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Interleukin-10 (IL-10) is a pleiotropic cytokine that has a fundamental role in

modulating inflammation and in maintaining cell homeostasis. It primarily acts as

an anti-inflammatory cytokine, protecting the body from an uncontrolled

immune response, mostly through the Jak1/Tyk2 and STAT3 signaling pathway.

On the other hand, IL-10 can also have immunostimulating functions under

certain conditions. Given the pivotal role of IL-10 in immune modulation, this

cytokine could have relevant implications in pathologies characterized by

hyperinflammatory state, such as cancer, or infectious diseases as in the case of

COVID-19 and Post-COVID-19 syndrome. Recent evidence proposed IL-10 as a

predictor of severity and mortality for patients with acute or post-acute SARS-

CoV-2 infection. In this context, IL-10 can act as an endogenous danger signal,

released by tissues undergoing damage in an attempt to protect the organism

from harmful hyperinflammation. Pharmacological strategies aimed to potentiate

or restore IL-10 immunomodulatory action may represent novel promising

avenues to counteract cytokine storm arising from hyperinflammation and

effectively mitigate severe complications. Natural bioactive compounds, derived

from terrestrial or marine photosynthetic organisms and able to increase IL-10

expression, could represent a useful prevention strategy to curb inflammation

through IL-10 elevation and will be discussed here. However, the multifaceted

nature of IL-10 has to be taken into account in the attempts to modulate its levels.
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Introduction

Cytokines are a broad category of soluble proteins or

glycoproteins with low molecular weight (ranging from 6 to 70

kDa) that are produced transiently, in response to various biological

stimuli, by nearly every cell type and affecting virtually all main

cellular processes (1–3). These molecules are crucial to orchestrate

cell-to-cell communication and biological functions (1–3). They can

act locally, either via autocrine and paracrine signaling, respectively

on the same cells that produce them or on cells close to the site of

release. Several cytokines are also capable of acting systemically, via

endocrine signaling, on cells located in other body districts reached

through the blood or lymphatic stream (4). Cytokines act by

binding to specific transmembrane and membrane-anchored

receptors located on the target cells and activating downstream

intracellular signaling cascades that usually result in gene

expression modulation (5, 6). Some cytokine receptors also exist

in soluble form and can function as either antagonists or agonists of

cytokine signaling, forming decoy receptors or functional receptors,

respectively (2, 6). Their activity is highly specific: the expression

pattern of cytokine receptors is unique for every tissue and varies

among different cell types, determining to which cytokine a

particular cell/tissue will respond to (6). Cytokines also establish

complex networks with each other, where one cytokine can

potentiate/contrast the action or stimulate/inhibit the production

of other cytokines (2).

Cytokines play a pivotal role in the regulation of many

physiological processes, including cytoskeletal organization, stem

cell differentiation, embryonic development, cell proliferation,

activation, migration, wound healing, survival and apoptosis (6–

9). They are also key regulators of the innate and adaptive

immunity, coordinating humoral, cytotoxic and cellular immune

response, mediating communication between immune and non-

immune cells, controlling immune cell trafficking and tissue

organization, affecting microenvironment and regulating

inflammation (1, 10–12). Given the high pleiotropic activity of

these molecules, cytokines are present at very low or undetectable

concentrations in body fluids and tissues under homeostatic

conditions, but, when required by the physiopathological context,

they can rapidly increase up to 1000 fold (13).

Since cytokines have such a fundamental influence on immune

system and body’s health, any dysregulation in their secretion or

signaling, and they are critically implicated in the genesis and/or

progression of several human pathological conditions, among

which, cancer, infectious and immune diseases (1, 13, 14) they

represent important biomarkers and targets.

A dysregulation of the immune system is a characteristic of the

COronaVIrus Disease 2019 (COVID-19) global pandemic, caused

by the severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) (15–17). A growing body of clinical data suggests that the

more severe and lethal forms of COVID-19 syndrome are

associated with self-feeding massive release of pro-inflammatory

cytokines, defined “cytokine storm” (18–20), which triggers and

sustains a systemic hyper-activated inflammatory response that
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finally leads to acute respiratory distress syndrome (ARDS),

multi-organ failure and even death (17, 21).

This COVID-19 pandemic has posed huge challenges to the

health care system worldwide due to its widespread diffusion, the

severity of clinical picture (17), and the numerous variants, with

more than 765 million confirmed cases and over 6.9 million deaths

reported globally (22). The rapid availability of vaccines has brought

an enormous progress. Unfortunately, in case of infection, clinical

interventions capable of effectively treating COVID-19 patients

entering the cytokine storm phase have demonstrated a highly

variable margin of success depending on timing and patient

selection (23). In addition, a considerable percentage of patients

who had mild or severe disease do not fully recover but continue to

manifest a range of persistent debilitating multi-organ symptoms

for weeks or even months after the acute infection. These conditions

have been reported in literature as “long COVID”, “post-COVID-

19 syndrome”, “post-acute sequelae of COVID-19 (PACS)” or

“post-acute COVID-19 syndrome” and they still leave many open

questions about the pathogenetic mechanisms and potential

therapeutic approaches (24–28). Although the vaccines have

brought substantial benefits to halt the COVID-19 pandemic,

both reducing rate of SARS-CoV-2 new infection and decreasing

mortality and risk of serious complications, there is actually no

proven effective treatment against post-COVID-19 and the real

impact of vaccines on patients who have this syndrome remains still

unclear (28–30). Therefore, a thorough understanding of the

molecular mechanisms underlying COVID-19 and post-COVID-

19 as well as the design of novel targeted therapeutic interventions

remains a priority for biomedical research.

In light of the importance demonstrated by the “cytokine storm” in

driving the immunopathological process of COVID-19, numerous

therapeutic strategies capable to prevent/reduce the over-production of

pro-inflammatory cytokines have been proposed to suppress/attenuate

COVID-19 hyper-inflammation and ameliorate its severe complications

(31–33). These pharmacological agents comprise non-specific immune

modulators, such as corticosteroids, hydroxychloroquine, interferons,

cardiovascular drugs, such as statins and renin–angiotensin–aldosterone

system (RAAS) inhibitors, and specific immune modulators, such as

Janus kinase (Jak) inhibitors, humanized anti-interleukin-6 (IL-6), anti-

IL-1 receptor and anti-tumor necrosis factor alpha (TNF-a) monoclonal

antibodies (34–41). Very likely, they can be valid therapeutic options also

for managing post-COVID-19 complications (42).

In this scenario, a novel candidate that appears to be

particularly worth to be exploited as effective anti-inflammatory

molecule is IL-10, a cytokine that has gained increasing interest

from clinical medicine in different therapeutic settings due to its

potent immunomodulatory properties on a broad spectrum of cells

(43–45).

Recent evidence has outlined IL-10 as associated with severity

and mortality for patients with acute or post-acute SARS-CoV-2

infection (46). IL-10 can act like an endogenous “danger signal”

released in response to the peak of circulating pro-inflammatory

cytokines and having the purpose to protect the organism from

damage caused by harmful hyperinflammatory state (43, 47).
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IL-10 structure and signaling pathway

Human IL-10 is encoded by the IL-10 gene, located on the long

arm of chromosome 1 (48). The IL-10 gene promoter is

characterized by the presence of positive and negative regulatory

sequences as well as polymorphisms that can significantly affect IL-

10 expression between individuals (49, 50). IL-10 is a member of the

class II cytokine family and its biologically active form is a soluble

36 kDa homodimer, comprising two monomers with six a-helices
structure and stabilized by two intrachain disulfide bonds (51). The

cellular response to IL-10 starts with the binding of an IL-10

homodimer to a heterotetrametric IL-10 receptor (IL-10R)

complex, belonging to the interferon receptor family and

comprised of two ligand-binding IL-10R-alpha (IL-10RA)

subunits and two accessory signal-transducing IL-10R-beta (IL-

10RB) subunits (52, 53). IL-10RA is the main responsible for

directing ligand and target specificity: it recognizes IL-10 with

high-affinity (50) and it is mainly expressed by lymphocytes,

macrophages and dendritic cells at basal level, but can be

upregulated by various cells upon their activation (54). Instead,

IL-10RB has lower affinity or no direct binding to IL-10, is

constitutively expressed by nearly all cell types and is shared by

the receptor complex of other IL-10 family cytokines, such as IL-22

and IL-26 (50, 55). The signaling cascade in IL-10 responding cells

is mediated by theJak1/Tyrosine kinase 2 (Tyk2)/signal transducer

and activator of transcription 3 (STAT3) pathway. The binding of

IL-10 homodimer to the IL-10RA extracellular domain leads to its

ol igomerizat ion with the IL-10RB and the fol lowing

phosphorylation of the enzymes Jak1 and Tyk2, associated with

the intracellular domain of alpha and beta subunits, respectively.

