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Introduction: Substantial links between autoimmune diseases have been shown

by an increasing number of studies, and one hypothesis for this comorbidity is

that there is a common genetic cause.

Methods: In this paper, a large-scale cross-trait Genome-wide Association Studies

(GWAS) was conducted to investigate the genetic overlap among rheumatoid

arthritis, multiple sclerosis, inflammatory bowel disease and type 1 diabetes.

Results and discussion: Through the local genetic correlation analysis, 2 regions with

locally significant genetic associations between rheumatoid arthritis and multiple

sclerosis, and 4 regions with locally significant genetic associations between

rheumatoid arthritis and type 1 diabetes were discovered. By cross-trait meta-analysis,

58 independent loci associated with rheumatoid arthritis and multiple sclerosis, 86

independent loci associated with rheumatoid arthritis and inflammatory bowel disease,

and 107 independent loci associated with rheumatoid arthritis and type 1 diabetes were

identified with genome-wide significance. In addition, 82 common risk genes were

found through genetic identification. Based on gene set enrichment analysis, it was

found that shared genes are enriched in exposed dermal system, calf, musculoskeletal,

subcutaneous fat, thyroid and other tissues, and are also significantly enriched in 35

biological pathways. To verify the association between diseases, Mendelian randomized

analysis was performed, which shows possible causal associations between rheumatoid

arthritis andmultiple sclerosis, and between rheumatoid arthritis and type 1 diabetes. The

common genetic structure of rheumatoid arthritis, multiple sclerosis, inflammatory

bowel disease and type 1 diabetes was explored by these studies, and it is believed

that this important discovery will lead to new ideas for clinical treatment.
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rheumatoid arthritis, autoimmune diseases, association studies, shared genes,
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1 Introduction

It is well known that the major function of the immune system

is to protect the host from environmental agents such as microbes

or chemicals, thereby preserving the integrity of the body (1). When

the body is injured or invaded by pathogenic microorganisms, acute

inflammatory reaction is often accompanied, and the immune

system and inflammatory mechanism are inseparable (2).

However, uncontrolled inflammatory and immune responses can

lead to immune system disorders that trigger autoimmune diseases,

such as rheumatoid arthritis (RA), inflammatory bowel disease

(IBD) and type 1 diabetes mellitus (T1D) (3). Autoimmune

diseases are complex diseases caused by genetic and

environmental factors (4). The clinical manifestations of these

diseases are familial clustering, and multiple immune diseases can

occur simultaneously in the same individual, which indicates that

autoimmune diseases have a common genetic background.

Moreover, genomic studies have shown that the same gene loci

can be found in various autoimmune diseases, and genetic overlap

exists in autoimmunity, indicating that autoimmune diseases may

have the same molecular mechanism (5, 6).

RA is a chronic, inflammatory autoimmune disease that can

cause severe movement impairment and deterioration of quality of

life (7). In twin and familial studies, the overall heritability of

rheumatoid arthritis is estimated to be about 50%-65% (8). It’s

suggested that rheumatoid arthritis is familial, individuals with a

family history of rheumatoid arthritis are at increased risk of

developing rheumatoid arthritis due to common genetic factors

(9–11). Multiple sclerosis (MS) is an inflammatory autoimmune

disease in which the myelin sheath and spinal cord in the central

nervous system are damaged, which can result in demyelination and

axonal loss. Some studies have suggested that patients with multiple

sclerosis have an increased risk of rheumatoid arthritis (12–14). IBD

is a chronic non-specific inflammatory condition of the

gastrointestinal tract. In recent years, studies have found that the

gene predictive risk of RA is positively correlated with the increased

risk of IBD (15, 16). Yang et al. studied the common genetic

structure of MS and IBD through large-scale genome-wide

association studies (GWAS), and the results showed that the

comorbidity of MS and IBD has a biological basis (17). In

addition, previous studies have shown that individuals with RA,

MS or IBD have an increased risk of influenza and related

complications (18), and an increased risk of depression, especially

in women compared to men (19). Diabetes mellitus (DM) is a

chronic disease that causes hyperglycemia due to defective insulin

secretion or impaired biological action. DM is a group of

physiological dysfunctions characterized by hyperglycemia

resulting directly from insulin resistance, inadequate insulin

secretion, or excessive glucagon secretion (20). Type 1 diabetes

(T1D) is an endocrine disorder in which pancreatic b cells stop

producing insulin, typically due to autoimmune destruction (21).

