell counts, densities, and

percentages were exported for further analysis and generation of

graphic images using a previously described method (25).
2.8 Gene set enrichment analysis (GSEA)
and single sample gene set enrichment
analysis (ssGSEA)

GSEA was performed with the R “clusterProfiler” package. The

normalized enrichment score (NES) and adjust p value were used to

quantify the enrichment magnitude and statistical significance,

respectively. “GSVA” R package (26) (version 1.36.2) was applied

to calculate ssGSEA scores of pathways and HALLMARK

signatures in each sample. ssGSEA were performed with

parameters as method = ‘ssgsea’, kcdf = ‘Poisson’.
2.9 Quantitative analysis of IHC slice
images from HPA

The QuPath software (27) was downloaded and utilized to

quantitatively measure the tumor cells and stromal cells of IHC slice

images of CIB1 in patients with pancreatic cancer. 8 well stained

slice images (4 slices with high expression of CIB1 and 4 slices with

low expression of CIB1) were selected for the measurement. Those

samples with strongly stained CIB1 were considered as with high

expression of CIB1. The other samples were considered as with low

expression of CIB1.
2.10 Cell culture

The KRASG12D; Trp53R172H; Pdx1-Cre (KPC) cell lines were

seeded (2 × 105/well) in 12-well plates, cultured in DMEM (1000

mL). All the above mediums were supplemented with 10% FBS

(Shanghai Life iLab Biotech Co., LTD), 100 U/mL penicillin, and

100 mg/mL streptomycin (Shanghai Life iLab Biotech Co., LTD).
2.11 Determination of glucose and
lactate levels

The levels of glucose and lactate in supernatant of cell culture

were determined by AU5800 (Beckman Coulter, Inc.) according to

the manufacturer. The glucose consumption was calculated by the

following formula.

Glucose   consumption

= (1 −
Glucose   concentration   of   supernatant

Glucose   concentration   of   fresh  DMEM   (24:98  mM)
)

� 100%
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2.12 siRNA interference of CIB1

CIB1 siRNA oligonucleotides and negative control siRNA were

purchased from Shanghai GenePharma Co.,Ltd. siRNA 1: 5’-

CCGCAUCUUUGACUUUGAU-3’. KPC cells were transfected

with either CIB1 siRNA or negative control siRNA according to

the manufacturer. The transfected cells were incubated for 48h

before further experiments. After the 48h incubation, we replaced

the medium was fresh medium and incubated the transfected cells

for another 24h before we determined the glucose consumption and

lactate production levels in supernatant.
2.13 Western blots

Anti-CIB1 polyclonal antibodies were purchased from

Proteintech Group, Inc. Cells were lysed and proteins were

separated by 12.5% SDS-PAGE, transferred onto PVDF

membranes. Then the PVDF membrane was blocked with 5%

non-fat milk and incubated with anti-CIB1 antibodies for 12h

under 4 C. The secondary antibody was then incubated for 1h

under room temperature. The bands were visualized and analyzed

by ODYSEEY system and ImageJ software(version 2.9.0).
2.14 Statistical analyses

Data were analyzed via R software (version 4.2.2) and GraphPad

Prism 8.0.2 software (GraphPad, Inc., San Diego, CA, USA). Two-

tailed t-tests were used to determine statistically significant differences

in unpaired data. One way ANOVA was used for multiple

comparison. Pearson correlation tests were used to determine

correlations in unpaired data. Survival analyses were performed to

evaluate the prognostic value of the indices used in the study.

Kaplan–Meier (K-M) analysis was used to plot survival curves via

the log-rank test. P-values< 0.05 were considered significant.
3 Results

3.1 Calcium and integrin binding 1
(CIB1) was highly co-expressed with
KRAS mutation and was related to
metabolic reprogramming

The mRNA profiles in pancreatic adenocarcinoma cell lines

were obtained to confirm the expression of CIB1. The heatmaps

showed that CIB1 is widely expressed in pancreat ic

adenocarcinoma cell lines, in which highly frequent KRAS

mutation was also observed (Figure 1A). Further, the expression

of CIB1 was positively correlated with the count of alternative allele

of KRAS (Figure 1B). The co-expression of CIB1 and KRAS

mutation suggests an interplay between CIB1 and downstream

KRAS signaling.
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Later, the GSEA pathway analysis was conducted to reveal the