Upon their phosphorylation, these kinases further phosphorylate

two functional tyrosine motifs on the intracellular domain of the IL-

10RA. This allows the recruitment of STAT3 and its subsequent

phosphorylation by Jak1 and Tyk2 (43, 50). Once phosphorylated,

STAT3 dimerizes and translocates into the nucleus, where it binds

to STAT-consensus elements of target gene promoters and initiates

their transcriptional program (43, 50, 56). One of the actions of

STAT3-responsive genes is the suppression of cytokine signaling 3

(SOCS-3), which inhibits mitogen-activated protein kinase

(MAPK) activation, NF-kB nuclear translocation, and the

resulting expression of pro-inflammatory genes. It also functions

as a negative feedback regulator of IL-10 signaling, by inhibiting

Jak1 and consequently the Jak1/Tyk2/STAT3 pathway. Another

element induced by STAT3 is the IL-1 receptor antagonist (IL-

1RN), a decoy protein that, binding to IL-1 receptor, prevents the

interaction of IL-1b with its receptor and the following activation of

pro-inflammatory signaling. Moreover, STAT3 suppresses STAT6

activation and consequently inhibits the expression of IL-4/IL-13-

responsive genes in monocytes and dendritic cells (DCs) (50,

57–59).

In addition to STAT3, IL-10RA may simultaneously

phosphorylate and activate STAT1 and STAT5 in monocytes and

regulatory T (Treg) cells. By this action, it leads to the formation of

different STAT heterocomplexes and to the subsequent generation

of multiple downstream transcriptional effects (60). Furthermore,

additionally to Jak1/Tyk2/STAT3 pathway, IL-10 may also
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modulate transcription by the activation of PI3K/Akt/Glycogen

Synthase Kinase 3 Beta (GSK3b) and PI3K/Akt/mTORC1

signaling cascades in macrophages (43).

There is evidence of IL-10 and IL-10R deficiencies which are

monogenic inborn errors of immunity (IEI) causing early-onset

inflammatory bowel diseases (IBD) (61, 62). Consanguinity is

reported in all evaluable patients with IL-10 deficiency and in

38% of patients with IL-10R deficiency (23% of patients with IL-

10RA, and 79% of patients with IL-10RB deficiency). The common

associated pathologies are auto-inflammation and enteropathy.

Dermatological manifestations as well as lymphoma not Epstein

Barr Virus (EBV)-related, and failure to thrive are associated with

IL-10R deficiency (63, 64).
IL-10 cellular sources

When originally described by Fiorentino and colleagues in

1989, IL-10 was classified as a cytokine specifically secreted by T

helper 2 (Th2) cells (65), however, it was subsequently widely

recognized that it can be produced by many myeloid and

lymphoid cells (50). Among these, CD4+ Th1, Th2 and Th17

cells, and Treg cells, DCs, monocytes and macrophages are main

producers of IL-10 (43, 50). Recently, microglia and cardiac

macrophages have been also identified as producers of IL-10

(66, 67).

In CD4+ Th cells, IL-10 production occurs downstream of T

cell receptor (TCR) activation and the subsequent activation of Ras,

ERK1/2 and transcription factor AP1 (43). In Th2 cells, IL-10

synthesis is induced by IL-4/STAT6 signaling and requires GATA

binding protein 3 (GATA3) transcription factor (68). Th1 and Th17

can secrete IL-10 under the correct set of conditions. In Th1 cells,

IL-10 production requires STAT4, strong TCR activation (i. e.

increased expression of Delta-like-4 ligand and inducible T cell

co-stimulator ligand (ICOSL) on DCs) and IL-12 (69).

In Th17 cells, IL-10 expression is induced by the cytokines IL-6

(70), IL-24 (71) and IL-27 (72), and it is mediated by STAT3 and, in

some cases, STAT-1 signaling (73). Several transcription factors are

involved in regulating IL-10 production in T cells, including Blimp-

1, cMaf, AhR, Bhlhe40 (43, 50).

Natural and induced FoxP3+ Treg cells can secrete IL-10 in a

STAT3 dependent manner and use it to control immune responses

against self-antigens at the environmental interfaces (74). FoxP3-

Treg cells secrete IL-10 following differentiation from naive CD4+ T

cells under various stimuli, including cytokines, such as interferon

gamma (INF-g), immunosuppressive drugs, stimulation with

soluble antigens or immature DCs and co-stimulation with CD2,

CD46 or ICOSL (75).

In macrophages and DCs, IL-10 expression is regulated by

cytokines, such as type I IFN, and by the activation, downstream of

Toll-like receptor (TLR) signaling, of ERK1/2, p38, NF-kB and

phosphoinositide-3-kinase (PI3K) serine/threonine protein kinase

B (Akt) pathways (43, 50, 76).

In addition to CD4+ T cells, DCs and macrophages, most

adaptive immunity cell types, including CD8+ cytotoxic T cells

and B cells, as well as various innate immunity cell types, including
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mast cells, natural killer (NK) cells, and eosinophils can also be

sources of IL-10 in particular contexts (77).

CD8+ T‐cells become significant producers of IL-10 during

hypoxia and viral infection (78), in response to TCR activation, IL-

21 stimulation or interaction with CD40 ligand on activated pDCs

(75). Mast cells directly induce IL-10 expression following Toll-like

receptor 4 (TLR4) activation by lipopolysaccharide (LPS) or during

allergic dermatitis or skin damage (75). In B cells, IL-10 production

occurs following stimulation with autoantigens, ligands of TLR4

and TLR9, or vitamin D3 (79), while NK cells release IL-10 during

systemic infection (80). However, unlike other myeloid cells and in

contrast to mouse neutrophils, human neutrophils are unable to

produce or secrete IL-10, also after stimulation with bacterial and

inflammatory molecules such as serum amyloid or LPS (81).

Cassatella’s and Bazzoni’s labs showed that IL-10 induced

transcriptional repression of CXCL8 and TNF-a genes in human

monocytes pretreated with LPS (82). The inhibitory effect of IL-10

on cytokine transcription consists of two distinct sequential phases:

an early phase, occurring rapidly and in a protein synthesis-

independent manner, followed by a second delayed phase, that

occurs after 60 minutes and is dependent on protein synthesis (82).

In addition, some non-immune cell types, including intestinal

epithelial cells, intestinal fibroblasts and skin keratinocytes, produce

IL-10 in response to certain stimuli, comprising infection, UV

radiation, tissue injury and damage (83–86), and even different

tumor cells, such as melanoma, breast and colon carcinoma cells,

have demonstrated IL-10 secretion ability (87–90).
IL-10 systemic effects

IL-10 was initially defined as “cytokine synthesis inhibitory

factor” due to its inhibitory activity on IL-2 and interferon-g (IFN-
g) release by Th1 cells (65), however it is now commonly considered

as a key immunoregulatory cytokine with pleiotropic activities,

exerting multiple and sometimes even opposite effects on

immune cells.

