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Interleukin-32 (IL-32), first reported in 2005, and its isoforms have been the subject

of numerous studies investigating their functions in virus infection, cancer, and

inflammation. IL-32q, one of the IL-32 isoforms, has been shown to modulate

cancer development and inflammatory responses. A recent study identified an IL-

32q mutant with a cytosine to thymine replacement at position 281 in breast

cancer tissues. It means that alanine was also replaced to valine at position 94 in

amino acid sequence (A94V). In this study, we investigated the cell surface

receptors of IL-32qA94V and evaluated their effect on human umbilical vein

endothelial cells (HUVECs). Recombinant human IL-32qA94V was expressed,

isolated, and purified using Ni-NTA and IL-32 mAb (KU32-52)-coupled agarose

columns. We observed that IL-32qA94V could bind to the integrins aVb3 and

aVb6, suggesting that integrins act as cell surface receptors for IL-32qA94V. IL-
32qA94V significantly attenuated monocyte-endothelial adhesion by inhibiting the

expression of Intercellular adhesion molecule-1 (ICAM-1) and vascular cell

adhesion molecule-1 (VCAM-1) in tumor necrosis factor (TNF)-a-stimulated

HUVECs. IL-32qA94V also reduced the TNF-a-induced phosphorylation of

protein kinase B (AKT) and c-jun N-terminal kinases (JNK) by inhibiting

phosphorylation of focal adhesion kinase (FAK). Additionally, IL-32qA94V
regulated the nuclear translocation of nuclear factor kappa B (NF-kB) and

activator protein 1 (AP-1), which are involved in ICAM-1 and VCAM-1 expression.

Monocyte-endothelial adhesionmediated by ICAM-1 and VCAM-1 is an important

early step in atherosclerosis, which is a major cause of cardiovascular disease. Our

findings suggest that IL-32qA94V binds to the cell surface receptors, integrins
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aVb3 and aVb6, and attenuates monocyte-endothelial adhesion by suppressing

the expression of ICAM-1 andVCAM-1 in TNF-a-stimulatedHUVECs. These results

demonstrate that IL-32qA94V can act as an anti-inflammatory cytokine in a

chronic inflammatory disease such as atherosclerosis.
KEYWORDS
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1 Introduction

IL-32, previously known as NK4, is expressed in activated human

T cells and NK cells after stimulation by mitogen or IL-2. Previous

studies showed that NK4 induced pro-inflammatory cytokines such

as IL-8, TNF-a, and MIP-2 in several immune cells through the

classical cytokine signaling pathway, but lacked sequence homology

with other cytokines. Hence, it was renamed IL-32, a part of one of

the interleukin families (1). Numerous studies have reported that IL-

32 is associated with cancer growth and development, viral infections,

as well as chronic inflammatory diseases such as Crohn’s disease,

inflammatory bowel disease, and rheumatoid arthritis, which

demonstrated the ability of IL-32 to function as a cytokine (2–12).

The IL-32 gene contains eight exons, with several splice variants

differing in structure. IL-32a, IL-32b, IL-32g, and IL-32d were first

discovered in NK cells, with IL-32g having the longest sequence

among the IL-32 isoforms (1). IL-32e, IL-32z, IL-32h, IL-32q, and IL-
32sm were additionally identified, and a total of nine isoforms have

been reported (13, 14). Early studies on IL-32 suggest that it is a pro-

inflammatory cytokine. However, further studies on the individual

isoforms show that they play different roles (15).

IL-32q, one of the IL-32 isoforms, is the only isoform with an

exon 6 deletion, except for IL-32sm. Recent studies have shown that

IL-32q has tumor suppression and anti-inflammatory effects (16,

17). We recently identified mutations in IL-32q in tissues from

patients with breast cancer. Sequence analyses revealed a cytosine to

thymine replacement at position 281 in the mutant isoform, leading

to a change in the amino acid sequence from alanine to valine at

position 94 in the protein sequence. The mutant showed anti-

inflammatory function inhibiting pro-inflammatory cytokines such

as IL-1b, IL-6, IL-8, and COX2 in breast cancer cells (18). Previous

studies on IL-32qA94V were limited to overexpression, and its

specific receptor was not clearly identified. IL-32a and IL-32b have

been reported to bind to integrin aVb3 and integrin aVb6 (19). In
this study, we investigated whether these integrins could also act as

receptors for IL-32qA94V.
Intercellular adhesion molecule-1 (ICAM-1) and vascular cell

adhesion molecule-1 (VCAM-1) are markers of inflammatory

responses involved in various diseases, including asthma and

rheumatoid arthritis (20–25). Pro-inflammatory cytokines such as

IL-1b and TNF-a (26, 27) induce the expression of ICAM-1 and

VCAM-1 in vascular endothelial cells (26, 27). One of their

functions is to initiate trans-endothelial migration (TEM) by
02
arresting monocytes and leukocytes. TEM refers to the process

that immune cells adhere to vascular endothelial cells and pass

between them to migrate to the inflammation region. This process

contribute to enhancement of the inflammatory response (28).

ICAM-1 and VCAM-1 bind to lymphocyte function-associated

antigen 1 (LFA-1) and very late antigen-4 (VLA-4) expressed in

monocytes, triggering TEM by arresting the immune cells on the

vascular endothelial cells (29). TEM is also important early stage of

atherosclerosis. Atherosclerosis is characterized by inflammation,

injured endothelial cells, and the formation of plaques due to the

accumulation of oxidized low-density lipoproteins (ox-LDL) (30).