CIB1-mediated pathways. The results of pathway analysis

demonstrated that hallmark signatures of glycolysis, hypoxia, and

oxidative phosphorylation were upregulated in the high CIB1 group,

indicating that glucose metabolism was reprogrammed and an

elevated glucose metabolism under hypoxic condition corresponds

to high CIB1 expression in both human and murine samples

(Figures 1C, D). The full list of HALLMARK pathway analysis

results was presented in Supplementary Table 2. Eight overlapped

glucose metabolism-related genes were identified, all of which were

demonstrated to be associated with low immune cell infiltration

(Supplementary Figures 1A–C), indicating an immunosuppressive

function of reprogrammed glucose metabolism.

In order to verify the linkage between KRAS mutation, CIB1

and glycolysis, we selected KPC cell line which contains KRASG12D

mutation to conduct in vitro CIB1 knockdown via siRNA

interference.The knockdown effect of siRNA was validated by

western blot and the expression of CIB1 decreased when the

concentration of siRNA increased (Figure 1E). Then we

compared the glucose consumption and lactate production levels

in supernatant of cell cultures and the results turned out that the

glucose consumption and lactate production levels were

significantly decreased, indicating a suppressed glycolysis under

CIB1 knockdown condition (Figures 1F, G). As CIB1 expression

was proven to be associated with KRAS mutation and

reprogrammed glucose metabolism, a comparison of CIB1

expression between tumor and normal tissues in TCGA cohort

revealed that CIB1 was upregulated in PDAC (Figure 1H). Further,

survival tests revealed that patients with high CIB1 expression had

lower OS than patients with low expression in TCGA cohort and

GSE71729 cohort (Figures 1I, J, risk tables in Supplementary

Table 4). Collectively, CIB1 was demonstrated to co-express with

KRAS mutation, associated with elevated glucose metabolism and

be of prognostic value in PDAC.
3.2 CIB1-related metabolism
reprogramming suppressed immune cell
infiltration in PDAC

After we confirmed the positive association between CIB1

expression and elevated glucose metabolism under hypoxic

condition, we moved on to investigate the relationship between

CIB1-related metabolism reprogramming and immune cell

infiltration. To further portray the immune subtypes of PDAC,

the xCell algorithm was used to predict the infiltration of immune

cells, and the NMF algorithm was performed to virtually

microdissect the immune subtypes of PDAC into three categories

(high, intermediate, and low immune infiltration level) based on the

infiltrating immune cell abundance (Figure 2A). The determination

of rank used for clustering presented in Supplementary Figures 2A,

B. In three categories, PDAC with low immune infiltration level was

characterized by lowest infiltration of most immune cells but high

expression of CIB1 and elevated glycolysis and Oxphos hallmark

signature in comparison with the other two levels. As expected,

compared to the other two levels, patients with low level of immune
Frontiers in Immunology 05
cell infiltration had the worst prognosis (Figures 2B, C, risk tables

in Supplementary Table 4).

Furthermore, upregulated cell cycle pathway was observed in

PDAC with low immune infiltration levels (Figure 2D), indicating

that CIB1-related metabolism reprogramming was negatively

associated with the infiltration of immune cells in PDAC and

promoted the growth of tumor cells. Full list of KEGG pathways

analysis results was presented in Supplementary Table 3.

Additionally, beyond the infiltration abundance of immune cell

subtypes, stromal score and immune score were also observed to fall

into three levels in line with the immune cell infiltration levels

(Figures 2E, F). PDAC with low immune infiltration levels had a

significantly lower stromal score and immune score than the other

two levels, suggesting a potential modulation of stromal

components in PDAC by CIB1-related metabolism.
3.3 High CIB1 expression was associated
with low immune cell infiltration