IL-10 functions as a double-edged sword on the immune

system: on one hand it has emerged as a potent anti-

inflammatory and immunosuppressive cytokine, on the other

hand it can also have immunostimulatory properties (50, 91, 92).

The different sources of IL-10 and the type of target cells on which it

acts, as well as the site and timing of its secretion are critical features

to activate multiple signal transduction pathways, each one

contributing to different functions towards the inhibition or the

activation of immune cells (79).

IL-10 is a master regulator of immunity during infection with

viruses, bacteria, fungi, protozoa and other pathogens, playing a

key, and often essential, role in limiting or terminating

inflammation and in the consequent host protection. IL-10

production by innate immune cells generally occurs later

compared to that of pro-inflammatory cytokines released in the

early phase of the inflammatory process. IL-10 secreted at the site of

ongoing inflammation is responsible for maintaining the right

balance between effective pathogen elimination and prevention of

detrimental immune-mediated response against infections,
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resulting in the restoration of normal tissue homeostasis (47, 79,

93, 94). At the same time, numerous pathogens induce IL-10 up-

regulation during the infection and exploit the immunosuppressive

activity of this cytokine to escape host immune system and promote

a microenvironment that favors their tolerance and long-term

survival (79).

IL-10 exerts strong immunosuppressive effects on monocytes,

macrophages, which are the cells with the higher expression of IL-

10R, and dendritic cells (50). It inhibits the ability of these cells to

produce pro-inflammatory cytokines (including IL-1a and b, IL-6,
IL-12, IL-18, and TNF-a) and chemokines (CCL2, CCL12, CCL5,

IL-8, CXCL10, and CXCL2) and prevents their differentiation,

maturation and migration to lymphoid organs (50). It also

suppresses the antigen-presenting capabilities to Th1 and Th2 of

monocytes and APCs by down-regulating their expression of the

class II major histocompatibility complex (MHC II) (95) and the

co-stimulatory molecules CD54 (intercellular adhesion molecule-1,

ICAM-1), CD80 and CD56 (96–99). Moreover, it can act on CD4+

T cells by inhibiting their antigen-specific activation and

proliferation in lymph nodes, limiting their secretion of cytokines,

such as IL-2, IFN-g, IL-4, IL-5 and TNF-a, and their cytotoxic

activity (45, 100, 101) and inducing their long-term anergy through

the block of CD28 co-stimulatory signaling (102, 103). Therefore,

through these coordinated actions, IL-10 leads to the shutdown of

the inflammatory immune response, both directly, by the

suppression of macrophages and dendritic cells activity, and

indirectly, by limiting T cells activation, differentiation and

effector function and promoting peripheral tolerance (43, 96).

On the other hand, IL-10 exhibits several immunostimulatory

activities. This cytokine is a potent stimulator of B lymphocytes: it

prevents apoptosis in germinal cells, enhances cell growth,

proliferation and activation and drives differentiation into

immunoglobulin-secreting plasma cells (15, 92, 104, 105). IL-10

plays also an important role in differentiation and functioning of the

Tregs (106, 107) and promotes the survival of T cells otherwise

destined to apoptotic cell death (108, 109). Regulatory B cells

(Bregs), representing B cells immune-suppressive fractions,

regulate inflammation primarily through an interleukin 10

mediated inhibitory mechanism (110, 111). In addition, IL-10

induces thymocytes proliferation, by upregulating the expression

of CD3 and CD8 molecules (112). It also enhances the production

of IFN-g and granzyme, improves MHC expression and facilitates

antigen recognition, promoting in this way the survival, expansion

and cytotoxic activity of antigen activated CD8+ T cells. IL-10 is

critically involved in the generation and/or sustaining of effector

CD8+ memory T cells too (112).

IL-10 promotes NK cell proliferation and migration and

enhances their cytolytic activity and effector functions (113–116).

Furthermore, IL-10 directly stimulates mast cells, enhancing their

expansion, survival, and activation, upregulating their expression of

high-affinity IgE receptors (FcϵRI) and increasing their production

of pro-inflammatory cytokines (117).

On murine T cells, IL-10 can function as growth cofactor,

stimulating a strong proliferative response of thymocytes in

presence of IL-2 and IL-4 (118), and as cytotoxic differentiation

factor, promoting IL-2-driven proliferation and differentiation of
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precursor CD8+ splenocytes into effector CTL (119). IL-10 reveals

powerful immunostimulatory properties in vivo as well: infusion of

exogenous IL-10 in mice recipients of fully allogeneic donor grafts

leads to increased graft rejection and graft-versus-host-disease

(GVHD)-induced mortality (120). In transgenic murine models,

IL-10 expression in the islets of Langerhans results in marked

pancreatic inflammation and pronounced recruitment of

macrophages, T and B lymphocytes to the pancreas (121).

Furthermore, local production of IL-10 by islet cells induces an

early development and increased prevalence of autoimmune

diabetes in non-obese diabetic mice and accelerates immune-

mediated destruction of beta cells (122, 123).

In addition to its broad range activity on the immune system, IL-

10 also exerts critical actions on non-immune cells. IL-10 has a

fundamental role in central and peripheral nervous system

homeostasis, reducing neuronal injury during infection,

inflammation, ischemia and trauma, and increasing neuron survival

and axon regeneration as well as modulating adult neurogenesis (43,

66, 124). Furthermore, IL-10 is an important regulator of epithelial

wound repair and plays a key function in gut homeostasis, promoting

wound closure and stimulating intestinal epithelial cell proliferation

(43). In dermal wounds, IL-10 promotes regenerative tissue repair via

STAT3-dependent regulation of fibroblast-specific hyaluronan

synthesis, recruits endothelial progenitor cells (EPCs) and leads to

increased vascular structures and faster re-epithelialization (125).
Regulation of IL-10 production
and its double role in
immunological homeostasis

IL-10 plays a fundamental role in maintaining host homeostasis

at both local and global level, ensuring the fine equilibrium between

pro- and anti-inflammatory immune response required to achieve an

effective clearance of infecting pathogens and preventing, at the same

time, tissue damage occurrence (50, 79). Therefore, in physiological

conditions IL-10 production is under a highly dynamic and finely

balanced modulation to orchestrate the different immunological

activities in a cell-specific manner and to control the inflammatory

response force and duration. Several transcription factors, expressed

and activated by both distinct and overlapping signaling pathways,

are involved in the positive or negative modulation of IL-10

transcription. In addition, a number of common and cell-specific

regulatory molecular mechanisms act at epigenetic, post-

transcriptional, translational, and secretory level to silence or

improve IL-10 expression in the immune effector cells and to

ensure the appropriate secretion of the cytokine (79, 126–129). IL-

10 expression by immune cells can be regulated, in response to

bacterial toxin such as LPS and other environmental stimuli, by

alterations in cell metabolic profile, or by accumulation of certain

metabolites (43). Consequently, the cells that are main producers and

targets of IL-10 as well as the pattern of spatial distribution and

temporal availability of this cytokine, may specifically differ between

tissues and even in the same tissue, depending on the particular host’s

immune status (79). Given its fundamental immunoregulatory
Frontiers in Immunology 05
properties, IL-10 can equally promote the propagation or the

shutdown of inflammatory responses and also direct the fate of

parasite, bacterial and viral infections (43).