Plaques contain vascular endothelial cells, smooth muscle cells, and

lipid-containing macrophages known as foam cells. ICAM-1 and

VCAM-1 induce TEM of monocytes, and the migrated monocytes

develop plaques through uptake of ox-LDL (31, 32). Plaque

development obstructs blood flow in vessels in various parts of

the body, resulting in fatal disease such as cardiovascular disease

(CVD) (33, 34). Therefore, regulation of ICAM-1 and VCAM-1

could be an important target for the treatment of various diseases as

well as vascular inflammation (35).

Previous studies have suggested that IL-32b and IL-32g act as
pro-inflammatory cytokines involved in the upregulation of ICAM-

1 and VCAM-1 (36, 37). In this study, we identified the cell surface

receptors for IL-32qA94V and showed that IL-32qA94V was

involved in the expression of ICAM-1 and VCAM-1, similar to

other isoforms. Interestingly, IL-32qA94V downregulated the

expression of ICAM-1 and VCAM-1 in contrast to other isoforms

such as IL-32b and IL-32g (36, 37). These findings support the

differential roles of IL-32 isoforms and demonstrate the therapeutic

potential of IL-32qA94V in inflammatory diseases such

as atherosclerosis.
2 Materials and methods

2.1 Expression of human IL-32qA94V

IL-32qA94V coding sequence was synthesized by Bioneer

(Daejeon, Korea) using HT-oligo™ synthesis. The synthesized

DNA sequence was cloned into a pTH24 based TEVSH vector

(Addgene, Watertown, MA, USA) using NdeI and AgeI restriction

sites and rapid DNA ligation kit (Thermo Fisher Scientific, Waltham,

MA, USA). TEVSH was a gift from Helena Berglund (Addgene
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plasmid # 125194; http://n2t.net/addgene:125194; RRID : Addgene

125194) and confirmed by DNA sequencing (Bionics, Seoul, Korea).

The recombinant TEVSH vectors were transformed into DH5a by

heat shock and purified using a mini prep kit (Intron Biotechnology,

Sungnam, Korea). The IL-32qA94V expression vectors were

transformed into Rosetta strain of Escherichia coli by heat shock

transformation. Successfully transformed single colony was picked up

and cultured at 37°C for 4 h in a 200-rpm incubator in Luria–Bertani

(LB) media with ampicillin (100 mg/mL). The cultured mixture was

transferred to 2.4 L of fresh LB media with ampicillin (100 mg/mL)

and grown in a 200-rpm incubator at 37°C until it reached an OD600

of 0.6. IL-32qA94V was induced by adding 0.5 mM IPTG. Cells were

grown in a 200-rpm incubator at 16°C for 16 h.
2.2 Purification of IL-32qA94V using
Ni-NTA and CNBr-activated
sepharose 4B columns

After 16 h, the cells were harvested by centrifugation at 8,000

rpm for 10 min at 4°C. The supernatant was discarded, and the

pellet was lysed using lysis buffer (50 mM Tris-HCl pH 8.0, 10%

glycerol, 0.1% Triton X-100, 1X protease inhibitor cocktail, 2 mM

MgCl2, 0.1 mg lysozyme) and incubated on ice for 30 min. The lysed

cells were sonicated (amplitude 35%, turn on 10 s, turn off 10 s) for

1 min using a sonicator (Sonics & Materials, Inc., Newtown, CT,

USA). The lysed cells were centrifuged at 13,000 rpm for 30 min at

4°C, and the supernatant was collected. Ni-NTA resin (Thermo

Fisher Scientific) was loaded into a PD-10 column and balanced

with equilibration buffer (20 mM Tris-HCl pH 8.0, 200 mM NaCl).

The lysate was mixed with 10 mL of equilibration buffer and loaded

into the column and washed by washing buffer (20 mM Tris-HCl

pH 8.0, 200 mM NaCl, 25 mM imidazole). After washing, elution

buffer (20 mM Tris-HCl pH 8.0, 500 mMNaCl, 500 mM imidazole)

was loaded into the column and the flow-through buffer containing

IL-32qA94V was reloaded into IL-32mAb (KU32-52)-coupled

CNBr-activated Sepharose 4B column that was prepared using

CNBr-activated Sepharose 4B (Sigma-Aldrich, St. Louis, MO,

United States) and monoclonal antibody IL-32 mAb KU32-52

(38). After several washing steps with Tris (pH 8.0), IL-32qA94V
was eluted with 100 mM glycine (pH 3.0). The tube receiving the

eluted solution contained 1 M of Tris (pH 8.0) with one-tenth of the

total volume. The purified IL-32qA94V was dialyzed three times

with phosphate-buffered saline (PBS) using spectra/Por membrane

(Spectrum Laboratories, Piscataway, NJ, USA) for 2 h each. Absence

of endotoxin was evaluated by using polymyxin B (Sigma-Aldrich).
2.3 3D structure modeling of
IL-32qA94V and IL-32qA94V-integrin
binding prediction

