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Multiple neuroprotective agents have shown beneficial effects in rodent models

of stroke, but they have failed to translate in the clinic. In this perspective, we

consider that a likely explanation for this failure, at least in part, is that there has

been inadequate assessment of functional outcomes in preclinical stroke

models, as well the use of young healthy animals that are not representative of

clinical cohorts. Although the impact of older age and cigarette smoking

comorbidities on stroke outcomes is well documented clinically, the impact of

these (and other) stroke comorbidities on the neuroinflammatory response after

stroke, as well as the response to neuroprotective agents, remains largely

unexplored. We have shown that a complement inhibitor (B4Crry), that targets

specifically to the ischemic penumbra and inhibits complement activation,

reduces neuroinflammation and improves outcomes following murine

ischemic stroke. For this perspective, we discuss the impact of age and

smoking comorbidities on outcomes after stroke, and we experimentally

assess whether increased complement activation contributes to worsened

acute outcomes with these comorbidities. We found that the pro-

inflammatory effects of aging and smoking contribute to worse stroke

outcomes, and these effects are mitigated by complement inhibition.
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Introduction

Acute ischemic stroke occurs secondary to thrombosis or

embolization within the cerebral vasculature, which leads to an

infarct within the brain and clinical deficits. The standard of care for

stroke therapy is rapid recanalization of the target vessel, either

pharmacologically or endovascularly. Over the past decade,

outcomes following acute stroke have improved significantly due

to both stroke prevention efforts and the introduction of

endovascular thrombectomy as the routine standard of care.

Nevertheless, stroke remains a major cause of disability and

mortality in the United States and Worldwide. The current

standard of care for stroke patients remains rapid reperfusion

using thrombolysis and/or thrombectomy for eligible patients that

present within about 24 hours of onset (1–3). However, despite a

successful recanalization rate of over 85%, the rate of functional

independence at 90 days remained at less than 50% in successfully

recanalized patients (3, 4). Reasons for this mismatch between

recanalization and recovery are multiple and include the rapid

progression of infarct secondary to inflammation, microthrombosis

in the microvasculature, hemorrhagic complications, and limited

rehabilitation support. Several clinical studies have focused on

identifying a subset of stroke patients that are termed “fast

progressors”, that is patients whose infarct progresses rapidly

despite recanalization and who tend to have worse functional

outcomes. Poor cerebrovascular reserve and collateral circulation

are considered major culprits within this patient group, which is

attributed to advanced age and other comorbidities, as well as an

enhanced local neuroinflammatory response. Data from

thrombectomy trials lend strong support to the concept that

neuroprotective adjuvant therapies will leverage the benefit of

reperfusion and limit the progression of cerebral tissue loss after

stroke. However, there are currently no neuroprotective agents

approved for ischemic stroke, with multiple agents having failed

in clinical trials. This failure of neuroprotective agents is

multifactorial, but one perspective is that this is due in large part

to the poor design of preclinical studies that often lacked

consideration of long-term outcomes, cognitive recovery,

rehabilitative interventions, and relevant to this perspective

article, stroke comorbidities (5, 6). The translational importance

of incorporating stroke comorbidities in evaluating preclinical

efficacy of neuroprotective and anti-inflammatory therapies for

stroke is being increasingly recognized. Within this context,

previous studies from our lab and others have studied the role of

the complement system in initiating and propagating a

neuroinflammatory response after stroke (4, 7–10),, and

inhibition of complement has been shown to provide long-lasting

neuroprotection in murine stroke models. However, these previous

investigations were almost exclusively performed using healthy

young adult mice. Complement inhibitors are recognized as

potential therapeutic agents for treating stroke, and here we

provide an assessment on the effects of two major stroke

comorbidities, namely advanced age and cigarette smoking

(CS), within the framework of complement-dependent

neuroinflammation and recovery.
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Impact of cigarette smoking and aging
in ischemic stroke

Comorbidities in patients present as a cluster of risk factors that

increase stroke incidence. What is much less appreciated is that

comorbidities also alter stroke pathophysiology, lesion development

and recovery in profound ways. With the use of genetic animal

models and/or pharmacological interventions, it is possible to

capture certain features of comorbidities. Comprehensive reviews

on animal models with comorbidities are available elsewhere

(11, 12).

Cigarette smoke is a patient modifiable risk factor for ischemic

stroke, and is correlated with an increased risk of mortality, more

severe disability, longer hospital stays and worse overall functional

recovery (13, 14). Cigarette smoking nearly doubles the risk for

stroke, with a dose response relationship between pack-years and

stroke risk (15, 16). Age is also recognized as a significant predictor

of stroke outcome, affecting speed and extent of recovery, mortality,

and response to thrombolytic therapy (17). However, the

mechanisms underlying how either comorbidity contributes to

worse outcomes are not well understood, and there are very few

reports on neuroprotective therapies in the context of these

comorbidities, despite continuous recommendations from the

STAIR committee and funding bodies. There has only been a

single report investigating the effects of cigarette smoke on in the

brain, in which it was shown that cigarette smoke exposure induced

activation of inflammatory cascades and increased oxidative stress

(18). In other (non-stroke) models, our lab and others have shown

that cigarette smoke is associated with altered systemic

inflammatory profiles, including complement activation (19–22).