Upregulation of IL-10 expression or enhanced signaling can

have both a protective and a harmful effect on the organism

(Figure 1). During acute infections, IL-10 limits the magnitude of

the immune responses, preventing excessive inflammation and

protecting tissues from immune-mediated damage, and allows

inflammation resolution when the pathogen is cleared (47). An

excess of IL-10 production or signaling can suppress host’s effective

inflammatory responses, induce tolerance and immune escape and

favor microbial persistence, leading to the establishment of chronic

or latent infections (47, 79) and facilitating the development of

auto-immune diseases. As example, it has been demonstrated that

IL-10 production is crucial to counter-regulate the harmful

inflammatory response activated during acute infections with T.

gondii (130), T. cruzi (131), H. hepaticus (132, 133) and influenza

(134), while increased IL-10 expression level has been linked to

reduced T cell activity and enhanced pathogen replication during

chronic infections with T. gondii (130, 135), Leishmania (136, 137),

EBV (138), HIV (101, 139, 140) and hepatitis B (HBV) (141, 142).

High levels of IL-10 have been documented in systemic lupus

erythematosus (143, 144), multiple sclerosis (124), rheumatoid

arthritis (145) and Sjogren’s syndrome (146), as well as in

autoimmune lymphoproliferative syndrome (147), acute

ulcerative colitis (148), and Grave’s disease (149).

On the other hand, downregulation of IL-10 expression or

defective signaling can also have both a beneficial and a detrimental

impact to the host (Figure 1). An IL-10 deficiency occurring in the early

phase of microbe infection triggers a rapid amplification of the innate

and adaptive immune response and facilitates effective clearance of

invading pathogens (150). If the deficiency persists, it leads to systemic,

exaggerated inflammation and immune-mediated tissue damage and

participates to the onset or aggravation of chronic inflammatory

diseases and several autoimmune pathologies (74, 79, 151).

As example, IL-10-deficient mice develop colitis (152, 153) and

during infection with T. cruzi (154) and T. gondii (135, 155)

succumb to an excessive, lethal inflammatory response. IL-10

deficiency has been also demonstrated to aggravate chronic liver

and kidney disease, enhancing fibrosis and inflammation (156, 157).

IL-10 expression was found lower in psoriatic (158, 159) and

asthmatic patients (160) and IL-10 and IL-10R mutations, causing

a loss of IL-10 function, were found to be associated with severe

inflammatory bowel disease, including Crohn’s disease and

ulcerative colitis (52, 161, 162).

With age the functional competence of the immune system

declines, a process called immunosenescence and involves the

remodeling of innate and adaptive immunity and it is associated

with a higher likelihood and severity of several infections (163).

Immunosuppressive cells and immunosuppressive cytokines are

involved in this process including IL-10 that has been found

increased in several studies (164).

The scheme is illustrating the dual immunological activities of

IL-10 and the possible beneficial or detrimental impact of this

cytokine at high or low levels on human health and disease

(Figure 1).
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IL-10 in cancer

The role of IL-10 in tumor pathogenesis is currently highly

controversial, with some findings showing that IL-10 promotes

tumor development and angiogenesis, while others supporting that

it inhibits tumor growth and metastasis (115).

This cytokine is considered a master switch from tumor-

promoting inflammation to antitumor immunity, thus

dysregulation in IL-10 levels can importantly contribute to

carcinogenesis and tumor progression (112, 165, 166). Elevated

IL-10 level exerts tumor-promoting effects by stimulating tumor cell

growth and proliferation via STAT3 activation, by inhibiting

apoptosis and by allowing immune surveillance escape through

inhibition of DC function, downregulation of human leukocyte

antigen (HLA) class I molecules on tumor cell surface, recruitment

of Treg, suppression of NK cells cytotoxic activity and impaired

activation of Th1 CD4+ and cytotoxic T cells (167–172). Increased

IL-10 expression in primary tumor cells and tumor-associated

macrophages has been proposed as a predictor of cancer stage

progression and metastatic potential development (87, 173, 174).

Moreover, IL-10 circulating levels were found to be elevated in

serum of various cancer patients, often accompanied by the increase

of other inflammatory markers, and correlated with a poor

prognosis (140, 175–183).

On the other hand, IL-10 mediates important tumor-inhibiting

activities by recruiting and stimulating cytotoxic CD8+ T cells and NK

cells in the tumor microenvironment, by promoting lymphocyte and

antibody-dependent immune memory, by abrogating inflammatory

M1 macrophage-Th17 T cells axis, by downregulating the synthesis of

pro-angiogenic factors and by suppressing local release of pro-

inflammatory cytokines that support tumor growth, survival, and

invasion (167, 184–188).
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IL-10 as a potential
therapeutic opportunity

The increasing knowledge about the essential regulatory role

of this cytokine has encouraged investigators to consider IL-10

as a potential therapeutic opportunity (43, 157, 189, 190).

Although no therapy has been yet approved to date, systemic

administration of recombinant human (rhu) IL-10 has been

tested in multiple clinical trials for the treatment of

autoimmune and immune-mediated inflammatory diseases

(including inflammatory bowel disease, psoriasis, Crohn’s

disease, rheumatoid arthritis, ulcerative colitis, pancreatitis),

tissue damage, and chronic infectious diseases (such as chronic

hepatitis C), due to its anti-inflammatory, wound repairing and

anti-fibrotic functions, respectively (191–194).

Early phase I and II studies showed a trend toward favorable

responses of systemically administered IL-10 in psoriasis and

Crohn’s disease patients, but larger studies revealed only a slight

clinical benefit, due to the double anti- and pro-inflammatory

properties of this cytokine (43, 195). Results obtained in a mouse

model of human multiple sclerosis suggested that inducing

local expression of IL-10 in the site of inflammation has the

potential to prevent autoimmune inflammatory process in the

central nervous system (43, 195). Induction of a homogeneous

population of IL-10-producing CD4 T cells by a combination of

immunosuppressive drugs (vitamin D3 and dexamethasone) may

represent a promising therapeutic strategy for the treatment of

autoimmune and inflammatory diseases (43, 195). From the other

side, the use of anti-IL-10R mAbs potentiate the Th1 response

and may be useful for the development of effective vaccines and

to enhance appropriate immune responses against chronic

pathogens (43, 195).
FIGURE 1

Up- and Down-regulation of IL-10, beneficial and detrimental effects.
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Moreover, given the double tumor-promoting and tumor-repressing

IL-10 action, both blocking and systemic administration of IL-10 have

been explored as potential strategies for cancer immunotherapy.

Yet, IL-10’s biologically active form is an unstable homodimer

with a short half-life and low in vivo stability. This represents a

significant drawback of using IL-10 in therapeutic application (51).

IL-10’s therapeutic potential can be increased by pegylation, a

modification of IL-10 by covalent conjugation with non-toxic

polymer polyethylene glycol (PEG), that increase the half-life of a

protein following administration (112, 196). It was observed that

systemic administration of PEGylated human IL-10 (pegilodecakin)

promotes infiltration, activation and intratumor expansion of

tumor-specific CD8+ T cells and restores their cytotoxic activity,

resulting in enhanced granzyme B and IFN-g production in CD8+

cells, enhanced intratumor antigen presentation and induction of

anti- tumor immune response with evidence of clinical benefits in

different advanced solid tumors, such as renal cell carcinoma and

uveal melanoma (112, 191, 197, 198). On the other hand, cancer

immunization with simultaneous IL-10 signaling blockade, using

IL-10R monoclonal antibodies, soluble IL-10R, peptide-based IL-

10R antagonists, or oligonucleotides, raised tumor immune

response with evidence of clinical benefits in different advanced

solid tumors, such as renal cell carcinoma and uveal melanoma

(112, 191, 197, 198), and enhances CD8+ T cell response and

potentiates vaccine-induced tumor regression (189).

Concomitant blockade of IL-10 and PD-1 immune checkpoint

in a mouse model of lymphocytic choriomeningitis virus (LCMV)

increases the efficacy in restoring antiviral T cell responses and

controlling persistent viral infection (199). Combined treatment

with IL-10 and PD-1 blockers enhances the expansion and function

of tumor-infiltrating CD8+ T cells, resulting in a synergistic anti-

tumor effect in metastatic melanoma and ovarian cancer (189).