The tertiary structure of IL-32qA94V was analyzed by I-TASSER

(Iterative Threading ASSEmbly Refinement), which is a hierarchical

approach to protein structure prediction and structure-based

function annotation. I-TASSER identifies structural templates with
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full-length models constructed by template-based fragment assembly

simulations. Function insights of the target are then derived by re-

threading the 3D models through protein function database. Protein-

protein docking prediction was performed using the model with the

highest confidence score among the models derived from I-TASSER

(39–41). Integrin-IL-32qA94V binding was analyzed using HDOCK

server (http://hdock.phys.hust.edu.cn), a protein-protein binding

prediction tool. HDOCK predicts the binding complexes between

two proteins using a hybrid docking strategy. Structures of

extracellular segments of integrin aVb3 (PDB ID: 1JV2) and aVb6
(PDB ID: 5FFG) were provided by protein data bank (PDB). The

docking scores are calculated by knowledge-based iterative scoring

function ITScorePP or ITScorePR (42–46).
2.4 IL-32qA94V-integrin binding assay

MaxiSorp flat-bottomed 96-well plates (Nunc, Roskilde, Denmark)

were coated with 1 mg/mL of recombinant aVb3 and aVb6 integrins
(R&D Systems, Minneapolis, MN, USA) diluted in PBS and incubated

overnight at 4°C. Next, the wells were blocked with 1% BSA

(Invitrogen, Waltham, MA, USA) in PBS at 37°C for 1 h followed

by three washing steps with PBS containing 0.05% Tween 20.

Subsequently, some wells were preincubated with 10 mM cyclo-

RGDfV peptide (Peptide Institute Inc, Osaka, Japan) or 10% fetal

bovine serum (FBS), whereas others were incubated with PBS at 37°C

for 1 h. Next, the wells were incubated with various concentrations of

mutant IL-32qA94V diluted in PBS, with or without 10 mM cyclo-

(RGDfV) or 10% FBS at 37°C for 1 h. The wells were washed three

times with wash buffer and incubated with IL-32 mAb KU32-52

diluted in PBS at a concentration of 0.2 mg/mL at 25°C for 1 h. After

the incubation, the wells were washed three times with wash buffer and

incubated with mouse-IgGk light chain binding protein conjugated to

HRP (m-IgGk BP-HRP) (BETHYL, Waltham, MA USA) at 25°C for

1 h. Next, the wells were washed three times with wash buffer and

incubated with TMB substrate at 25°C for 20 min, and the color

reaction was stopped with 2.5 N H2SO4. The absorbance/optical

density was measured at 450 nm using a microplate reader (Apollo

LB 9110, Berthold Technologies GmbH, Bad Wildbad, Germany).
2.5 Cell culture

HUVEC cells were cultured in Dulbecco modified Eagle medium

(Welgene Incorporation, Daegu, Korea) supplemented with 10% (v/

v) heat-inactivated fetal bovine serum (Hyclone Laboratories, Logan,

UT, USA), penicillin (100 U/mL), and streptomycin (100 mg/mL).

The cells were incubated in a 5% CO2-containing chamber at 37°C.
2.6 RNA extraction and reverse-
transcription polymerase chain
reaction (RT-PCR)

HUVEC cells (3 × 105 cells/well) were incubated in 6-well plates for

24 h and starved for 4 h with serum-free media. Subsequently, the cells
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were pre-treated with IL-32qA94V (10 ng/mL) for 1 h and treated with

TNF-a (10 ng/mL) for another 4 h. The treated cells were collected and

lysed using the easy-BLUE™ Total RNA extraction kit (iNtRon

Biotechnology, Seoul, South Korea) according to the manufacturer’s

instructions. For reverse-transcription (RT) polymerase chain reaction

(PCR), RNA (1 µg) was reverse-transcribed to cDNA using oligo (dT)

primers and M-MuLV reverse transcriptase (New England Biolabs,

Ipswich,MA, USA). The synthesized cDNAwas amplified using a PCR

Thermal Cycler Dice instrument (Takara, Otsu, Shiga, Japan). The

following sets of primers were used: integrin aV, 5′-AGGAGAA
GGTGCCTACGAAGCT-3′ (forward) and 5′-GCA CAGGAAA

GTCTTGCTAAGGC-3′ (reverse); integrin b3, 5′-CATGGATTC
CAGCAATGTCCTC C-3′ (forward) and 5′-TTGAGGCAGGTG
GCATTGAAGG-3′ (reverse); integrin b6, 5′- TCTCCTGCGTGA

GACACAAAGG-3′ (forward), and 5′-GAGCACTCCATCTT
CAGAGACG-3′ (reverse); ICAM-1, 5′-AGCGGCTGACG

TGTGCAGTAAT-3′ (forward), 5′- TCTGAGACCTCTGGC

TTCGTCA-3 ′ (reverse) ; VCAM-1,5 ′-GATTCTGTGCC

CACAGTAAGG C-3′ (forward) and 5′-TGGTCACAGAGC
CACCTTCTTG-3′ (reverse); glyceraldehyde 3-phosphate

dehydrogenase (GAPDH), 5′-AGAACATCATCCCTGCCTCT-3′
(forward), 5′-CTGCTT CACCACCTTCTTGA-3′ (reverse). GAPDH
was used as an internal control. The PCR products were separated on a

2% agarose gel.
2.7 Reverse transcription-quantitative
polymerase chain reaction (RT-qPCR)

HUVECs were harvested after treatment with or without IL-

32qA94V and TNF-a. mRNA extraction and cDNA synthesis were

performed as described above. RT-PCR was performed with a

relative quantification protocol using Rotor-Gene 6000 series

software 1.7 (Qiagen, Hilden, Germany) and the Sensi FAST™

SYBR NO-ROX Kit (BIOLINE, London, UK). The expression of all

target genes was normalized to that of the housekeeping gene,

GAPDH. Each sample was run with the following primer sets:

ICAM-1, 5′-AGCGGCTGACGTGTGCAGTAAT-3′ (forward), 5′-
TCTGAGACCTCT GGCTTCGTCA-3′ (reverse); VCAM-1,5′-
GATTCTGTGCCCACAGTAAGG C-3′ (forward), 5′-TGG

TCACAGAGCCACCTTCTTG-3′ (reverse); GAPDH, 5′-AGAAC
ATCATCCCTGCCTCT-3′ (forward), 5′-CTGCTTCACCACCT
TCTTGA-3′ (reverse). GAPDH was used as an internal control.