Studies have shown that RA is associated with abnormal glucose

metabolism, which may lead to the development of DM (22, 23),

and patients with MS may increase the risk of developing T1D (24).

Ahmad and Ahsan have revealed common risk genes of RA and

MS, MS and T1D through reported familial and genetic links (25).
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Andersen et al. have shown that when parents have RA, IBD, or

DM, offspring are at increased risk (26). Recently, Zhao et al.

collected summary statistics from GWAS about seven

autoimmune diseases, including celiac disease (CEL), MS,

primary biliary cirrhosis (PBC), RA, ulcerative colitis (UC), SLE,

and T1D to analyze genetic associations (27). Although there is an

epidemiological association between RA, MS, IBD and T1D,

whether this reflects a common genetic etiology is unclear.

Therefore, the purpose of this paper is to reveal the genetic

relationships of RA, MS, IBD, and T1D through large-scale cross-

trait GWAS analysis.

GWAS combining multiple diseases have become useful tools to

identify risk locus for autoimmune diseases, genetic variant

associated with multiple diseases, and biological pathways

associated with diseases (28–31). Based on the hypothesis that

there is a common genetic cause between autoimmune diseases,

in this study, we use GWAS summary statistics to investigate the

shared genetic capacity of RA, MS, IBD and T1D at the individual

variation level and at the genome-wide level, respectively. Firstly,

the genetic relationships between RA and MS, RA and IBD, RA and

T1D are analyzed. The global genetic associations among diseases

are analyzed by linkage disequilibrium score regression (LDSC),

and the local genetic associations among diseases are estimated by

using r−HESS. Then cross-trait meta-analysis is used to identify the

shared genetic components between RA and MS, RA and IBD, RA

and T1D. Genome-wide association analysis and transcriptome

association studies are used to identify potentially the common

risk genes among RA, MS, IBD and T1D. Finally, Mendelian

randomization is used to analyze the causal relationship between

RA and MS, RA and IBD, and RA and T1D respectively. In

summary, we leverage large-scale GWAS summary statistics data

and preceding genetic methods to gain insight into mechanistic

links among RA, MS, IBD and T1D. Our purpose is to identify the

common risk genes among RA, MS, IBD and T1D, and provide

biological interpretation for common risk genes.
2 Materials and methods

2.1 Datasets

For summary statistics from GWAS about rheumatoid arthritis

(RA), multiple sclerosis (MS), inflammatory bowel disease (IBD),

the GWAS summary-level data are downloaded from a publicly

accessible database GeneATLAS (32). Specifically, the RA meta-

analysis summary statistics include 5082 cases and 447182 controls,

MS meta-analysis summary statistics include 1406 cases and 450858

controls and IBD meta-analysis summary statistics combine 3878

cases and 448386 controls. The total 452264 samples are all

European-ancestry individuals from UK Biobank, and we used

623944 genotype variants that passed quality control. Summary

statistics about type 1 diabetes (T1D) (PMID: GCST90013791)

which was uploaded on 02/22/2021 (33) were downloaded from

the database NHGRI-EBI GWAS Catalog (34). The T1D meta-

analysis summary statistics include 181,214 individuals of European

ancestry with 6,294,828 genotype variants. The numbers for cases
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and controls are not provided in the NHGRI-EBI GWAS Catalog

database, but we need not to use this kind of information in

our study.
2.2 Methods

2.2.1 LD score regression analysis
To evaluate the genetic correlation between RA andMS, RA and

IBD, RA and T1D, the linkage disequilibrium score regression

(LDSC) (35) was applied to assess the genetic correlation rg
between RA and MS, IBD, T1D. We applied LDSC to estimate

SNP heritability and LD-score intercept for RA, MS, IBD and T1D,

respectively. European-ancestry population of 1000 Genome

Project Phase 3 (36) was used as reference panel, from which 1.2

million SNPS were obtained for pre-calculated LD-scores.