Recently, therapy with PEGylated-IL-10 and anti-PD-1 monoclonal

antibody (pembrolizumab or nivolumab) has shown encouraging

results in a phase 1b clinical trial conducted on advanced refractory

renal cell carcinoma and non-small-cell carcinoma patients (200).
Potential role of IL-10 in COVID-19

Chronic viral infections are another field in which IL-10 appears

as an intriguing therapeutic challenge. Studies have demonstrated

that blockade of IL-10 is able to restore T cell antiviral activity,

enhance vaccine efficacy and promote immune-mediated

eradication of viral persistence in case of cytomegalovirus,

lymphocytic choriomeningitis virus, HIV, and HCV infections

(98, 201, 202).

ARDS is the most common complication of Coronavirus

disease 2019, affecting approximately 75% of COVID-19 patients

in intensive care units (ICU), and a leading cause of COVID-19-

releated death (203). It is a progressive respiratory insufficiency,

defined by a plethora of symptoms including severe hypoxemia,

increased respiratory work, pulmonary embolism, microvascular

thrombosis, diffuse alveolar damage with alveolar cell death, edema,

fibrosis and inflammatory cells infiltrate into the lung interstitium

and alveoli, which can evolve in systemic tissue damage and
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multiple organ failure and eventually results in a fatal outcome

(204–207).

SARS-CoV-2 virus enters in the target cells through the binding

of its viral spike protein (S) to the host angiotensin converting

enzyme 2 (ACE2), which is present in different human organs

(oronasal and nasopharyngeal mucosa, lung, stomach, colon, skin,

lymph nodes, liver, kidney, brain) and mainly expressed on lung

alveolar epithelial cell type II, enterocytes of the small intestine and

vascular endothelium (207, 208). Even though the exact sequelae of

mechanisms leading to COVID-19-mediated lung damage are still

being delineated, it is widely accepted that cytokine storm plays a

prominent role (15, 16, 209–211). Alveolar epithelial cells, alveolar

macrophages and dendritic cells function as sensor cells of the

respiratory mucosa and, upon SARS-CoV-2 infection, give rise to

immune response with a first huge release of early pro-

inflammatory cytokines (including IFN-a, IFN-g, IL-1b, IL-2, IL-
6, IL-12, IL-18, IL-23, TNF-a) and chemokines (such as CCL2,

CCL3, CCL5, CXCL8, CXCL9, CXCL10) that activate resident

lymphocytes and stimulate recruitment of effector cells (210, 212).

Protracted cytokine and chemokine overproduction causes massive

recruitment of neutrophils, eosinophils and NK cells in the

pulmonary parenchyma. Once there, neutrophils secrete free

radicals, myeloperoxidase and other proteases, eosinophils release

major basic proteins and cationic proteins, while NK cells liberate

granzymes and perforins. All these substances exert cytotoxic effects

and lead to alveolar injury. Resident macrophages polarize to M1

phenotype and, in concert with infiltrating DCs, produce nitric

oxide and additional pro-inflammatory molecules, such as TNF-a,
which induce alveolar cell death and further contribute to

pulmonary endothelium damage. Cytotoxic T cells, in turn,

migrate to lungs upon activation by DCs, and also participate in

the killing of infected cells (210, 213).

The host immune response, active in the first phase, can

positively affect infection resolution, suppressing viral replication

and leading to complete pathogen elimination and homeostasis

restoration. However, excessive inflammation is deleterious and

triggers a vicious circle that is self-sustaining of the ongoing hyper-

inflammatory state. The resulting dysregulated cascade of cytokine

first causes the disruption of the lung epithelial barrier and then,

traveling through the bloodstream, can further amplify the cytokine

storm, giving rise to systemic inflammation and potentially

damaging multiple organs throughout the body (209).

Several pro-inflammatory molecules can variably participate to

the cytokine storm driving ARDS in COVID-19, as demonstrated

by different clinical studies reporting higher circulating levels of one

or more immunoactive molecules in patients with severe form of

COVID-19, including IL-1b, IL-2, IL-6, IL-7, IL-8, IL-17, TNF-a,
IFN-g, granulocyte-macrophage colony-stimulating factor (GM-

CSF), CXCL10, CCL2, CCL7, CCL3, CCL4, and C-reactive

protein (CRP) (209, 214–220). Overweight and obesity are

considered a main risk factor for severe symptoms of COVID-19

and increased mortality. This can be explained by the finding that

obese patients have altered NK cell polarization, increased levels of

pro-inflammatory cytokines, such as IL-6 and TNF-a, and

hyperactivation of mTOR pathway (221), besides cardiovascular

co-morbidity.
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The uncontrolled overproduction of pro-inflammatory

chemokine/cytokines observed in SARS-CoV-2 infection is a

clinical characteristic in common with that previously seen in

SARS-CoV and MERS-CoV infections (211, 212). Although this

pathogenic process is shared between COVID-19 and the other

beta-coronavirus infections, the massive increase of IL-10 levels in

patients with severe forms of the illness is a clinical feature that

uniquely distinguishes SARS-CoV-2 infections (211, 222).

A large increase in the proportion of IL-10-secreting regulatory

T cells has been found in peripheral blood of patients with severe

COVID-19, compared to those with mild-to-moderate cases and

healthy individuals (223). Several studies have also reported that

circulating levels of IL-10 are significantly elevated in severe cases of

COVID-19, especially in patients admitted to the ICU compared to

those not requiring ICU care (224, 225) and continued to increase

after admission (45, 116). In addition, elevated IL-10 levels are seen

in patients developing ARDS, respiratory failure and

extrapulmonary dysfunction like disseminated intravascular

coagulation (116, 207) and severe acute kidney injury (46, 226),

as well as a reduced patient survival (116, 227, 228).

Higher IL-10 levels have been positively correlated with

increased exhaustion markers PD-1 and TIM-3 expression on T

cells and lower total number of CD4+ and CD8+ T cells (225). In

patients with severe forms of COVID-19 also a strong relationship

between early overexpression of IL-10 and increased serum

concentrations of IL-1 receptor antagonist (IL-1RA) and other

proinflammatory molecules, including IL-6, IL-8 and C-reactive

protein (116, 215, 228–230) was observed. Numerous clinical

studies have also revealed that elevated amounts of IL-10 in the

serum of COVID-19 patients, alone or with IL-6, IL-12 or IL-1RA,

may accurately predict progression to more severe form of disease

and increased mortality (46, 215, 229–234).

Taken together, these evidence have robustly supported the

great potentiality of monitoring circulating levels of IL-10 in

COVID-19 patients as reliable biomarker to rapidly predict the

disease course at the first stages of infection, to early recognize

patients with higher risk of developing detrimental complications

(231) and to accurately determine the most suitable therapeutic

options and the right time of treatment administration (228, 234).

Alternative potential scenarios were proposed to explain the

clinical meaning of the increase in IL-10 levels in serum of COVID-

19 patients occurring within a few days from infection. IL-10 level

significantly increases one week after symptoms onset following the

massive release of pro-inflammatory cytokines that occurred in the

preceding days. A study showed statistically significant differences

of IL-10 serum levels in the non-severe and severe groups on days 0,

3, and 6. The median concentration of IL-10 on days 3 and 6 was

increased in both the non-severe and severe groups compared to

day 0 (235). IL-10 is generated after acute infection and could have

the ability to block the expression and production of numerous

proinflammatory cytokines, preventing the development of

excessive or chronic immune activation.

The first possible explanation of the COVID associated data,

suggests in fact that IL-10, in the context of ongoing inflammation

induced by COVID-19, behaves in a canonical way as an anti-

inflammatory and immunosuppressive cytokine. High circulating
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levels of IL-10 could be interpreted like an endogenous danger

signal, activated as a negative feedback mechanism in response to

the dramatic increase of pro-inflammatory mediators and the

related alveolar endothelial cell damage. Therefore, IL-10 acts as

an attempt of the host organism to protect itself from the deleterious

effects of an excessive inflammatory reaction, preventing further

progression of tissue damage (211, 236) (Figure 2).