The mRNA levels of each gene were calculated relative to that of the

internal reference, GAPDH using the comparative Ct method (47).
2.8 Immunoblotting

HUVEC cells (3 × 105 cells/well) were seeded in 6-well plates for

24 h and pre-treated for 1 h with IL-32qA94V (100 ng/mL), followed

by treatment with TNF-a (10 ng/mL). The cells were lysed in a buffer

containing 50 mM Tris (pH 7.4), 150 mM NaCl, 1% NP-40, 0.1%

sodium dodecyl sulfate (SDS), 0.25% sodium deoxycholate, 1 mM

ethylene diamine tetraacetic acid (EDTA), 1 mM ethylene glycol

tetraacetic acid, 1 mM orthovanadate, aprotinin (10 µg/mL), and 0.4
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mM phenyl methylsulfonyl fluoride (PMSF) at 4°C for 2 h. The cells

were lysed, and the protein content was estimated using a Bradford

assay reagent (Bio-Rad Laboratories, Hercules, CA, USA) and UV

spectrophotometer (48). The proteins (30 µg) were separated on 10%

SDS-polyacrylamide gels and transferred to PVDF membranes. The

membranes were blocked with 5% skim milk for 1 h at 25°C and

incubated with primary antibodies against IL-32, His-tag (Sigma-

Aldrich), FAK (Thermo Fisher Scientific), AKT (Cell Signaling,

Danvers, MA, USA), JNK (Cell Signaling), IkB (Cell Signaling),

p65 (Cell Signaling), p50 (Cell Signaling), PARP (Cell Signaling), c-

Jun (Santa Cruz Biotechnology, Dallas, TX, USA), and c-Fos (Santa

Cruz Biotechnology), for 1 h at 25°C. After incubation, the

membranes were incubated with secondary antibodies (anti-rabbit

or anti-mouse IgG antibodies) (BETHYL) for 1 h at 25°C. Finally, the

protein bands were visualized using an enhanced chemiluminescence

Western blotting detection kit (Advansta, San Jose, CA USA).
2.9 Immunofluorescence

HUVEC cells (1.0 × 105 cells/well) were seeded in an 8-well slide

chamber for 24 h and starved overnight, followed by pre-treatment for

1 h with IL-32qA94V (100 ng/mL) and a 6 h treatment with TNF-a
(10 ng/mL). After the treatment, cells were fixed using 4%

paraformaldehyde for 10 min followed by incubation with ice-cold

methanol and blocking using 1% BSA in PBS for 1 h at 25°C. The cells

were then incubated with primary antibodies against ICAM-1 and

VCAM-1 (Beijing Solarbio Science & Technology Co., Beijing, China)

overnight at 4°C, and with secondary antibodies conjugated to Cy3

(Merck Millipore, Darmstadt, Germany) for 1 h at 25°C, followed by

DAPI staining. Two washing steps with PBS were performed between

each step. Thereafter, cells were mounted in mounting buffer (Sigma-

Aldrich) and examined under a fluorescence microscope.
2.10 siRNA transfection

HUVEC cells (3 × 105 cells/well) were seeded in 6-well plates for

24 h and changed to fresh media. For silencing ICAM-1 and VCAM-

1 expression, cells were transfected with the following siRNA sets

(Bionics, Seoul, Korea): NC, 5′-UUCUCCGAACGUGUCACGUTT-
3′; ICAM-1, 5′-UUCUUGUGUAUAAGCUGGCCGTT-3′; VCAM-

1, 5′-CCAUUGUUCUCAUGGAGAATT-3′; (49, 50). INTERFERin
reagent (Polyplus, Illkirch, France) was used for transfection,

according to the manufacturer’s instruction. The final siRNA

concentrations were 1 nM (VCAM-1) and 5 nM (ICAM-1),

respectively. After 24 h of transfection, the cells were starved for

4 h followed by treatment with TNF-a (10 ng/mL) for another 4 h.

The silencing efficiency was measured by RT-PCR analysis.
2.11 Monocyte-endothelial cell
adhesion assay

HUVEC cells (1.5 × 105 cells/well) were seeded in a 4-well slide

chamber for 24 h and starved overnight, pre-treated with IL-32qA94V
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(100 ng/mL) for 1 h, followed by 6 h treatment with TNF-a (10 ng/

mL). The THP-1 cells were labeled with 5 µM calcein-AM (Molecular

Probes, Eugene, OR, USA) for 30 min in RPMI-1640 without FBS. The

THP-1 cells labeled with calcein-AM were added to the 4-well slide

chamber containing the HUVECs and incubated for 30 min in RPMI-

1640 containing 10% FBS. Subsequently, unbound monocytes were

removed by three washes with PBS. Remaining monocytes were

determined using a fluorescence microscope. The intensity of

fluorescence was measured using ImageJ software version 1.5 (51).
2.12 Preparation of cytosol and
nuclear extracts

HUVEC cells (2.5 × 105 cells/dish) were seeded in a cell culture

dish for 24 h, pre-treated with IL-32qA94V (100 ng/mL) for 1 h,

and treated with TNF-a (10 ng/mL) for 30 min before harvesting

and fractionating using NE-PER nuclear and cytoplasmic extraction

reagents (Thermo Fisher Scientific) according to the manufacturer’s

instructions. Equal quantities of protein from these extracts (50 mg)
were separated by SDS-polyacrylamide gel electrophoresis and

transferred to PVDF membranes. The subsequent steps for the

procedure were followed as described for Western blotting above.