2.2.2 Local genetic correlations analysis
To investigate whether there are local genetic correlations

between RA and MS, RA and IBD, RA and T1D, we estimated

the local genetic correlations between each pair of traits in pre-

specified LD independent segments using r−HESS (37). The LD-

independent blocks are used to calculate local heritability and

genetic covariance. However, when we calculated the local genetic

correlation using 623,944 SNPs (RA, MS, IBD), we found that there

are empty loci on chromosome 1 (chr1:178944309-178954470) and

chromosome 7 (chr7:124156805-124167552) in 1703 pre-

designated independent fragments, so we combined these loci

with nearby loci. Accounting for Bonferroni correction, if Pr−HESS

< 0.05/1701(2.93×10−5), there are significant genetic correlations

between RA and MS, RA and IBD. For RA and T1D, in addition to

the above two regions, there were three empty locus on

chr2 : 95326452 -98995201 , ch r6 : 29737971 -30798168 ,

chr15:20001200-21131604, and we combined these locus with

nearby loci, so the significant threshold is Pr-hess < 0.05/1698

(2.94 ×10-5).

2.2.3 Cross-trait meta-analysis
After estimating the genetic correlations between RA and MS,

RA and IBD, RA and T1D, we used R packet cross phenotype

association (CPASSOC) (38) to analyze the GWAS cross-trait

association. CPASSOC includes Shet (for heterogeneous data) and

Shom (for homogenous data). We applied the PLINK (39)

clustering function to identify the independent and significant

SNPs, and the parameter is set as –cluster-p1 1.6×10-8–cluster-p2

1×10-5 –cluster-r2 0.2 –cluster-kb 500, indicating that SNPs with a

P-value less than 1 × 10−5, r2 greater than 0.2 and less than 500 kb

away from the peak value will be assigned to the cluster of the

peak value.

2.2.4 Genome-wide gene-based analysis
In gene-based analysis, genetic variation is annotated, i.e., SNPs

correspond to the corresponding gene according to the position on

the chromosome, and gene-based association analysis is carried out.

The MAGMA (40) analytical model uses multiple linear principal
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component regression to detect the correlation between genes and

the disease. In this study, MAGMA gene analysis is used to identify

significant genes associated with RA, MS, IBD and T1D,

respectively. Using European-ancestry population of 1000

Genomes Project Phase 3 as reference and Genome Reference

Consortium Human Build 37 (hg19) as the SNP locations for

gene annotation, we found that 301949 (48.39%) of the total

623944 SNPs are mapped to 17446 genes.

2.2.5 Transcriptome-wide association analysis
To detect genes associated with RA, MS, IBD, and T1D in

different tissues, we performed transcriptome-wide association

analysis by using e-MAGMA (41). e-MAGMA transforms

genome-wide association summary statistics into gene-level

statistics by assigning risk variants to its putative genes based on

tissue-specific eQTL information. We used eQTL information from

47 tissues of the GTEx (version 8) reference panel (42). In total, we

performed TWASs for each trait, one tissue-trait pair at a time.

2.2.6 Enrichment analysis and protein-protein
interaction network analysis

In order to understand the underlying biological pathways for

the identified shared risk genes in RA with MS, IBD, and T1D, we

used the tool Enrichr web server (43) to implement the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis. The significant criterion is that the adjusted p-value less

than 0.05. In addition, we applied STRING (version 10) (44) to

analyze the protein-protein interaction (PPI) network.

2.2.7 Mendelian randomization analysis
We performed MR analysis using MR-PRESSO (45) between

RA and MS, RA and IBD, RA and T1D since they are genetically

correlated. We built the MR instruments based on LD-

independent SNPs.
3 Results

3.1 Genetic correlation between RA and
MS, RA and IBD, RA and T1D

We evaluated the global genetic correlation of RA and MS, RA

and IBD, RA and T1D using LD score regression (LDSC). RA has the

strongest genetic correlation with MS, with a correlation coefficient of

0.4289, followed by RA and IBD, with a correlation coefficient of

0.3743, and then RA and T1D, with a correlation coefficient of -0.3157

(Table 1). Furthermore, the LD score intercepts for RA, MS, IBD and

T1D are 0.9982 (Se = 0.0097), 1.0172 (Se = 0.0105), 1.0156 (Se =

0.011) and 0.9933 (Se = 0.0098), respectively, indicating that most of

the inflation is due to polygenic effect rather than population structure

or sample overlap (46).