In the renin-angiotensin system (RAAS), renin converts

angiotensinogen to angiotensin I (Ang I), which is in turn

converted to angiotensin II (Ang II) by angiotensin-converting

enzyme (ACE). Ang II, acting through Ang II type 1 receptor

(AT1R), promotes inflammation, fibrosis, vasoconstriction,

thrombosis and oxidative stress, ultimately resulting in tissue

injury. Detrimental effects of Ang II are counterbalanced by

Angiotensin-converting enzyme 2 (ACE2), which converts Ang II

to angiotensin 1-7 (Ang-(1–7)). Ang-(1-7), signaling through the

Mas receptor (MasR), inhibits inflammation and mediates

tissue protection.

SARS-CoV-2 infects host cells by binding its viral spike protein

to the receptor ACE2. Following this binding, SARS-CoV-2 is

internalized by endocytosis and ACE2 expressed on the cell

plasma membrane is downregulated. Reduction of ACE2 leads to

RAAS imbalance with an increase of the ACE/Ang II/AT1R axis

and a parallel decrease of the ACE2/Ang-(1–7)/Mas-R axis,

contributing to hyperinflammation and tissue damage of COVID-

19 and Long COVID syndrome.

Circulating interleukin 10 (IL-10) binds as a homodimer to

tetrameric IL-10 receptor (IL-10R) complex and induce the

downstream activation of Janus kinase 1 (Jak1) and tyrosine kinase

2 (Tyk2) and the subsequent phosphorylation of signal transducer

and activator of transcription 3 (STAT3). Phospho-STAT3 (p-

STAT3) homodimers translocate into the nucleus, where they

directly bind to specific sequences and regulate the transcription of

its target genes, including anti-inflammatory genes and ACE2.

Upregulating ACE2, IL-10 can help to restore RAAS balance, with

a reduction of ACE/Ang II/AT1R axis and an increase of ACE2/Ang-

(1–7)/MasR axis, resulting in beneficial effects on COVID-19 and

post-COVID-19 symptoms. We have previously reported that, in

lung-derived and endothelial cell lines, IL-10 administration

increased the expression level of SARS-CoV-2 receptor, ACE2 a

potent anti-inflammatory molecule (237) (Figure 2).

Blood level of IL-10 is low following SARS-CoV-2 infection

during the innate immune response phase and starts to be

significantly increased around 3 days/one week following the

massive release of inflammatory cytokines (TNF-a, IL-1, IL-6)
and symptoms onset. IL-10 raises after acute disease. During the

convalescent phase, IL-10 levels slowly decrease along with the

symptoms in about 2-3 weeks.

Thus, IL-10 could behave as a counter-regulator of the local

endothelial inflammation as well as the systemic inflammatory

process, by enhancing ACE2 expression (237). In an ex-vivo

study on peripheral-blood immune cells, we have also recently

demonstrated that IL-10 treatment decreased the IFN-g specific

response to spike stimulation, decreased the release of numerous

pro-inflammatory cytokines, chemokines and growth factors,

reduced the frequency of IFN-g producing CD4, CD8 and NK
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cells and cell activation (evaluated by HLA-DR expression), in both

COVID-19 patients and NO COVID-19 vaccinated subjects (45).

Our study further confirmed the view of an immunomodulatory

role of IL-10 in the SARS-CoV-2 specific inflammatory response

and highlights the therapeutic potential of the administration of rhu

IL-10 to treat ARDS in COVID-19 patients, as already investigated

for solid tumors and various autoimmune and inflammatory

diseases (45).
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Several clinical studies have described a huge increase in IL-10

early after few days from infection, after the concomitant increase of

various other pro-inflammatory cytokines (such as TNF-a, IL-6, IL-
1) (Figure 3), as distinctive trait of the hyperinflammatory state

developed upon SARS-CoV-2 infection (238). It has also been

observed a strong association between IL-10 levels and COVID-

19 severity and outcome, suggesting that IL-10 fails to adequately

turn off the inflammation. A plausible explanation for this emerging
FIGURE 3

Circulating levels of IL-10 dynamically change during the clinical course of COVID-19 reflecting host immune/inflammatory state.
FIGURE 2

Potential role of IL-10 in counteracting ACE2 downregulation, rebalancing RAAS system and mitigating tissue damage caused by SARS-CoV-2 in
severe COVID-19 and Long COVID syndrome.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1161067
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Carlini et al. 10.3389/fimmu.2023.1161067
evidence concerns the potential resistance or hypo-responsiveness

of activated immune cells to the immunosuppressive action of IL-

10, resulting in uncontrolled and self-sustained release of pro-

inflammatory cytokine into circulation (239). The occurrence of

this situation has already been demonstrated in vitro in high-

glucose conditions and in vivo in patients diagnosed with type 2

diabetes and has been attributed to defective STAT3 activation

(151). The impaired IL-10 response in presence of high glucose can

justify the increased frequency of mortality and severe complication

in COVID-19 patients with diabetes or hyperglycemia and the

better outcomes associated with improved glycemic control (236,

240). Therefore, it is reasonable to speculate that pharmacological

strategies able to overcome resistance and/or restore responsiveness

to IL-10, as happens by the treatment with a small molecule agonist

of SHIP1 (Src homology-2 containing inositol-5’-phosphatase 1) in

macrophages under hyperglycemia (151), could give a valid

therapeutic opportunity to reduce the overwhelmed inflammation

in patients with severe COVID-19, especially those with diabetes.

In severe COVID-19 cases a drastic early rise in IL-10 was

observed, an effect that represents a paradoxical role of this cytokine

in its classical anti-inflammatory role. This observation gives a

convincing justification for the increased IL-10 levels in the

presence of systemic inflammation such as COVID-19 condition,

as well as previously observed in cancer and immunity (115, 241)

(Figure 2). This can be explained with IL-10 “resistance”, as

reported by Islam et al., 2021, hypothesis that requires further

investigation (239).

Different studies have previously revealed hyper-activation and

expansion of CD8+ T cells, enhanced production of IFN-g and

peripheral increase of various pro-inflammatory and immune-

activating mediators following recombinant IL-10 administration

in healthy subjects with LPS-induced endotoxemia and in patients

with Crohn’s disease and some cancers. Most cytokines/chemokines

are reported as upregulated in these studies (IL-2Ra, IL-4, IL-7, IL-
18, IFN-g, GM-CSF, TNF-a, CXCL10 and CXCL9) supporting the

potential immunostimulatory action of this cytokine in severe

COVID-19 (45). In addition, elevated levels of LPS, a potent

stimulators of IL-10 secretion by macrophages, were observed in

plasma of patients with severe COVID-19 (239). In this scenario,

stimulation of IL-10 signaling with PEG-IL-10 or other IL-10

stimulation might result in clinical benefit for patients with severe

COVID-19.

It is also possible that IL-10 plays a double role in COVID-19,

depending on the timing of the secretion: after few days from

infection, IL-10 produced in the lungs, after viral infection, may

work as a negative feedback mechanism started by an increased

proinflammatory mediators release and aimed at counter-

modulating inflammation and restoring tissue homeostasis.

However, in the later phases, IL-10 production becomes

continuous and elevated and may act as an immune stimulating

factor that promotes a further release of proinflammatory

cytokines/chemokines, hyperactivates cytotoxic effector CD8+ T

cells and amplifies systemic inflammation, leading to disease

exacerbation (211).
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Potential role of IL-10 in
post-COVID-19 syndrome

One of the main problems aggravating the sanitary emergency

due to SARS-CoV-2 pandemic, is the management of the estimated

10% of patients who do not undergo a complete recovery but

manifest persistent post-COVID-19 symptoms for up to 12 or more

weeks after initial infection (24, 242).