PARP was used as a nuclear protein marker.
3 Results

3.1 Expression and purification of
recombinant human IL-32qA94V

TEVSH vector was used for expression of IL-32qA94V, and
recombinant IL-32qA94V DNA was inserted into the vector by Nde1

and Age1 restriction enzymes. The TEVSH vector contained a His tag

for protein purification. A schematic diagram of the recombinant vector

is shown in Figure 1A. We performed consecutive purifications to

improve the purity of IL-32qA94V. First, IL-32qA94V was separated by

binding on a Ni-NTA column and His tag, and the separated IL-

32qA94V was purified once more by a CNBr-activated Sepharose 4B

column coupled with IL-32mAb KU32. Purified IL-32qA94V was

analyzed using SDS-PAGE (Figure 1B) and Western blots (Figures 1C,

D). In SDS-PAGE analysis, no other notable protein bands were detected

except for IL-32qA94V in the eluate of the Ni-NTA column, but several

other proteins were observed using Western blotting. These non-target

proteins were removed by further purification using CNBr-activated

Sepharose 4B column coupled to KU32-52. In the end, highly pure IL-

32qA94V protein was obtained with few other proteins.
3.2 Binding of IL-32qA94V to integrin
aVb3 and aVb6

We predicted the binding of IL-32qA94V to integrins using the

HDOCK server. IL-32qA94V was indicated as a yellow molecule

containing a helix structure, and the extracellular domain of

integrin aVb3 and aVb6 provided from PDB were indicated as
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orange molecules. The binding score of IL-32qA94V-integrin aVb3
was -304.56, and the confidence score was 0.9565. The binding

score of IL-32qA94V-integrin aVb6 was -358.20, and the

confidence score was 0.9847, which was higher than that of IL-

32qA94V-integrin aVb3 (Figure 2).

In addition to structure-based binding prediction (Figure 2), we

also performed an IL-32qA94V-integrin binding assay (Figure 3). After
coating 96-well plates with integrin aVb3 and aVb6, IL-32qA94V was

added at the concentration shown in Figure 3A. In the presence of the

integrins, the absorbance increased in a concentration-dependent

manner of IL-32qA94V but not in BSA (Figure 3A), indicating that

IL-32qA94V also binds to the integrins aVb3 and aVb6 similar to

other isoforms. Cyclo-RGDfV, which is known to bind to the RGD-

binding site of integrins, was pretreated in 96-well plates, and PBS was

used as a control. Further, wells were coated with integrins aVb3 and
aVb6. IL-32qA94V was treated at the concentrations shown in

Figure 3B. In both integrins aVb3 and aVb6, integrin-IL-32qA94V
binding was not significantly reduced by cyclo-(RGDfV) (Figure 3B),

suggesting that IL-32qA94V binds to the non-RGD binding sites. In

the other group, media containing 10% FBS were pretreated in 96-well

plates. Integrins aVb3 and aVb6 were then added, and the control

group was pretreated with serum-free media. IL-32qA94V was treated

at the concentrations shown in Figure 3C. In contrast to cyclo-

(RGDfV), integrin-IL-32qA94V binding was significantly inhibited

by FBS (Figure 3C). These results demonstrated that IL-32qA94V
binds to the non-RGD binding site of integrinaVb3 and aVb6, similar

to other isoforms such as IL-32b, and suggest that these integrins can

act as cell surface receptors for IL-32qA94V.
3.3 Effects of IL-32qA94V on expression of
ICAM-1 and VCAM-1 in TNF-a-stimulated
HUVEC cells

We confirmed the expression of integrins in HUVECs to

evaluate the effects of IL-32qA94V on cells. THP-1 monocytes

were used as a negative control, which did not express integrin

aVb3 and aVb6 on their surfaces (Figure 4A). And, we investigated

the effect of IL-32qA94V on the expression of ICAM-1 and VCAM-

1 in TNF-a-stimulated HUVEC cells. HUVECs were starved for 4 h

to minimize the interference by FBS, and IL-32qA94V was

pretreated for 1 h and stimulated with TNF-a for 4 h or 6 h. The

mRNA levels of ICAM-1 and VCAM-1 were measured using RT-

PCR (Figure 4B) and RT-qPCR (Figure 4C). mRNA expression

levels of ICAM-1 and VCAM-1 were increased by TNF-a and

significantly decreased by IL-32qA94V. The protein expressions

were also analyzed using immunofluorescence. The fluorescence

intensities of ICAM-1 and VCAM-1 were increased upon TNF-a
stimulation and suppressed by IL-32qA94V as expected (Figure 5).
3.4 Effects of IL-32qA94V on monocyte-
endothelial cell adhesion