After confirming the association between CIB1, glucose

metabolism, and immune infiltration levels, we considered that CIB1

itself was potentially immunosuppressive and modulated the stromal

components in TME. The positive relationship between stromal score

and infiltration of immune cell subtypes was confirmed, suggesting that

abundant stromal components was in favor of immune cells infiltrating

(Figure 3A). Beyond the infiltration abundance of a single immune cell

subtype, CIB1 was negatively correlated with the immune and stroma

scores, indicating that PDAC with high CIB1 expression had both low

immune infiltration and low stromal cellular components (Figures 3B,

C). Based on the immune cell infiltration estimated by xCell, we

analyzed the correlation between CIB1 expression and immune cell

infiltration, as shown in Figures 3D, E. The results all indicated that

CIB1 was negatively associated with major anti-tumor contributors,

notably, CD8+ T cells (Figure 3E) and high stromal cellular abundance

was in favor of immune cell infiltrations. To validate the results, we

assessed the correlation between expression of CD8+ T cells marker

(CD8A) and expression of CIB1 in GSE183795 and the result was in

line with the previous analysis (Figures 3F).
3.4 High tumor cell density was
associated with low stromal cellular
abundance in PDACs

To further measure the tumor, stroma, and immune cell

components in PDAC tumor tissues, a workflow was established

and optimized for mIHC to assess three markers (CD8, PD-1,

PanCK) to simultaneously depict cell subtypes with single or

multiple markers (Figure 4A). The PanCK marker was used to

define the tumor cells, while DAPI was used to stain the nucleus of

all cells. Further, specimens from patients with PDAC were

prepared, fixed, and stained in a tissue microarray. Later, the

Halo algorithm was used to identify and count the subpopulation

of cell subtypes and segment the tumor tissues into tumor, stromal

compartment and blank region (Figure 4B). The results of
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FIGURE 1

Calcium and Integrin Binding 1 (CIB1) was highly co-expressed with KRAS mutation and was related to metabolic reprogramming. (A) Alternative
allele counts of KRAS in pancreatic cancer cell lines with different expression level of CIB1. The lower quartile of CIB1 expression in pancreatic
cancer cell lines was used as the cutoff to determine the CIB1 expression levels. (B) Correlation scatter plots of alternative counts of KRAS and CIB1
expression. (C) Upregulated HALLMARK signatures in samples with high CIB1 expression. Glucose metabolism-related gene sets are represented as
lines of unique color. Gene sets with p< 0.05 were considered significant, n = 134. (D) Upregulated HALLMARK signature in murine samples with
high Cib1 expression,n = 8. (E) Western Blot validation of CIB1 knockdown via siRNA. The mean gray value of bands was measured by ImageJ. (F)
Glucose consumption levels decreased under CIB1 knockdown condition. (G)Lactate production levels decreased under CIB1 knockdown condition.
(H) Differential expression of CIB1 mRNA expression between pancreatic cancer and normal samples. (I, J) Survival plots of CIB1 in TCGA and
GSE71729 datasets. Blue lines represent the survival curve of the low CIB1 expression group, and red lines represent the survival curve of the high
CIB1 expression group. In TCGA cohort, n(high) = 45, n(low) = 45. In GSE71729 cohort, n(high) = 54, n(low) = 55 *p< 0.05. **p< 0.01, ***p< 0.001.
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quantitative measurement showed that a high tumor cell density

was related to a restricted stromal cell percentage (Figure 4C). The

ratio of Stromal% and Tumor% (Stromal cell %/Tumor cell%) was

used as an index to measure the relative structure of tumor cells and

stromal cells. High stromal cell %/Tumor cell % indicated a TME
Frontiers in Immunology 07
compressing of abundant stromal cells and low tumor cells

(Figures 4D, E). Beyond the structural relationship, the ratio of

Stromal% and Tumor% were of prognostic significance (Figure 4F,

risk tables in Supplementary Table 4). High Stromal%/Tumor%

indicated a favorable outcome.
A

B

D E F

C

FIGURE 2

CIB1-related metabolism reprogramming suppressed immune cell infiltration in PDAC. (A) Heatmap representation of the three infiltration levels of
immune cells in PDAC. The annotation bars indicated the clusters generated by NMF, CIB1 expression and ssGSEA score of Oxphos and Glycolysis.
(B, C) Survival plots of patients with different immune cell infiltration levels in TCGA cohort. (D) Up-regulation KEGG pathways in samples with a low
immune cell infiltration level. (E) Comparison of stromal scores between the infiltration levels of immune cells in PDAC. (F) Comparison of the
immune score between patients with PDAC with three levels of infiltrating immune cells. *p< 0.05, **p< 0.01, ***p< 0.001.
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3.5 PDAC with high CIB1 expression had
more tumor components and fewer
stromal components