Accounting for Bonferroni correction the local genomic regions

around individual RA loci from GWAS showed signals of genetic

overlap with MS (Figure 1). Although RA and MS have positive

global genetic correlation using LDSC, we identified two regions
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(chr6:31571218-32682664, Pr−HESS = 5.82×10−17 , and

chr6:32682664-33236497, Pr−HESS = 2.72 × 10−12) that show

genome wide significant negative local genetic correlation

between RA and MS using heritability estimation from summary

statistics (r−HESS). This reverse result may be caused by the

different definitions of SNP heritability and genetic covariance

between r−HESS and LDSC. We used r−HESS method to

evaluate local genetic correlations between RA and IBD. There is

no significant local genetic correlated regions (Figure 2), this means

that the genetic association between RA and IBD is likely to be

shared genetic variants across the genome rather than strong

associations in specific genomic regions. The local genetic

correlation between RA and T1D is negative in the chromosome

1 and the chromosome 6 regions (Figure 3). There are four

significant local genetic correlated regions (chr6: 32682664-

33236497, Pr−HESS = 2.90 × 10−14, chr1:113273306-114873845,

Pr−HESS = 1.22 × 10−11, chr6: 31571218-32682664, Pr−HESS = 5.73

× 10−10,and chr6: 33236497-35455756, Pr−HESS = 1.26 × 10−6).
3.2 Identification of risk SNPs from cross-
trait meta-analysis of RA, MS, IBD and T1D

We conducted cross-trait meta-analysis to identify risk SNPs

that may share association with RA and MS, RA and IBD, RA and

T1D using the Cross Phenotype Association (CPASSOC) package

(PCPASSOC < 5×10−8/3(1.6×10−8)).

After excluding SNPs that are genome-wide significant in the

respective single-trait GWAS, 58 independent loci reached genome-

wide significance for RA and MS, 27 of which have been verified to be
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significantly related to RA and/or MS by GWAS Catalog database

verification (Supplementary Table S1). Although most of the

independent loci we found were located in the MHC region, we also

found loci in the non-MHC region. The loci rs6679677 (on chr1) is

close to the PTPN22 gene. The gene involved in regulating CBL

function in T cell receptor signaling pathway, and mutations in this

gene may be linked to a range of autoimmune diseases rheumatoid

arthritis (47). The loci rs7731626 (on chr5) is mapped to ANKRD55

gene which is associated with RA (48) and MS (49).

86 independent loci reached genome-wide significance for RA and

IBD, which 46 in this locus have previously been associated to RA and/

or IBD (Supplementary Table S2). The loci rs3130695 is mapped to

including HLA-B andHLA-C genes which from the HLA class I region

is associated with RA (13, 50). The locus rs34213882 and rs9263717 are

mapped to HLA-C genes. The genes had genome-wide significant

association with IBD. The loci rs11465802 (on chr1), rs11209026 and

rs3024505 (on chr1) are mapped to IL23R, C1orf141, and IL10 genes

associated with IBD (51). In addition, there are loci rs6679677(on chr1)

which is mapped to PTPN22 gene associated with RA. The loci

rs1801274(on chr1) is mapped to FCGR2A gene which is associated

with RA and IBD. The loci rs2076756 (on chr16) is mapped to NOD2

associated with RA.

107 independent loci reach genome-wide significance for RA

and T1D, 47 of which have previously been associated to RA and/or

T1D (Supplementary Table S3). Loci rs2856997, rs2070121,

rs7383287 are mapped to HLA-DOB genes which are associated

with RA. Loci rs2534674, rs2534671, rs6915833 are mapped to

MICB genes which are associated with RA (Ancha et al., 2023). Loci

rs1150755, rs12198173 are mapped to APOM genes which are

associated with RA. Loci rs2233977, rs20547, rs1063646, rs9263719,
FIGURE 1

Local genetic correlation and local SNP-heritability between RA and MS. For each sub-figure, the top sub-figure represents local genetic correlation,
the second represents local genetic covariance. In these two sub-figures, significant local genetic correlation and covariance after multiple testing
correction are highlighted in red. Bottom two sub-figures represent local SNP-heritability for individual trait. The X-axis represents the chromosome,
h2_RA represents the SNP-heritability of RA, h2_MS represents the SNP-heritability of MS, r_RA-MS represents the genetic correlation between RA
and MS, cov_RA-MS represents the genetic covariance between RA and MS.
TABLE 1 Genetic correlation of RA and MS, RA and IBD, RA and T1D.

Trait 1 Trait 2 rg rg − se p-value gcov gcov − se

RA

MS 0.4289 0.2932 0.1434 0.0019 0.0012

IBD 0.3743 0.1504 0.0128 0.0036 0.0013

T1D -0.3157 0.0951 0.0009 -0.0102 0.0034
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rs3094663, rs6916921, rs3819299 and rs12614 are mapped to

C6orf15, PSMB9, PSORS1C1, PSORS1C2, NFKBIL1, HLA-B and

CFB genes which are associated with RA (52–54). In addition to the

above findings in genes located in the MHC region, we also found

RA-related loci in non-MHC regions. The loci rs7041847 (on chr9)

is mapped to GLIS3, and the loci rs7200786 (on chr16) is mapped to

CLEC16A which are associated with RA (55, 56). The loci

rs2281808 (on chr20) is mapped to SIRPG, and the rs1805761(on

chr12) is mapped to M6PR which are associated with T1D (57, 58).