As LFA-1 and VLA-4 are known to bind ICAM-1 and

VCAM-1, respectively, we confirmed the expression of LFA-1
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and VLA-4 in THP-1 cells. Expression of these molecules implies

that THP-1 can attach to HUVECs through the interaction of

ICAM-1and VCAM-1. Additionally, the expression of LFA-1

and VLA-4 was not reduced by treatment of IL-32qA94V
(Figure 6A). We used siRNA transfection to verify whether

downregulation of ICAM-1 and VCAM-1 leads to suppression

of monocyte-endothelial adhesion. The mRNA levels of TNF-a-
induced ICAM-1 and VCAM-1 were reduced by siRNA

transfection (Figure 6B). In co-cultures of THP-1 cells and

HUVECs, residual calcein-AM-labeled THP-1 (green) was

increased by TNF-a and attenuated by siRNA transfection
Frontiers in Immunology 06
(Figure 6C). These results suggest that the monocyte-

endothelial adhesion was regulated by the expression levels of

ICAM-1 and VCAM-1. Previously, in Figure 4 and 5, we found

that IL-32qA94V inhibited ICAM-1 and VCAM-1 expression.

Thus, we investigated whether IL-32qA94V could attenuate

monocyte-endothelial adhesion. Adhesion between calcein-

AM-labeled THP-1 and HUVECs was increased by TNF-a and

significantly suppressed by IL-32qA94V (Figure 6D). Taken

together, it was suggested that IL-32qA94V attenuated

monocyte-endothelial adhesion by inhibiting the expression of

ICAM-1 and VCAM-1 in TNF-a-stimulated HUVECs.
A

B

C D

FIGURE 1

Expression and purification of IL-32qA94V. (A) Schematic diagram of mutant IL-32qA94V expression vector. As a protein expression vector, TEVSH
with pTH24 as a backbone was used. His tag was included for purification. Nde1, Age1 restriction enzymes were used to construct recombinant
DNA. SDS-PAGE (B) and Western blot using KU32-52 mAb (C) or anti-His tag mAb (D) were performed to confirm the isolated protein. IL-32qA94V
was purified twice by Ni-NTA column followed by IL-32mAb (KU32-52) coupled CNBr-activated Sepharose 4B. IL-32qA94V bound to Ni-NTA
column was eluted with 500 mM imidazole, and further purification was performed by IL-32 mAb (KU32-52)-coupled CNBr-activated Sepharose 4B
using low pH Tris-glycine buffer (pH 3.0). L, lysate of Escherichia coli harboring IL-32qA94V expression vector; FT, flow through; W, washing flow; E,
elution; E2-E13, eluted using low pH Tris-glycine buffer (pH 3.0).
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3.5 Effects of IL-32qA94V on
phosphorylation levels of FAK, AKT, and
JNK in TNF-a-stimulated HUVEC cells

We revealed that IL-32qA94V inhibited the expression of

ICAM-1 and VCAM-1 in TNF-a-stimulated HUVECs. We

performed Western blot to identify the intracellular signaling

pathway underlying the regulation of ICAM-1 and VCAM-1

expression mediated by IL-32qA94V. IL-32qA94V significantly

reduced the phosphorylation level of TNF-a-induced focal

adhesion kinase (FAK), a well-known integrin-mediated signaling

molecule, which is an upstream molecule of protein kinase B (AKT)

and c-Jun N-terminal kinase (JNK). IL-32qA94V also

downregulated phosphorylation levels of AKT and JNK by

inhibiting FAK, as expected (Figure 7).
3.6 Effects of IL-32qA94V on nuclear
translocation of NF-kB and AP-1 in TNF-a-
stimulated HUVEC cells

TNF-a stimulation activates the FAK/AKT signaling pathway,

leading to nuclear translocation of NF-kB (p65/p50) via

phosphorylation of IkB. In addition, activation of JNK accelerates

nuclear translocation of AP-1 (c-fos/c-jun). These transcription

factors promote the expression of ICAM-1 and VCAM-1 (52, 53).

We confirmed the phosphorylation level of IkB and nuclear

translocation of NF-kB (p65/p50) and AP-1 (c-Fos/c-Jun). IL-

32qA94V marginally attenuated the TNF-a-induced IkB
phosphorylation (Figure 8A). Nuclear translocation of AP-1 (c-

Fos/c-Jun) and NF-kB (p65/p50) was increased by TNF-a
stimulation and was inhibited by IL-32qA94V (Figure 8B). These
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results show that IL-32qA94V regulated the nuclear translocation of

AP-1 (c-Fos/c-Jun) and NF-kB (p65/p50) in TNF-a-stimulated

HUVECs, which in turn results in the attenuation of ICAM-1 and

VCAM-1 expression.
4 Discussion

IL-32 is involved in various cell functions such as apoptosis,

differentiation, viral infection, and modulation of inflammatory

cytokines, indicating that it is a cytokine that plays key roles in

several diseases. However, the role of IL-32 isoforms can vary

depending on experimental conditions such as cell lines or

diseases. Previous studies on IL-32 suggest the necessity to define

the various functions of IL-32 isoforms. For example, IL-32a and

IL-32b are cytokines with both pro- and anti-inflammatory

properties (54–57). IL-32g has mainly pro-inflammatory

properties by inducing pro-inflammatory cytokines such as IL-6,

IL-12, and CCL5 (58, 59). IL-32q is known to have anti-

inflammatory and tumor suppression properties (60, 61).