To validate the relationship between CIB1 expression, tumor

and stromal components in real world, we then obtained IHC
Frontiers in Immunology 08
images of CIB1 from the HPA database to further assess the

association between CIB1 expression and the cellular components

of the TME in PDAC. The IHC images of CIB1 in cancer samples

suggested that samples with strongly stained CIB1 had fewer cells

and were more fibrotic compared to CIB1-negative samples

(Figure 5A), indicating that high expression of CIB1 was related
A

B

D

E F

C

FIGURE 3

High expression of CIB1 was associated with low immune cell infiltration. (A) Correlation coefficients between stromal score and immune cell
infiltration. Red represents a positive correlation, blue represents a negative correlation, and white represents no correlation. (B) Correlation
scatterplots of CIB1 and immune score. (C) Correlation scatterplots of CIB1 and stromal score. (D) Correlation coefficients between CIB1expression
and immune cell infiltration. (E) Correlation scatterplots of CIB1 and CD8+ T cells. (F) Correlation scatterplots of CIB1 expression and CD8A
expression in GSE183795 cohrot, *p< 0.05, **p< 0.01, ***p< 0.001.
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to low stromal abundance. 8 well stained slice images (4 slices with

high expression of CIB1 and 4 slices with low expression of CIB1)

were selected and imported into QuPath software for quantitative

measurement. The quantitative analysis, as illustrated in Figure 5B,

was conducted to assess the tumor cells and stromal components

difference between high and low CIB1 group. Those cells classified

as tumors showed a higher nucleus area, cell area, Nucleus/Cell area

ratio and CIB1 expression than those adjacent cells (Figures 5C–F).

The results of quantitative analysis confirmed that high CIB1
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expression was associated with fewer cells in stromal

compartment and higher tumor components, compared with

those with low CIB1 expression. (Figures 5G, H). Further, the

ratio of stromal components and tumor components was

significantly lower in samples with high CIB1 expression

(Figure 5I), indicating that high CIB1 expression led to an

unbalanced tumor-stromal structure with high tumor

components but low stromal components. n(CIB1 high) = 4, n

(CIB1 low) =4
A

B

D E F

C

FIGURE 4

High tumor cell density was associated with low stromal cellular abundance in PDAC. (A) Representative mIHC images of PDAC. (B) Segmentation of
the tumor tissue into tumor (green), stromal compartment (blue) and blank region (grey), Scale bar: 500 mm. (C) Correlation scatterplots of PanCK+

cell density and stromal cell %. PanCK+ cell density is the ratio of PanCK+ cell count and area of classified region. Stromal cell% is the ratio of count
of cells in stromal compartment and total cell count. (D) Correlation scatterplots of stromal cell count and stromal cell%/tumor cell% Tumor cell %.
Tumor cell % is the ratio of PanCK+ cell count and total cell count. (E) Correlation scatterplots of PanCK+ cell count and stromal cell%/tumor cell%
(F) Survival plot of patients in high and low stromal/tumor groups. n(high ratio) = 17, n(low ratio) = 18.
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3.6 A TME with abundant stromal
components and low tumor cells
was in favor of CD8+PD-1− T cells
infiltration in PDAC

Previous results have confirmed that high CIB1 expression was

associated with a TME compressing of high tumor components but

low stromal components. The representative images of structure

with abundant stromal cells and low tumor cells and structure with

low stromal cells and high tumor cells were respectively presented

in Figures 6A, B. To further assess the anti-tumor cells abundance

in these two types of structures, we measured the count of CD8+PD-

1+ and CD8+PD-1− cells via Halo algorithm. The cell density and

percentage of CD8+PD-1+ cells seemed to be more present in

structure with low stromal cells and high tumor cells but was
Frontiers in Immunology 10
found to be of no statistically significant difference between two