The loci rs6859219 (on chr5) is mapped to ANKRD55 genes which

are associated with RA and T1D. Locus rs2847281 and rs7234029

(on chr18) are mapped to PTPN2 genes which are associated with

RA and T1D (59, 60). These locus rs705708 (on chr12), rs706778

(on chr10), rs6669008 (on chr1), rs1788103 (on chr18) and

rs9976767(on chr21) are mapped to ERBB3, IL2RA, MAGI3,

CD226 and UBASH3A which are associated with RA and T1D.
3.3 Genes identified by genome-wide and
transcriptome-wide studies

We conducted MAGMA genome-wide gene-based analysis to

identify genes associated with RA, MS, IBD, and T1D, respectively.
Frontiers in Immunology 05
The numbers of genes identified are shown in Figure 4. It can be

seen from the figure that after Bonferroni correction of the total

19427 genes, 93 genes (PMAGMA< 2.87×10−6) are identified as

significantly correlated with RA; 64 genes are related to MS; 23

genes are associated with IBD; 334 genes are related to T1D

(Supplementary Table S4). There are 56 overlapping genes

between RA and MS; 10 overlapping genes between RA and IBD;

89 overlapping genes RA and T1D; 10 overlapping genes RA, MS

and IBD; 55 overlapping genes RA, MS and T1D; 9 overlapping

genes RA, IBD and T1D; 9 among the four diseases (Table 2).

Moreover, we carried out eMAGMA transcriptome-wide gene-

based analysis with RA, MS, IBD, and T1D, respectively, and the

result are shown in Figure 5. The genes significantly associated with

47 tissues of each disease are identified successively, 147, 140, 174

and 522 genes significantly associated with RA, MS, IBD and T1D

are identified, respectively (Supplementary Tables S5-S8). There are

123 overlapping genes between RA and MS; 82 overlapping genes

between RA and IBD; 137 overlapping genes RA and T1D; 82

overlapping genes RA, MS and IBD; 122 overlapping genes RA, MS

and T1D; 81 overlapping genes RA, IBD and T1D; 81 among the

four diseases, eight out of nine common risk genes detected by

MAGMA are also detected by e-MAGMA (Supplementary Table

S9), we identified 82 common risks among the four diseases. 40 of
FIGURE 3

Local genetic correlation and local SNP-heritability between RA and T1D. For each sub-figure, the top sub-figure represents local genetic
correlation, the second represents local genetic covariance. In these two sub-figures, significant local genetic correlation and covariance after
multiple testing correction are highlighted in red. Bottom two sub-figures represent local SNP-heritability for individual trait. The X-axis represents
the chromosome, h2_RA represents the SNP-heritability of RA, h2_T1D represents the SNP-heritability of T1D, r_RA-T1D represents the genetic
correlation between RA and T1D, cov_RA-T1D represents the genetic covariance between RA and T1D. In the bottom two subfigures, we did not
use the same y-axis as Figures 1, 2 because the difference on the order of magnitude for h2_T1D and h2_RA is too large.
FIGURE 2

Local genetic correlation and local SNP-heritability between RA and IBD. For each sub-figure, the top sub-figure represents local genetic
correlation, the second represents local genetic covariance, bottom two sub-figures represent local SNP-heritability for individual trait. The X-axis
represents the chromosome, h2_RA represents the SNP-heritability of RA, h2_IBD represents the SNP-heritability of IBD, r_RA-IBD represents the
genetic correlation between RA and IBD, cov_RA-IBD represents the genetic covariance between RA and IBD.
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the 82 risk genes are significantly associated with the disease

reported in previous studies. We also paid attention to the

enrichment analysis of 82 common risk genes in tissues. As

shown in Figure 6, it was found that 34 risk genes are mainly

enriched in integumentary system of skin sun exposed lower leg, 32

are enriched in muscle skeletal, and 32 are enriched in

adipose subcutaneous.
3.4 KEGG enrichment analysis and PPI
network analysis results

To understand the impact of risk genes in biological pathways,

we used Enrichr to enrich the co-risk genes in a KEGG functional
Frontiers in Immunology 06
analysis. We found that 35 biological pathways are significantly

enriched. As shown in the Table 3, the strongest enrichment signal

is antigen processing and presentation, which include 13 enriched

genes (HLA-DRB5, HSPA1L, HLA-B, TAP2, HLA-C, TAP1, HLA-

A, HLA-F, HLA-G, HLA-E, HLA-DMA, HLA-DOB, HLA-DQA2).