Recently, an IL-32qA94V mutant was discovered in the tissues

from a patient with breast cancer, and IL-32qA94V was found to

suppress the expression of pro-inflammatory cytokines in breast

cancer cells (18). Wild type IL-32q recombinant protein has been

reported to have the most dominant biological activity among the

seven IL-32 isoforms. It significantly increased IL-6, IL-8 and TNF-

a in various cells (62). However, in this study, we purified a

recombinant IL-32qA94V protein and investigated whether a IL-

32q mutant would possessed the anti-inflammatory effects

mediated via cell surface receptors as an exogenous modulator.

We designed a recombinant vector using Nde1 and Age1

restriction enzymes (Figure 1A). The vector was transformed into

Rosetta, one of the strains of E. coli, by the heat-shock method. The

insert DNA contained a His-tag for purification. We obtained pure

IL-32qA94V using sequential purification of Ni-NTA column and

an IL-32 mAb KU32-52 coupled CNBr-activated Sepharose 4B

column. Purified proteins were confirmed by SDS-PAGE

(Figure 1B) and Western blot (Figures 1C, D).

Most IL-32 isoforms, including IL-32qA94V, have an RGD

motif, and integrin aVb3 and aVb6 are known to bind to the RGD

motif. In addition, it was reported that these integrins bind to IL-

32a and IL-32b (19). Thus, we hypothesized that IL-32qA94V
would also bind to these integrins, and analyzed using protein-

protein binding prediction tool, HDOCK server. According to the

description of the HDOCK server, protein-protein binding typically

has a score of -200 or higher, more negative docking score means a

more possible binding model. Also, confidence score of 0.7 or

higher means that the twomolecules are highly likely to bind at -200

or higher docking score (42–46). Therefore, the result of docking

prediction suggests that IL-32qA94V has strong binding potential

with integrin aVb3 and integrin aVb6. IL-32qA94V showed a

higher docking score with integrin aVb6 than integrin aVb3
(Figure 2). However, no significant difference was identified in the

IL-32qA94V-integrin binding assay. IL-32qA94V was found to

bind to both integrin aVb3 and aVb6 in a dose dependent

manner (Figure 3A), suggesting that these integrins can act as
FIGURE 2

The tertiary structure modeling of IL-32qA94V and prediction of IL-
32qA94V-integrin binding. Protein-protein associations were
predicted by the HDOCK server (IL-32qA94V: yellow, integrins:
orange). The tertiary structure of IL-32qA94V was constructed by I-
TASSER, and the integrin was provided by PDB.
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receptors for IL-32qA94V. However, the interaction was not

blocked by cyclo-(RGDfV), including the short RGD peptide,

indicating that, contrary to expectations, IL-32qA94V-integrin
binding is not mediated by the RGD motif (Figure 3B).

Extracellular matrix such as fibronectin, vitronectin, and growth
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factors included in FBS are known to bind to integrins (63–65).

They can block an integrin-IL-32qA94V interaction by binding to

integrins. We observed that the interaction was reduced in a 10%

FBS-containing medium compared to that in the serum free media,

as expected (Figure 3C).
A

B

C

FIGURE 3

IL-32qA94V binding to recombinant aVb3 and aVb6 integrins. (A) IL-32qA94V binds to the recombinant aVb3 and aVb6 integrins. The effects of
cyclo-(RGDfV) (B) and FBS (C) on the bindings between IL-32qA94V and recombinant aVb3 or aVb6 integrins. The bindings between IL-32qA94V
and recombinant aVb3 or aVb6 integrins were assessed using IL-32 mAb (KU32-52). The results represent the mean ± SD of three experiments (*p <
0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 by one-way ANOVA).
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A

B

C

FIGURE 4

The effect of IL-32qA94V on mRNA expression of ICAM-1 and VCAM-1 in TNF-a stimulated human umbilical vein endothelial cells (HUVECs). (A) The
expression of integrins aV, b3 and b6 subunits were confirmed by RT-PCR in HUVEC cells but not in THP-1 human monocytic cells. HUVECs were
pre-treated with IL-32qA94V (100 ng/mL) for 1 h and stimulated with TNF-a (10 ng/mL) for 4 h. mRNA expression of adhesion molecules was
detected by RT-PCR (B) and RT-qPCR (C) analyses. The results represent the mean ± SD of three experiments (** p < 0.01, *** p < 0.001,
**** p < 0.0001 by one-way ANOVA).
FIGURE 5

The effect of IL-32qA94V on protein expression of ICAM-1 and VCAM-1 in TNF-a stimulated human umbilical vein endothelial cells (HUVECs).
HUVECs were pre-treated with IL-32qA94V (100 ng/mL) for 1 h and stimulated with TNF-a (10 ng/mL) for 6 h. Protein expression of adhesion
molecules was analyzed by immunofluorescence using specific antibodies. Scale bar in each image represents 75 mm.
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RT-PCR analyses confirmed the expression of integrins aVb3
and aVb6 in HUVEC cells but not in THP-1 human monocytic

cells. We also demonstrated that TNF-a-induced upregulation of

ICAM-1 and VCAM-1 expression was significantly decreased in IL-

32qA94V-pretreated HUVECs (Figures 4, 5). These results show an

opposite role of IL-32qA94V, compared to IL-32b and IL-32g,
which are known to induce the expression of these cell adhesion

molecules (36, 37).