The plethora of post-COVID-19 symptoms is highly

heterogeneous and comprises variable degrees of severity: physical

symptoms as fever, fatigue, respiratory symptoms, as dyspnea,

breathlessness and coughing, painful symptoms, as myalgia,

arthralgia, headache and chest pain, neurological symptoms, as

anosmia, dysgeusia, difficulty concentrating and sleeping,

psychological symptoms, as depression, anxiety, poor memory

and concentration, cardiovascular symptoms, as tachycardia and

coagulation dysfunction, and gastrointestinal symptoms. These

multi-organ symptoms can occur as a result of organ damage

following severe COVID-19 or arise de novo after mild infection

without evidence of organ injury (24, 25, 28, 242, 243).

The clinical spectrum of post-COVID-19 symptoms was

classified, by Fernández-de-Las-Peñas and colleagues, into three

different phases based on a temporal criterion: acute post-COVID

symptoms (from 4-5 to 12 weeks after infection), long post-COVID

symptoms (from 12 to 24 weeks), and persistent post-COVID

symptoms (lasting more than 24 weeks) (244). The precise

mechanisms responsible for post-COVID-19 pathology remains

still unclear, but different causative factors have been proposed to

contribute to the various clinical sequelae observed in patients (26,

245, 246). Firstly, SARS-CoV-2, by infecting and replicating into

ACE2 expressing cells, can exert a direct viral toxicity and cause

diffuse endothelial cell damage (247, 248). SARS-CoV-2-mediated

endothelial damage, by recruiting and activating immune cells and

promoting pro-inflammatory and pro-thrombotic mediators release,

can trigger subsequent endothelial inflammation leading to

thrombosis and vascular damage (207, 247). Viral entry into cells

mediates the downregulation of ACE2 and its consequent failure to

convert the angiotensin II into angiotensin 1-7, resulting in the

accumulation of angiotensin II and overstimulation of RAAS that

ultimately causes hypertension, electrolyte unbalancing, lung fibrosis

and inflammation, vasculitis, thromboembolism and intravascular

disseminated coagulation (207, 249). In addition, SARS-CoV-2

impairs the mitochondrial antioxidant function, resulting in

increased reactive oxygen species (ROS) release, oxidative stress

and oxidative damage, which lead to tissue damage, thrombosis,

and red blood cell dysfunction (250–252). The other fundamental

mechanism contributing to the pathological process is thought to be

host’s immune response dysregulation. SARS-CoV-2 dissemination

can trigger a massive cell activation to induce an anti-viral immune

response with an exaggerated and continual production of

inflammatory cytokines, that lead to alveolar edema, hypoxia,

thrombosis, tissue damage, and can ultimately results in systemic

inflammatory response involving the whole organism and causing a

multi-organ injury (207, 247, 248).
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Given the critical role played by IL-10 in the promotion of tissue

repair and resolution of inflammation it is possible that this

cytokine could have a useful impact in recovering physiological

homeostasis and ending the post-COVID-19 symptoms. Blood level

of IL-10 is significantly increased in the first week following the

symptoms’ onset in patients who developed severe COVID-19.

Moreover, higher serum levels of IL-10 were found in individuals

who did not experience sequelae after acute infection compared to

subjects with post-COVID-19. This supports the idea that elevated

levels of IL-10 in the post-COVID-19 period, allow a more efficient

resolution of the immunopathological process, by improving anti-

inflammatory response (253).

Among the symptoms of post-COVID-19 on which IL-10 could

have a beneficial effect there is the olfactory and gustatory

dysfunction (OD/GD), a distinctive sign of acute COVID-19 and

one of the most frequent long-lasting complications in post-

COVID-19 (254). Locatello and colleagues have reported that

elevated serum concentration of IL-10 on hospitalization,

compared to increased levels of other cytokines or presence of

clinical comorbidities, is the only significantly parameter associated

with 30-day taste recovery (255). Luporini et al. has reported higher

IL-6 and IL-10 levels in serum of adults over 65 with COVID-19,

associated with disease severity and a higher comorbidity index

(222). This evidence further supports an involvement of

inflammatory process in COVID-19-associated chemosensory

dysfunction and suggests a role for IL-10 as reliable predictor of

OD/GD course as well as potential pharmacological strategy to

reach a successful recovery in post-COVID-19 patients.

Pain is another post-COVID-associated pathological

manifestation in which IL-10 may have a clinical utility. In

particular, joint, muscle and chest pain represent one of the most

frequently reported persistent symptoms after the resolution of

acute COVID-19 infection and Bussmann et al. (256) have observed

a strong inverse correlation between circulating levels of IL-10 and

pain intensity in COVID-19 patients (256). This evidence suggests

an analgesic function for IL-10 in the context of post-COVID-19

and proposes that this cytokine can significantly improve the

patient’s quality of life, resolving the chronic pain debilitating

condition (256).

Cardiovascular and respiratory symptoms are other persistent

clinical signs, among those commonly affecting post-COVID-19

patients, which can be positively influenced by IL-10. Virus-

mediated downregulation of ACE2, the counter-regulator of ACE,

may cause dysregulation of the renin-angiotensin-aldosterone

system (RAAS), resulting in a worsening of cardiovascular and

respiratory condition (257). Absence of angiotensin-converting

enzyme inhibitors (ACEI)/angiotensin II receptor blockers

(ARBs) therapy were the main prognostic indicators of in-

hospital mortality (258). As reported before, IL-10 could increase

ACE2 expression in lung and endothelial cells (237). Therefore IL-

10, by restoring RAAS balance, can importantly contribute to

normalization of electrolyte levels and blood pressure,

containment of pulmonary inflammation and fibrosis, resolution

of vasculitis, thrombosis, and hyper-coagulation (207).

Although the exact function played by IL-10 in COVID-19 has

not yet been fully defined, due to the multifaceted actions exerted on
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inflammation, IL-10 has been increasingly proposed as critical

contributor during the kinetics of cytokine storm, which is

considered a main responsible for the development and

progression of ARDS in COVID-19 patients and a keystone

factor in influencing disease morbidity and mortality (211,

212, 259).

In fact, IL-10 can also have a beneficial impact in mitigating or

even suppressing the continuative systemic inflammation typically

associated to post-COVID-19 syndrome. In our recent research, we

have demonstrated that exogenous delivery of IL-10 to whole-blood

cells downregulates SARS-CoV-2 induced exacerbated inflammatory

response, by reducing several pro-inflammatory mediators correlated

with COVID-19 severity and by decreasing frequency and activation

of IFN-g producing CD4, CD8 T cells and NK cells (45).

It is also possible that exogenous IL-10 plays a useful

therapeutic role in counteracting neurological symptoms observed

in post-COVID-19. In this regard, Trandem and colleagues (260)

have shown the protective effects of elevated IL-10 levels in mice

infected with a neurotropic coronavirus (260). High IL-10

production, occurring during the early phase of viral encephalitis,

leads to decreased microglia activation, immune cells infiltration

and proinflammatory factors release and an increased regulatory T

cell rate in the site of infection. The immunomodulating actions of

IL-10 were long-time lasting and manifested during the resolution

phase of the infection, resulting in decreased demyelination and

improved survival (260).
Natural bioactive compounds
influencing IL-10 production

The therapeutic role of bioactive compounds obtained from

plants in the treatment of human diseases has been extensively

acknowledged (261–265).