In order to understand the interaction between common risk genes

of four diseases, we used STRING for PPI network analysis. The 82

risk genes have 279 gene pairs interacting in PPI network, with an

average clustering coefficient of 0.421, and the composite scores of

all the interacting genes is not less than 0.4, among which the score

of 58 gene pair composite score were more than 0.95. The five hub

genes (degrees > 15) that extensively interact with other genes in the

PPI network are HLA-B, HLA-A, HLA-C, PSMB9, HLA-F. The PPI

network of common risk genes are shown in the Figure 7.
TABLE 2 Shared risk genes for RA, MS, IBD and T1D in MAGMA analysis.

Gene Position No. SNPs
PMAGMA

RA MS IBD T1D

BTNL2 Chr6:32362513-32374900 39 8.77e-49 1.08e-22 4.79e-11 5.06e-90

HLA-DRA Chr6:32407619-32412823 51 7.42e-39 1.60e-40 3.52e-8 6.01e-82

ATF6B Chr6:32083045-32096017 16 5.10e-34 1.72e-13 8.85e-8 7.91e-80

EHMT2 Chr6:31847536-31865464 20 1.96e-32 9.18e-24 1.05e-9 5.18e-61

HLA-DQB1 Chr6:32627241-32634466 12 2.89e-32 8.09e-14 5.67e-12 1.09e-44

TAP2 Chr6:32789610-31865464 48 3.03e-22 1.19e-12 1.71e-08 1.63e-121

TRIM31 Chr6:30070674-30080867 31 2.01e-08 1.02e-7 7.90e-10 2.01e-52

NELFE Chr6:31919864-31926864 14 1.96e-22 1.34e-14 5.19e-10 1.05e-68

MICA Chr6:31367561-31383090 38 3.11e-13 1.07e-7 1.23e-6 8.61e-145
B

C D

A

FIGURE 4

Venn diagram of the number of genes identified by MAGMA method. (A) RA associated genes, (B) MS associated genes, (C) IBD associated genes,
(D) T1D associated genes.
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3.5 Instrumental variable analysis

Finally, we used MR-PRESSO instrumental analysis to

develop evidence for causality in the relationship between RA

and MS, RA and IBD, RA and T1D, and the results are shown in

Table 4. As shown in the Table 4, the finding that there may be a

causal relationship between T1D and RA. We found a possible

new causal relationship between T1D and RA. Although no

relevant studies have confirmed the causal relationship between

T1D and RA, the risk of type 1 diabetics developing RA later in life
Frontiers in Immunology 07
may be attributed in part to the presence of the PTPN22

allele (61).

Another finding is that there may be a causal relationship from

MS to RA, but not vice versa, which supports the idea that common

immunologic pathways, involving IL-17 and Th17, may be one of

the mechanisms through which MS increases susceptibility to RA

(17). MS diagnosis increased the likelihood of a patient’s subsequent

diagnosis of rheumatoid arthritis. Our MR-PRESSO analysis

showed no causal relationship between RA and IBD after

adjusting pleiotropy. These results further support our findings
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that the shared genetic effects between RA and IBD are more likely

to be pleiotropic effects, rather than causal etiology or mechanism.
4 Discussion

In this study, we aimed to determine the genetic relationships

among RA, MS, IBD, and T1D by large-scale cross-trait GWAS

analysis. Firstly, LDSC is used to identify the genome-wide genetic

relationships between RA and MS, RA and IBD, RA and T1D. We

found that there are statistically significant genetic relationships

between RA and MS, RA and IBD, RA and T1D. Secondly, r−HESS

is adopted to identify the local genetic relationships between RA

and MS, RA and IBD, and RA and T1D. It was found that there are

two significant local genetic correlation regions between RA and

MS, and four significant local genetic correlation regions between

RA and T1D. Thirdly, the CPASSOE method is used to identify

significant correlation loci between RA and MS, RA and IBD, RA

and T1D. It was found that there are 58 significant correlation loci

between RA and MS, 86 significant correlation loci between RA and

IBD, and 107 significant correlation loci between RA and T1D.

