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Background: Although lipid metabolism has been proven to play a key role in the

development of cancer, its significance in uveal melanoma (UM) has not yet been

elucidated in the available literature.

Methods: To identify the expression patterns of lipid metabolism in 80 UM

patients from the TCGA database, 47 genes involved in lipid metabolism were

analyzed. Consensus clustering revealed two distinct molecular groups.

ESTIMATE, TIMER, and ssGSEA analyses were done to identify the differences

between the two subgroups in tumor microenvironment (TME) and immune

state. Using Cox regression and Lasso regression analysis, a risk model based on

differentially expressed genes (DEGs) was developed. To validate the expression

of monoacylglycerol lipase (MGLL) and immune infiltration in diverse

malignancies, a pan-cancer cohort from the UCSC database was utilized. Next,

a single-cell sequencing analysis on UM patients from the GEO data was used to

characterize the lipid metabolism in TME and the role of MGLL in UM. Finally, in

vitro investigations were utilized to study the involvement of MGLL in UM.

Results: Two molecular subgroups of UM patients have considerably varied

survival rates. The majority of DEGs between the two subgroups were associated

with immune-related pathways. Low immune scores, high tumor purity, a low

number of immune infiltrating cells, and a comparatively low immunological

state were associated with a more favorable prognosis. An examination of GO

and KEGG data demonstrated that the risk model based on genes involved with

lipid metabolism can accurately predict survival in patients with UM. It has been

demonstrated that MGLL, a crucial gene in this paradigm, promotes the
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proliferation, invasion, and migration of UM cells. In addition, we discovered

that MGLL is strongly expressed in macrophages, specifically M2

macrophages, which may play a function in the M2 polarization of

macrophages and M2 macrophage activation in cancer cells.

Conclusion: This study demonstrates that the risk model based on lipid

metabolism may be useful for predicting the prognosis of patients with UM.

By promoting macrophage M2 polarization, MGLL contributes to the

evolution of malignancy in UM, suggesting that it may be a therapeutic

target for UM.
KEYWORDS

uveal melanoma (UM), lipid metabolism, cancer prognosis, tumormicroenvironment
(TME), macrophage polarization, monoacylglycerol lipase (MGLL)
1 Introduction

Uveal melanoma (UM) is the most prevalent primary

intraocular malignant tumor and the second most prevalent kind

of malignant melanoma (1), originating in the iris, choroid, and

ciliary body (2, 3). Although UM and cutaneous melanoma are

melanocyte-derived malignant tumors, UM has distinct clinical and

biological characteristics (4). UM, a rare malignancy is most

common in non-Hispanic whites with lighter skin and blue eyes

(5). A recent meta-analysis revealed that the incidence rates in

North America, Europe, and Asia were 5.74 (95% CI: 4.37-7.11), 7.3

(95% CI: 6.36-8.24), and 0.53 (95% CI: 0.31-0.74) respectively (6).

The onset of UM is associated with some risk factors including fair

skin color, light eye color, ability to tan, oculodermal melanocytosis,

nevi, and BRCA1-associated protein 1 (BAP1) mutation (7).

Nowadays, enucleation and radiotherapy—plaque and proton

beam—are the most widely used treatments for UM (8, 9). A

gene expression profile study divided UM patients into two kinds

(low metastatic risk and high metastatic risk) (10). Only 15% of

advanced (metastatic) UM patients have a one-year survival rate,

and median survival varies from 4 to 15 months (11). A

psychological test found that nearly all UM patients desire to

know their survival prognosis at the time the tumor was

diagnosed (12). An increasing number of research have been

focused to elucidate the genetic and pathological mechanisms

involved in UM prognosis, however precise prognostication for

patients is far from unattainable (13, 14). Currently, there is a huge

need to investigate important indicators that can provide

reassurance to patients with a high chance of better survival or

provide counseling, screening, and systemic adjuvant therapy to

patients at high risk (15–17). Consequently, it is imperative to

identify a risk classification strategy and prognostic genes for the

development of personalized therapy for UM patients.