Smoking also contributes to decreased vessel wall integrity (19) and

may be associated with increased risk of hemorrhagic

transformation or intracranial hemorrhage after thrombolytic

therapy. There are also only very few reports on the consequences

of aging on post stroke neuroinflammation, even though with

increasing life expectancy, aging has become a principal risk

factor for stroke. It is known that in the absence of ischemic

pathology, the aging brain shows a gradual increase in

inflammatory signaling (22) and an increase in reactive oxygen

species both basally and in response to injury (23, 24). In the normal

ageing brain, there is also increased expression of innate immune

molecules, including complement proteins (25). However, as with

CS exposure, the role of aging in the context of neuroinflammation

and neuroprotection after stroke remains poorly investigated.
Age and CS-exposure lead to worse
acute outcomes after murine stroke,
an effect that is reversed with
complement inhibition

To investigate how age and CS affect a complement-dependent

neuroinflammatory response and behavioral outcomes after stroke,

we utilized a murine model of 60 minute transient middle cerebral
frontiersin.org
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artery occlusion (MCAO) and the site-targeted complement

inhibitor, B4Crry, as previously described (9). The B4Crry

inhibitor targets specifically to the ischemic and perilesional

region of the post-ischemic brain after MCAO and locally inhibits

all complement pathways at the C3 activation step and blocks the

generation of both C3 opsonins and C3a (9). At the dose used in the

studies reported here, B4Crry has no effect on systemic (blood)

complement activity (9).

In an initial study, we exposed mice to 6 months of CS (see

supplement) starting at 6-8 weeks of age. Following CS exposure,

mice were randomized into vehicle (PBS) or B4Crry treatment

groups, and treatment administered 2 hours post MCAO (1 h post-

reperfusion). No animals in the CS exposed PBS treated group

survived beyond 24 h post-MCAO, whereas 40% of B4Crry treated

mice survived to 6 days post-MCAO (n = 10). For this reason, we

switched to a 4 month CS exposure paradigm which resulted in

improved 24 hour mortality rates (see below).

We assessed the impact of age and CS-exposure on acute

outcomes following transient MCAO in terms of neurological
Frontiers in Immunology 03
deficit, mortality and infarct volume. As above, mice were

randomized into either vehicle or B4Crry treatment groups.

B4Crry or vehicle was administered 2 hours post MCAO to aged

+ CS-exposed mice, young + CS-exposed or aged room air mice. As

noted above, CS exposure was for 4 months. Our previously

published data using young adult mice and the same MCAO

model showed a mortality rate of less than 10% at 24 hour post-

MCAO (9). Here we show that aged + CS exposed mice had a

mortality rate of 50%, and aged mice a mortality rate of 35% at 24

hours after stroke (Figures 1A, B). Thus, the impact of CS on

mortality in aged mice was higher than that of aging alone.

Complement inhibition with B4Crry resulted in a significant

reduction in mortality rates at 24 hours in both aged and aged +

CS-exposed mice. B4Crry treatment also resulted in a significant

reduction in neurological deficit scores and in lesion volume in both

groups compared to vehicle (Figures 1A, B). There was no

significant difference in 24 hour survival between vehicle and

B4Crry treated mice that were exposed to CS. However, B4Crry

treatment did significantly improve neurological deficit scores and
A

B

C

FIGURE 1

Effect of B4-Crry treatment on neurological deficit, mortality and lesion volume 24 hours after MCAO in aged and CS exposed mice. (A) Aged + CS
exposed mice. (B) Aged non-CS exposed mice. (C) Young + CS exposed mice. Neurological deficit scores, Mann Whitney test. Mortality, Chi squared
test. Lesion Volume, T-test. For all groups, n=7-11. Error bars = SEM.* indicate P value less than 5.
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reduced lesion volume (Figure 1C). To determine any effect of aging

on outcomes of CS exposed mice, aged + CS (Figure 1A) vs. young +

CS (Figure 1C) outcomes were compared. There was no difference

in neurological deficit score or mortality (p>0.05), although the

younger animals had a significantly reduced lesion volume

(p<0.05). There was also significantly reduced mortality and

smaller lesion volumes in young compared to aged B4Crry

treated animals (p<0.05). When the effect size of B4Crry on

neurological outcome was computed, the protective effect of

B4Crry was highest in aged + CS-exposed mice (Cohen’s d index

1.50), followed by CS-exposed young mice (Cohen’s d index 1.36),

followed by aged no CS mice (Cohen’s d index 1.21). These findings

indicate that the effects of age and CS exposure on neurological

outcome after MCAO is at least in part mediated by complement.
Complement inhibition reduces the
extent of dendritic loss and microglial
activation in aged mice and aged
+cigarette exposed mice

To assess how CS-exposure affects a complement mediated post-

stroke neurodegenerative neuroinflammatory response in aged mice,
Frontiers in Immunology 04
the extent of dendritic loss and microgliosis 24 hours after MCAO in

the context of B4Crry treatment was assessed. This was achieved by

high resolution immunoflurescence imaging of MAP2 (dendritic

marker), microglia/macrophages (Iba1) and neurons (NeuN)