Fourthly, by using the multiple omics method MAGMA and e-

MAGMA to identify the common risk genes for four diseases, we

found that 82 risk genes show significant association with all four

diseases, and 40 of these diseases have been confirmed to be

associated with at least one disease. Fifth, we introduced the

biological functions of the 82 risk genes found through tissue and
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organ enrichment analysis, biological pathway enrichment analysis

and protein-protein analysis, and found that 82 common risks

genes are mainly concentrated in skin sun exposed lower leg, muscle

skeletal, adipose subcutaneous, and 35 biological pathways. Finally,

we used the MR-PRESSO method to identify the causal relationship

between RA and MS, RA and IBD, RA and T1D, and found that

there may be causal relationship between RA and T1D, RA and MS,

but there is no causal relationship between RA and IBD. The reason

of the genetic relationship between RA and IBD is due to

pleiotropy effects.

In this study, 82 common risk genes related to RA, MS, IBD and

T1D were identified, among which a large number of common

genes were found in the HLA region, which plays an important role

in immune response. Immune response is one of the main factors

affecting RA, MS, IBD and T1D (12, 51, 62). TSBP1 gene has been

reported to be associated with four diseases (63–66). Although

CCHCR1 gene has been reported to be associated with MS, IBD and

T1D diseases (67–69), it may also be important for RA. Twenty-two

genes (FLOT1, VARS2, POU5F1, MICA, MICB, NFKBIL1, TAP2,

TAP1, BRD2, TNXB, AGPAT1, TRIM31, APOM, TRIM27,

SLC44A4, RNF39, AGPAT1, ABCF1, RNF5, CYP21A2,

PSORS1C1, LST1) have been reported to be associated with at

least one disease. Although no relevant study shows the correlation

between TRIM26 and RA, MS, IBD, T1D, we found that TRIM26 is

a member of the TRIM protein family, encoded in the locus of

major histocompatibility complex Class I region, and TRIM26

interacts with TAB1 and specifically catalyzes K11-linked
TABLE 3 The KEGG pathway was significantly enriched in 82 common risk genes.

Pathway No. Genes Adjusted
P-value Pathway No. Genes Adjusted

P-value

Antigen processing and presentation 13 6.51e-16 Systemic lupus erythematosus 6 1.07e-04

Allograft rejection 10 1.75e-14 Viral carcinogenesis 7 1.07e-04

Graft-versus-host disease 10 3.50e-14 Rheumatoid arthritis 5 2.04e-04

Type I diabetes mellitus 10 3.50e-14 Cellular senescence 6 2.07e-04

Autoimmune thyroid disease 10 2.75e-13 Intestinal immune network for IgA production 4 2.07e-04

Viral myocarditis 10 5.43e-13 Endocytosis 7 3.52e-04

Phagosome 13 7.43e-13 Toxoplasmosis 5 4.17e-04

Epstein-Barr virus infection 12 4.84e-10 Inflammatory bowel disease 4 6.05e-04

Cell adhesion molecules 10 5.85e-9 Leishmaniasis 4 0.00112

Human T-cell leukemia virus 1 infection 11 1.60e-8 Th1 and Th2 cell differentiation 4 0.00213

Herpes simplex virus 1 infection 13 1.10e-6 Hematopoietic cell lineage 4 0.00271

Human cytomegalovirus infection 9 3.15e-06 Th17 cell differentiation 4 0.00351

Natural killer cell mediated cytotoxicity 7 9.16e-06 Influenza 4 0.01894

Kaposi sarcoma-associated herpesvirus infection 8 9.62e-06 Tuberculosis 6 0.02151

Human immunodeficiency virus 1 infection 8 1.71e-05 Longevity regulating pathway 3 0.02763

Staphylococcus aureus infection 6 1.71e-05 Primary immunodeficiency 2 0.03339

Asthma 4 4.78e-05 ABC transporters 2 0.04484

Human papillomavirus infection 9 5.04e-05
f
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polyubiquitination of TAB1, which facilitates TAK1 activation and

initiates downstream signaling, and finally positively regulated

TLRS-mediated inflammatory cytokines (70). AIF1 is a 17kDa

cytoplasmic calcium-binding inflammatory scaffold protein,

which is mainly expressed in immune cells. AIF1 promotes the

expression of inflammatory mediators such as cytokines,

chemokines and inducible nitric oxide synthase (iNOS),

promoting the proliferation and migration of inflammatory cells
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(71). CLIC1 participates in inflammatory processes by regulating

macrophage phagosomal functions such as pH and proteolysis,

CLIC1 regulates DC phagosomal pH to ensure optimal processing

of antigen for presentation to antigen-specifific T-cells (72).