Due to the rapid proliferation of tumor cells and inadequate

blood vessels formation, the tumor microenvironment (TME) is

characterized by hypoxia, high oxidation, acidity, and malnutrition,
02
therefore tumor cells reshape their microenvironment via multiple

processes including lipid metabolic reprogramming (18, 19) to

sustain unrestricted cell proliferation and survival. Metabolic

reprogramming has been considered a hallmark of cancer for its

ability to adapt TME, and dysregulation of lipid metabolism has been

a focal point of recent research (20), contributing to the progression

of various cancers including glioblastomas, prostate cancer, breast

cancer, hepatocellular carcinoma, pancreatic cancer (21–25).

Numerous studies have demonstrated that alterations in tumor

lipid metabolism led to tumor formation and immunosuppression

in the TME (26). Increasing evidence suggests a significant role of

lipid metabolism in melanoma pathogenesis (27). However, the

function of lipid metabolism-related genes (LMRGs) in

determining the outcome of UM is not well understood.

In this study, we sought to identify key LMRGs associated with

TME in UM and to construct a predictive model for UM. This

project seeks to find novel prognostic indicators and therapeutic

targets as well as clarify the condition of the tumor immune

microenvironment in UM in order to build a molecularly-based

technique for predicting survival and treatment advantages for

UM patients.
2 Methods

2.1 Data collection

The Cancer Genome Atlas (TCGA) provided UM patients’

clinicopathological characteristics and gene expression matrices.

The training cohort included 80 UM patients (28). The validation

cohort (containing 28 cases from GSE84976) was derived from the

Omnibus (GEO) datasets (29). Clinical information included

survival time, survival status, gender, age, tumor grade, and stage.

Missing clinical information samples were eliminated.

LMRGs were chosen from Gene Set Enrichment Analysis

(GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
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databases. GSEA has 17 lipid metabolism-related gene sets, while

KEGG has 16. Table S1 lists GSEA and KEGG gene sets. 1168

LMRGs remained for research after eliminating duplication genes.
2.2 Consensus clustering

The R package “ConsensusClusterPlus” (version 1.54.0) was

used to classify UM patients into two subgroups based on the 47

LMAG expression matrix (30, 31). LMRGs consensus clustering

analysis found the optimal number of clusters, the lowest fraction of

ambiguous clusterings, and the best CDF value for k = 2.
2.3 Calculation of microenvironment
cell abundance

The “ESTIMATE” R package (version 1.0.13) calculated

ESTIMATE scores, immune scores, stromal scores, and tumor purity

(32). microenvironment cell populations (MCPs) and immune cells

were quantified using transcriptomic data from the “MCPcounter”

package in R (version 1.1) (33). Single sample gene set enrichment

analysis (ssGSEA) was performed using the R package “GSVA”

(version 1.24.0) to evaluate 28 immune infiltrating cell types (34, 35).
2.4 Differential gene expression and
functional enrichment analysis

“limma” R package (version 3.40.6) performed differential gene

expression analysis. We selected differentially expressed genes

(DEGs) using |log2(fold change)| >1 and a false discovery rate

(FDR) adjusted p < 0.05. The DEGs list was then analyzed using

Gene Ontology (GO) and KEGG via “clusterProfiler” R package

(version 4.4.4). Enrichment analysis and protein-protein interaction

(PPI) analyses were done with “Metascape” (36). Using the molecular

signature database’s “GO biological process” gene set, the “GSVA” R

program (version 1.24.0) investigated the two clusters’ signaling

pathways. GSEA analyzed the significant pathways.
2.5 Construction of the immune-related
risk model

The R package “glmnet” (version 4.1-2) and absolute shrinkage

and selection operator algorithm (LASSO) analysis generated a risk

model based on univariable regression analysis of prognostic genes.