We confirmed that monocyte–endothelial adhesion was

mediated by ICAM-1 and VCAM-1 using siRNA transfection

(Figures 6B, C). Further, we investigated whether IL-32qA94V
attenuated monocyte–endothelial adhesion by suppressing

expression of these cell adhesion molecules. THP-1 monocytes
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were stained with the fluorescent dye calcein-AM and co-cultured

with HUVECs. After several washes, the green staining fluorescence

intensity of TNF-a-treated THP-1 cells was significantly enhanced,

while fluorescence intensity of monocytes was reduced by IL-

32qA94V (Figure 6D). These results demonstrated that IL-

32qA94V attenuates monocyte endothelial adhesion by inhibiting

the expression of cell adhesion molecules, ICAM-1 and VCAM-1,

in TNF-a-stimulated HUVECs.

FAK is a well-known integrin-mediated signaling molecule,

which is closely involved in intracellular signals induced by

various cytokines and growth factors (66). Phosphorylated FAK

induced by these molecules activates the AKT and JNK signaling

pathways (67, 68). Activation of AKT induces phosphorylation of
A B

C

D

FIGURE 6

IL-32qA94V attenuates monocyte adhesion to HUVECs. (A) THP-1 cells were treated with IL-32qA94V (100 ng/ml) for 24 h. LFA-1 (CD11a/CD18) and
VLA-4 (ITGA4/ITGB1) expression in THP-1 cells was confirmed by RT-PCR analysis. (B) HUVECs were transfected with siRNA for 24 h followed by
starved 4 h, then, treated with TNF-a for 4 h. siRNA transfection efficiency was evaluated by RT-PCR analysis. (C, D) Fluorographs of calcein-AM-
labeled THP-1 cell attachment to HUVECs. HUVECs were incubated with calcein-AM-labeled THP-1 for 30 min after treatment or transfection as
shown in figure. Fluorescence was measured using ImageJ software. Quantified fluorescence intensity was normalized to the control. Scale bar in
each image represents 650 mm. The results represent the mean ± SD of three experiments (*** p < 0.001, **** p < 0.0001 by one-way ANOVA).
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FIGURE 7

Effect of IL-32qA94V on phosphorylation level of FAK, JNK, and AKT in HUVEC cells. HUVECs were pre-treated with IL-32qA94V (100 ng/mL) for 1 h
followed by stimulation with TNF-a for 10 min (FAK) or 15 min (JNK, AKT). Phosphorylation levels of FAK, AKT, and JNK were confirmed by Western
blot, and band intensities were quantified using ImageJ software. The results represent the mean ± SD of three experiments (*p < 0.05, ** p < 0.01,
*** p < 0.001 by one-way ANOVA).
A

B

FIGURE 8

The effect of IL-32qA94V on phosphorylation levels of IkB and nuclear translocation of NF-kB (p65/p50), AP-1 (c-Fos/c-Jun) in HUVEC cells. HUVEC
cells were incubated with IL-32qA94V for 1 h, then stimulated with TNF-a (10 ng/ml) for another 10 min (IkB) or 30 min (transcription factors). Harvested
cells were subjected to nuclear fractionation. Phosphorylation and translocation levels were analyzed by Western blot, and band intensities were
quantified using ImageJ software. The results represent the mean ± SD of three experiments (*p < 0.05, *** p < 0.001 by one-way ANOVA).
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IkB, which promotes nuclear translocation of NF-kB. JNK also

triggers nuclear translocation of AP-1. The expression of ICAM-1

and VCAM-1 in HUVECs is accelerated by the transcription factors

AP-1 and NF-kB (52, 53). IL-32qA94V downregulated this

signaling pathway by inhibiting TNF-a-induced phosphorylation

of FAK, which lies upstream of JNK and AKT, thus attenuating

ICAM-1 and VCAM-1 expression (Figures 7, 8).

Increasing evidence suggests that ICAM-1 and VCAM-1 enhance

the inflammatory response and are involved in various diseases (69–

72). It has been well known that ICAM-1 and VCAM-1 play roles in

arresting immune cells and initiating TEM, which plays an essential

step in the development of atherosclerosis. Atherosclerosis, a chronic

inflammatory condition triggered by inflammatory cytokines, is the

leading cause of most myocardial infarctions and many strokes,

leading to high morbidity and mortality (73). Therefore, effective

therapeutic strategies targeting ICAM-1 and VCAM-1 can be

essential in these diseases. Here, we found that IL-32qA94V
mutant attenuated monocyte-endothelial adhesion, a critical early

stage in atherosclerosis, by reducing the expression of ICAM-1 and

VCAM-1. These results provide a new perspective on the previously

known roles of IL-32 in vascular diseases. IL-32qA94V binds to

integrins and downregulates the phosphorylation of TNF-a-induced
FAK, decreases the phosphorylation of intracellular signaling

molecules, such as AKT, JNK, and IkB, and suppresses the nuclear

translocation of AP-1 (c-Jun/c-Fos), and NF-kB (p65/p50). Taken

together, IL-32qA94V attenuated monocyte-endothelial adhesion by
Frontiers in Immunology 12
suppressing the expression of ICAM-1 and VCAM-1, which are key

factors in atherosclerosis, via integrin-mediated signaling in HUVECs

(Figure 9). This evidence demonstrates the potential role of IL-

32qA94V in the treatment of chronic inflammatory diseases such

as atherosclerosis. However, further studies on IL-32qA94V are

required using in vivo models. Moreover, the possibility of other

unidentified cell surface receptors for IL-32 should be investigated. In

addition, comparison studies of IL-32qA94V with other isoforms

should be performed under various conditions. These studies are

important for understanding IL-32q and its mutant, as well as the

overall function of IL-32.
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