There are also some limitations in this paper. Firstly, Bonferroni

correction is the most stringent multiple testing correction method.

In genome-wide association analysis, in order to control the

probability of false positives, the threshold is often adjusted with
TABLE 4 Mendelian Randomization analysis between RA, MS, IBD and T1D.

Exposure Outcome Causal Estimate Sd T-stat P-value1

RA MS -0.000756071 0.005449628 -0.138738 0.889728

MS RA -0.1195902 0.05367141 -2.228192 0.03170483

RA IBD -0.006132929 0.003543663 -1.730675 0.08381547

IBD RA 0.01654898 0.02420687 0.683648 0.4970677

RA T1D -0.7789012 0.5110154 -1.524222 0.1276694

T1D RA -307.0967 80.94547 -3.793871 0.0002637433
FIGURE 7

The PPI network of 82 common risk genes.
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Bonferroni correction. However, due to linkage disequilibrium

between GWAS variants, there may be cases where multiple

variants or SNPs are linked to each other, so it is not entirely

correct to assume that each association test of a GWAS dataset is

independent. Therefore, applying the Bonferroni correction usually

gives us the most conservative p-value threshold. Because it is too

conservative, it often leads to the generation of false negatives, and

there may be few variants in the entire genome whose associated p-

values can meet this standard. In this study, to investigate whether

there are local genetic correlations between RA and MS, RA and

IBD, and RA and T1D, we estimated the local genetic correlations

between each pair of traits using r−HESS (37). The r−HESS

method used Bonferroni correction as a threshold to identify the

local genetic correlation between each pair of traits in the

visualization results, so in the subsequent research analysis, we

also used Bonferroni correction. Secondly, our results cannot be

used to be representative of the global population or children, as the

sample of RA, MS and IBD were taken from UK Biobank,

individuals of European descent aged between 40 and 69 years,

and the T1D summary statistics which individuals are European

descent from the NHGRI-EBI GWAS Catalog. Thirdly, due to the

lack of biological information at the individual level of genotype and

phenotype datasets, we cannot determine whether the effect of

polymorphic genes on disease risk is directed. Experimental studies

are required to verify the pleiotropic genes identified in this study.

Fourthly, existing gene annotation is not comprehensive, which

leads to some SNPs not annotating genes. Fifthly, the vast majority

of the risk SNPs and shared risk genes we identified are located in

the MHC region on chromosome 6, although we used the clustering

function of PLINK to identify independent and significant SNPs,

due to the extensive linkage disequilibrium in the MHC region, it is

possible that the risk SNPs and shared risk genes we identified are

correlated. Furthermore, the functions of the newly identified

shared risk genes are still unclear, and further studies are needed

to understand the functions of the genes and their roles in

pathophysiology. The function of the newly discovered shared

risk genes is unclear, and there is still a long way to go to

understand the function of genes and their role in the

pathophysiology of disease. Finally, we did not analyze the

combination of genetic and environmental factors that are known

to influence autoimmune diseases, including smoking, diet,

exercise, and medication. To sum up, further studies are needed

to emphasize and explore the biological explanations, and efforts

should be made to translate the findings into clinical research or

practice. This study provides an effective theoretical basis for future

research on the pathogenesis of autoimmune diseases,

improvement of diagnostic methods and development of

targeted therapies.
5 Conclusion

In this paper, strong genetic associations between RA and three

autoimmune diseases have been explored. Through genetic
Frontiers in Immunology 10
estimation, it was found that there are local genetic correlation

signals between RA and MS, RA and T1D. By cross-trait meta-

analysis, it was found that there are independent genetic loci related

to RA and MS, RA and IBD, RA and T1D. Based on gene

correlation analysis, 82 common risk genes were found among

the four diseases. Common risk genes are enriched in skin sun

exposed lower leg, muscle skeletal, adipose subcutaneous, and 35

biological pathways. Through Mendelian randomization analysis,

we found that there may be causal relationship between RA and

T1D, RA and MS. Therefore, this study is helpful for the clinical

treatment of RA, MS, IBD and T1D.
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