types of structures (Figures 6C, D).The structure with abundant

stromal cells and low tumor cells had higher percentage of

CD8+PD-1− cells infiltration while the cell density of CD8+PD-1−

showed no difference. (Figures 6E, F). The higher percentage of

CD8+PD-1− cells infiltration was correlated with restricted tumor

area and tumor components (Figures 6G, H). Collectively, a TME

with high stromal components and low tumor cells is in favor of

CD8+PD-1− T cells infiltration in PDAC.
4 Discussion

Malignant cells, in complex with non-malignant cells, are an

important component of tumors and form a heterogeneous TME.
A B

D E F

G IH

C

FIGURE 5

PDAC with high CIB1 expression was associated with low stromal cellular abundance and with low immune cell infiltration. (A) Representative IHC
images of samples with high expression of CIB1 and those with low expression of CIB1. Black arrow: Cancer cell, red arrow: Fiber, blue arrow:
Immune cell. (B) Illustration of quantitative analysis of IHC slice images. (C-F) Comparison of nucleus area, cell area, Nucleus/Cell area ratio and CIB1
expression between classified tumor cells and adjacent cells (G-I) Difference of tumor cell%, stromal cell%, and stromal cell %/tumor cell % ratio
between samples with high expression of CIB1 and those with low expression of CIB1. *p< 0.05, Error bars represent the SEM.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1158964
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2023.1158964
Non-malignant cells interact with malignant cells and contribute to

the features of cancer. Non-malignant cells, which are the stromal

cell components present in the TME, mainly include fibroblasts and

immune cells such as lymphocytes and macrophages. Previous

studies have highlighted the integral role of the TME in the

progression of cancer (28–30). Mechanistically, the TME affects

cancer cells through complex and dynamic pathways to modulate

cancer-associated signaling, involving ligand-receptor interactions

(e.g., PD-L1 binding of cancer cells to PD-1 of T cells), cytokines,

metabolism reprogramming and KRAS pathways (31, 32). For

instance, KRAS mutations which are widely detected in

pancreatic cancers and colon cancers mediate multiple key

glycolysis enzymes (such as HK-I/II, LDHA and GLUT1) thus

leading glucose metabolism reprogramming (12, 13, 30, 32, 33).

Among these pathways, we identified CIB1 as a key molecule

related to metabolic and KRAS pathways. CIB1 was associated

with increased tumor compartment and decreased stromal cell
Frontiers in Immunology 11
abundance, whereas low immune cell infiltration was associated

with immunosuppression in the TME.

Along with the complex TME, extensive metabolic

reprogramming, particularly reprogrammed glucose metabolism,

also contributes to the immune evasion of PDAC cells under

conditions of hypoxia and nutrient deprivation (13, 34). The

reprogramming of glucose metabolism not only satisfies the

requirements for energy and biosynthesis of essential cellular

components but also facilitates the establishment of an immune

suppressive microenvironment (35, 36). First, the competitive

uptake of glucose by tumor cells restricts immune cell activation,

differentiation, and function by robbing immune cells of the energy

substance (14). Second, a mass of lactate produced by the aberrant

glycolysis of tumor cells establishes an acidified TME, which favors

tumor progression and immune suppression (15). Additionally,

lactate directly impairs the immunosurveillance function of T cells

(16, 17). Beyond immunomodulation, enhanced glucose
A B

D E F

G H
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FIGURE 6

TME with high stromal and low tumor compartments is in favor of CD8+ PD-1- T cell infiltration in PDAC. (A) Representative image of samples with
abundant stromal cellular components and low tumor components. (B) Representative image of samples with low stromal cellular components and
high tumor components. (C) Cell density of CD8+ PD-1+ T cells in samples with l low and high stromal cell %/tumor cell % ratio (D) CD8+ PD-1+ T
cells % in samples with low and high stromal cell %/tumor cell % ratio. (E) Cell density of CD8+ PD-1– T cells in samples with l low and high stromal
cell %/tumor cell % ratio (F) CD8+ PD-1– T cells % in samples with low and high stromal cell %/tumor cell % ratio. (G) Correlation between CD8+

PD-1– T cells % and tumor area (mm2). (H) Correlation between CD8+ PD-1– T cells % and PanCK+ %.
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metabolism also leads to resistance to gemcitabine-induced

apoptosis of PDAC cells (18). Taken together, the reprogramming

of glucose metabolism plays a pivotal role in PDAC progression and

immune evasion.

Both TME components and reprogrammed glucose metabolism

should be considered to assess the anti-tumor immune activity of

PDAC. Hence, a biomarker that represents both will strengthen the

ability to detect PDAC early and precisely. Here, we identified and

verified CIB1 as being capable of predicting low stromal abundance

and elevated glucose metabolism, which eventually led to an

unfavorable prognosis.