Considering the potential wide-ranging impact that Il-10 could

have on complications associated to post-COVID-19 syndrome,

and in other diseases, such as cancer, it is of interest to study natural

bioactive compounds, able to increase IL-10 expression and

enhance its action, which could represent a useful therapeutic

strategy. In Table 1 we report bioactive compounds, derived from

natural sources, that influence IL-10 production. Among these

compounds, the polyphenol curcumin is endowed with numerous

beneficial properties, including antioxidant, anti-inflammatory,

anti-nociceptive, anti-fatigue and anti-fibrotic effects, by

increasing the expression, production, and activity of IL-10 (266–

268). Administration of nano-curcumin has been reported to

provide anti-viral action and to downregulate expression and

secretion of the inflammatory cytokines IL-1b and IL-6 in

COVID-19 patients (292, 293). The polyphenol 6-gingerol can

upregulate IL-10 production and possesses useful therapeutic

e ff e c t s , compr i s ing an t iox idant , an t i - inflammatory ,

immunomodulatory, analgesic, antipyretic and anti-SARS-CoV-2

activity (268, 269). The green tea polyphenol epigallocatechin-3-

gallate (EGCG) induces Treg by increasing Foxp3 and IL-10

expression in CD4 T cells (270, 271), while acteoside, a phenolic
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glycoside, can promote B cell-derived IL-10 production,

ameliorating inflammatory process (272). The natural dietary

polyphenols kaempferol and resveratrol, with known anti-

inflammatory, antioxidant, antimicrobic and disease‐protective

activities, stimulate IL-10 production and inhibit inflammatory

cytokine secretion (273). A similar effect on oxidative stress,

inflammation and IL-10 level was obtained with a diet enriched

in high-polyphenols containing Extra Virgin Olive Oil (EVOO)

(275). The flavonoids quercetin (276), naringin (277), apigenin

(278, 279), luteolin (280), present in different vegetables and fruits,

and the alkaloid piperin (281) and S-1-Propenylcysteine (286), are

other examples of natural compounds able to increase IL-10 levels

and exert antioxidant, anti-inflammatory, immunomodulatory,

anti-cancer and antimicrobial properties (268, 274, 280, 294).

Evidence emerging from literature and clinical trials suggests

that dietary-derived polyphenols could represent a helpful

supplement in COVID-19 therapy, by contrasting viral load,

suppressing inflammation, promoting ACE2/Ang- (1–7)/MasR

axis, protecting organs from damage, preventing complications

and reducing illness severity (295).
Frontiers in Immunology 12
IL-10 production has been demonstrated to be significantly

increased in macrophages M1 treated with lupeol (pentacyclic

triterpene Lup-20(29)-en-3-ol), a secondary metabolite which is

primarily present in fruit plants (282, 283). Similar results were

observed by Hyam et al. in 2,4,6-trinitrobenzene sulfonic acid

(TNBS) induced colitis model treated with arctigenin, present in

Arctium lappa (burdock plant) seeds (284). Moreover, it has been

observed that the treatment with andrographolide, a bioactive

compound present in the plant known as Andrographis paniculate,

increase IL-10 expression in LPS stimulated primary glial culture (285).

In addition, marine environment represents a rich reservoir of

immunoactive molecules, mainly concentrated in photosynthetic

organisms such as microalgae, which have been recently considered

bioactive cell factories for human health benefits (296). Marine

organisms have emerged as a source of bio-compounds that could

be used as potential immunomodulatory drugs (297), indeed,

different marine compounds show an immunomodulatory

function increasing IL-10 levels.

Marennine, a blue pigment produced by Haslea ostrearia, a

marine pennate diatom, acts on neuroinflammatory processes,

inducing a strong up-regulation of IL-10 genes (287). Ulvan, a

sulfated polysaccharide produced from a green marine algae Ulva

Ohnoi, showed a mild immunomodulatory function increasing IL-

10 levels (288). Zhou et al. reported that asperlin, derived from the

marine fungus Aspergillus versicolor shown beneficial properties

again atherosclerosis, in vitro and in vivo, due to the increase of

protective cytokines (IL-10 and IL-4) (289).

In this scenario marine microalgae are emerging as rich sources

of a wide range of bioactive metabolites with anti-antioxidant and

anti-inflammatory properties that can serve as potential new

therapeutic agents to treat or prevent the severe symptoms of

COVID-19, possibly by enhancing IL-10 levels (298, 299). Marine

sulfated polysaccharides, isolated from different algae, have shown

anticoagulant and immunomodulatory activities as well as potent

antiviral properties, both by stimulating innate immune system and

mucosal barrier defense against the virus and by preventing viral

entry, replication and proliferation (299–301). We have recently

demonstrated that diatoxanthin, a carotenoid derived by marine

diatoms, significantly upregulates IL-10 production, increases

ACE2 activity, exerts an immunomodulant effect by up-regulating

antiviral defense genes and by strongly inhibiting spike-induced

inflammatory response in a lung cell line. Diatoxanthin, exclusively

found in marine environment, decreases the release of pro-

inflammatory mediators responsible for cytokines storm in SARS-

COV2 disease, supporting the therapeutic potential of marine-

derived bioactive compounds against COVID-19 (290).

Among bioactive molecules derived from marine microalgae,

there are some polyphenols also known to exert antiviral activities,

such as the two flavonoids kaempferol and apigenin that are natural

down-regulators of ACE. Apigenin upregulates the expression of the

ACE2 enzyme in kidneys inducing a blood pressure decrease effect,

potentially effective for viral disease control (e.g. COVID-19). In

addition, apigenin and kaempferol inhibit RAAS, which participates

in virus entry into lung cells in the case of coronavirus infection (302).
TABLE 1 Bioactive compounds, derived from natural sources,
influencing IL-10 production.

Natural compounds

Plant-derived compounds References

Curcumin (266–268)

6-gingerol (268, 269)

Epigallocatechin-3-gallate (EGCG) (270, 271)

Acetoside (272)

Kaempferol and Resveratrol (273, 274)

Extra Virgin Olive Oil (EVOO) (275)

Quercetin (276)

Naringin (277)

Apigenin (278, 279)

Luteolin (280)

Piperine (281)

Lupeol (282, 283)

Arctigenin (284)

Andrographolide (285)

S−1−Propenylcysteine (286)

Marine-derived compounds

Marennine (287)

Ulvan (288)

Asperlin (289)

Diatoxanthin (290)

Astaxanthin (291)
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Astaxanthin is another carotenoid of microalgal origin that

provides a rationale to be investigated as a potential beneficial

additive in COVID-19 therapeutics. Astaxanthin has potent

antioxidant, anti-inflammatory, and immunomodulatory effects,

can increase IL-10 secretion and exert a protective role against

cytokine storm and hyper-inflammation, preventing severe

complications (291, 303).
Conclusions

IL-10 is a critical mediator of host innate and adaptive

immunity. It has a multifaceted nature in stimulating or

inhibiting crucial immune pathways. IL-10 as an immune

modulator can decrease detrimental inflammation, inhibit cancer

progression, and curbing disease conditions. It has come to

reviewed attention due to its important level changes in certain

COVID-19 patients.

COVID-19 and its long-lasting complications resulting in post-

COVID-19 syndrome have been and continue to be a global

emergency and a severe challenge to healthcare systems around

the world. It has been observed that the trigger of cytokine storm

and the following hyper-inflammatory state are key causative

factors for the development of severe symptoms and

complications. Although different cytokines have been found as

deregulated in COVID-19 patients, IL-10, due to its multifaceted

role in modulating inflammation, appears as one of the most

intriguing. Present findings support the potential of this cytokine

as reliable predictor of the severity and the outcome in COVID-19

patients, as a possible danger factor and as novel strategy to

counteract hyperinflammation, not only in the acute SARS-CoV-

2 infection phase but also in the post-infection period.

Further studies are needed to elucidate whether exogenous

administration of IL-10 or molecules able to act as adjuvant for

the activation of anti-inflammatory IL-10 signaling may be

beneficial for ameliorating COVID-19 and post-COVID-19

symptoms. More investment in investigation of IL-10 pathway

therapy could be useful in cancer and other chronic diseases.

Natural molecules have also been revealed to be modulators of

this pivotal cytokine.
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