(Figures 2A, B). Unbiased stereology was used for quantification

(Figures 2C, D). Compared to vehicle treated controls, B4Crry

treatment significantly reduced microgliosis and preserved dendritic

signal in the ipsilateral hemisphere in both aged and aged-CS exposed

mice. There was no significant difference in the extent of microgliosis

or dendritic loss between aged and aged + CS exposed mice.
Discussion and conclusions

The failure of neuroprotective agents in stroke clinical trials is

multifactorial, but one contributing factor is thought to be a lack of

accounting of stroke comorbidities when evaluating drugs in

preclinical studies. A neuroinflammatory response that occurs after

stroke is considered to be a major contributor to secondary injury after

stroke, and we investigated whether the complement system, a central

component of a neuroinflammatory response after stroke, is involved

in the negative effects of stroke comorbidities on stroke outcomes.

Specifically, we addressed age, a non-modifiable stroke risk factor, and

CS exposure, a modifiable risk factor. Both cigarette smoking and
A

B

D

C

FIGURE 2

Extent of Microgliosis and loss of dendritic arborization at 24 hours after MCAO in the perilesional area of B4-Crry and vehicle treated CS exposed and
non-CS exposed aged mice. (A, B) Immunofluorescence staining for MAP2 (dendritic marker, green), microglia (Iba1, red), and neurons (NeuN, cyan)
demonstrating wider extent of microgliosis and dendritic loss in vehicle treated compared to B4Crry treated mice. Representative images.
(C) Quantification of images in (B) showing percentage area of microgliosis in the ipsilateral hemisphere. Student’s T-test. *p<0.05. **p<0.01. Mean +/-
SEM. (D) Quantification of images in (B) showing percentage area with loss of MAP2 signal indicating loss of dendritic arborization in the ipsilateral
hemisphere in aged mice (left) and aged + CS exposed mice (right), comparing vehicle to B4Crry treatment. Student’s t-test. *p<0.05. Mean +/- SEM.
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aging are factors known to affect mortality and disability after stroke

(13, 14, 26). However, the mechanisms underlying the effects of age

and CS exposure on stroke outcomes are poorly understood, with

limited reports on neuroprotective therapies in the context of either

cigarette smoking and aging, despite continuous recommendations

from the Stroke Treatment Academic Industry Roundtable (STAIR)

committee. We investigated acute inflammatory profiles and

outcomes in aged mice, and CS exposed aged and young mice in

the context of complement inhibition.

Consistent with prior reports describing a more systemic

proinflammatory phenotype associated with CS (19, 21, 27), we

demonstrate that CS is associated with increased local complement

activation after stroke. In the aging brain, increased local

complement activity is documented in the presence or absence of

an ischemic or traumatic event (22–25, 28, 29). Our previous studies

using murine models of ischemic stroke have demonstrated that

local complement activation in the post-ischemic brain plays an

important role in rapid neurological cell loss and worsening

outcomes (4, 9, 10, 30, 31). We have shown that MCAO

promotes neuronal stress in perilesional areas and that stressed,

but still viable neurons, display danger associated molecular

patterns (DAMPs) that activate complement leading to aberrant

neuronal uptake by microglia (9). Here we show that after MCAO,

the stroke comorbidities of age and CS exposure exacerbate both

infarct growth and a neuroinflammatory response. Local inhibition

of complement with B4Crry interrupted this response and reversed

the effects of age and CS exposure on acute progression of a

neurodegenerative inflammatory response.

The findings presented support the hypothesis that the impact of

stroke comorbidities on worsening stroke outcomes, and specifically

the comorbidities of age and CS exposure, is due at least in part to a

complement-mediated neuroinflammatory response. Today, patients

who present with a high burden of infarcted brain as measured by

perfusion imaging are not eligible for endovascular intervention due

to risk of hemorrhage and worsening edema (32–35). In this context,

a complement inhibitor has the potential for delaying the progression

of infarct in patients en route to a comprehensive stroke center for

endovascular surgery, as well as for minimizing post-interventional

cerebral edema and hemorrhage risk. Both effects would likely

increase the subset of stroke patients eligible for intervention and

lead to improved functional outcomes. A key message from this work

is the implication that complement-mediated neuroinflammation is a

major contributor to exacerbation of cerebral injury after stroke, and

that this complement-mediated effect is more prominent in subjects

with stroke comorbidities. Using pharmacological interventions that

can limit the progression of infarct and temporarily preserve the

penumbra remains an unmet clinical need, and one that complement

inhibition shows potential for fulfilling.

In summary, this perspective supports the narrative that the

inclusion of comorbidities in experimental stroke models is

important to more accurately represent the stroke patient

population, and which is necessary to create neuroprotective

therapeutics with a higher level of success in human clinical trials.

In this report, we show that complement inhibition is

neuroprotective in a model that includes the comorbidities of age
Frontiers in Immunology 05
and CS exposure, suggesting a improved likelihood for successful

translation to a heterogeneous human stroke population.
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