CIB1 has been proven to be involved in the progression of

triple-negative breast cancer and lung adenocarcinoma and has

gradually been considered important in maintaining cell survival

and proliferation (21, 22, 37). Further, elevated CIB1 has been

reported to be associated with abnormal expression of oncogenic

KRas and HRas, which are key drivers of metabolic reprogramming

(23, 38). In this study, we found that CIB1 was widely co-expressed

with KRAS mutation in pancreatic cancer cell lines and upregulated

in tumor samples. The in vitro CIB1 knockdown validated the

causality of CIB1 against glycolysis. Glycolysis was suppressed

under CIB1 knockdown condition. The prognostic value of CIB1

was demonstrated in both TCGA cohort and GSE71729. High

expression of CIB1 potentially serves as a marker for an

unfavorable prognosis in PDAC. In line with previous studies,

our data provide further evidence that CIB1 is associated with

elevated glucose metabolism in PDAC. Eight overlapping genes

involved in both glycolysis and Oxphos were demonstrated to be

negatively associated with immune cell infiltration, especially CD8+

T cells, preliminarily verifying the hypothesis that CIB1 is

associated with metabolic reprogramming in PDAC, leading to an

immunosuppressive TME.

We conducted unsupervised clustering to virtually microdissect

PDAC, with the aim to precisely portray the immune subtypes of

PDAC. PDACs were subsequently divided into subtypes with three

immune infiltration levels: high, intermediate, and low. The PDAC

with low immune infiltration levels showed the highest CIB1

expression, the lowest immune cell infiltration, and the worst

prognosis compared to the other two subtypes. Furthermore,

elevated cell cycle and Oxphos pathways were found in the

PDAC with low immune cell infiltration, indicating that

reprogrammed glucose metabolism under hypoxic conditions

contributes to a repressed anti-tumor immunity and tumor growth.

Given the positive association between CIB1 expression and

elevated metabolic re-programming in PDAC, we next investigated

whether CIB1 could serve as an indicator of the repressed immune

landscape in PDAC. The results of correlation tests revealed that

CIB1 was associated with an immunosuppressive landscape with

reduced anti-tumor cell infiltration. Therefore, we can conclude

that CIB1 is a biomarker for elevated glucose metabolism and

immunosuppressive landscapes.

Intriguingly, our data also suggested that CIB1 expression was

related to low stromal cellular component abundance in PDAC. The

IHC images revealed that tumors with high CIB1 expression had a
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stromal region with fewer cellular components but a more fibrotic

structure. Further, quantitative analysis of TMA data revealed the

infiltration of fewer CD8+ PD-1− T cells in PDAC with low stromal

abundance. We confirmed that high CIB1 expression is associated

with a low stromal cellular component abundance and low immune

cell infiltration in PDAC, although the underlying mechanism

requires further investigation. Together with immune cells,

cancer-associated fibroblasts (CAFs) are considered an important

and heterogenic component of PDAC. In a previous study, Yu

Wang et al. identified a unique subtype of CAFs with a highly

activated metabolic state (meCAFs) in PDAC (39). The high

abundance of meCAFs will lead to an unfavorable prognosis and

a high risk of metastasis. In this study, due to the limitation of

staining panels, the relationship between CAFs and immune cell

infiltration was not tested and validated. Therefore, further studies

are necessary to explore the interplay between CAFs and immune

cells. Other limitations still existed in this study. Although we

validated the causality of CIB1 against glycolysis, the mechanism

underlying how CIB1 interact with participants in glycolysis and

alter the cell metabolism was unclear. On the other hand, whether

the knockdown of CIB1 would eventually boost the anti-tumor

immunity was unknown.

In conclusion, we systematically characterized CIB1 as the key

molecule linked to metabolic and KRAS pathways. CIB1 not only has

a possible relationship with metabolic reprogramming in glycolysis,

Oxphos, and hypoxia pathways but may also be associated with low

immune cell infiltration in the stromal compartment of PDAC for re-

programmed glucose metabolism and immune modulation,

highlighting CIB1 as a predictive biomarker for prognosis.
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