The smallest lambda value was ideal. Multivariate Cox regression

analysis determined the gene risk model. The following formula

calculated the risk score: risk score = - 0.154969330859525 *

expression value of ectonucleotide pyrophosphatase 2 (ENPP2) +

0 .168756185717411 * expre s s ion va lue o f MGLL -

0.491974590575217 * expression value of phospholipase C delta 1

(PLCD1) - 0.329592494818697 * expression value of solute carrier

family 44 member 3 (SLC44A3). The lipid‐related gene signature risk

score evenly divided patients into low‐risk and high‐risk groups.
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Kaplan-Meier analysis in R package “survival” (version 3.2-7)

assessed the survival difference between two subgroups. Time-

dependent receiver operating characteristic (ROC) curve analysis

using the “survivalROC” R package (version 1.0.3) was also used to

verify the risk model’s prediction accuracy. Figure 1 illustrates the

data analysis procedure.
2.6 Pan-cancer analysis of
MGLL expression

The pan-cancer data set was obtained from the UCSC database

and retrieved monoacylglycerol lipase (MGLL) gene expression

data from each sample. Using the TIMER2 database (http://

timer.cistrome.org/), pan-cancer macrophage infiltration and

MGLL mRNA expression were correlated (37). Reassessed pan-

cancer patient immune cell infiltration score via the R package

“IOBR” (version 0.99.9) QUANTISEQ (38). Survival data were

integrated by sample barcode to examine MGLL mRNA

expression in pan-cancers. The median value of MGLL expression

was utilized to distinguish high- and low-expressing tumor samples.

Using the R package “survival” (version 3.2-7), survival time and

status were fitted within the two groups. Cox proportional hazards

models and log-rank tests examined the correlation between MGLL

mRNA expression and overall survival (OS), disease-specific

survival (DSS), disease-free survival (DFS), and progression-free

survival (PFS). All cancer types are abbreviated in Table S2.
2.7 Single-cell RNA-seq online analysis

The scTIME Portal (http://sctime.sklehabc.com/unicellular/

home) is a database with single-cell time-specific analytic tools for
FIGURE 1

Flow chart of the data analysis procedure.
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exploring and analyzing TIMEs (39). The “NormalizeData”

function, the LogNormalize procedure, and a scale factor of

10,000 were used to normalize the GSE139829 dataset before

nonlinear dimension reduction with the “RunUMAP” function

and a dims parameter of “1:30”. UM patients’ cell type

proportions and connections were then determined.
2.8 Cell lines and cultures

The human UM cell line MuM-2B (iCELL-h148; Shanghai,

China) (40) and the human monocytic leukemia THP-1 cells

(#TIB202; ATCC, USA) were grown in RPMI-1640 media

containing 10% FBS and 1% penicillin-streptomycin (Gibco,

USA) at 37°C and 5% CO2. The adult retinal pigment epithelial

cell line (ARPE-19) cells from American Type Culture Collection

(ATCC, Manassas, VA, USA) were cultured in DMEM/F12 (Gibco,

USA). Shanghai Baoyi Applied Biotechnology Co., Ltd. did a short

tandem repeat (STR) analysis. Experiments were done during

logarithmic cell growth.
2.9 Monoacylglycerol lipase small
interfering RNA construction
and transfection

MGLL-knockdown small interfering RNA (siRNA) and negative

control siRNA were purchased from Guangzhou RiboBio Co., Ltd.

MGLL siRNA was transfected into MuM-2B cells by Lipofectamine

RNAi Max (Invitrogen, CA, USA) to transient knockdown MGLL.

Western blotting confirmed siRNA inhibition after 48 h of transfection.

The siRNA sequence is CCAGGACAAGACTCTCAAGAT (41).
2.10 Cell proliferation assay

Cell proliferation experiment was performed using Cell

Counting Kit-8 (CCK-8) (MedChem Express, Monmouth

Junction, NJ, USA). 2000 MuM-2B cells per well were seeded into

96-well plates transfected with MGLL or negative control siRNA.

After seeding for 24 h, 48 h, 72 h, 96 h, and 120 h, each well received

10 mL CCK-8 solution and was incubated at 37 °C for 1.5 h in the

dark. A microtiter plate reader (BIO-TEK Instruments, Winooski,

VT, USA) measured live cells at 450 nm.
2.11 Migration and invasion assays

The cell invasion assay used Matrigel (BD Biosciences,

Mississauga, Canada), while the cell migration assay did not.

4 × 10^4 cells per well suspended in 200 mL serum-free medium

were added to the cell culture insert (24-well insert, 8-mm pore size),

and 500 mL 10% FBS-supplemented RPMI-1640 were added to the

well to stimulate cell migration or invasion. After 24 hours, the cells in

the inserts were removed and the cells that penetrated and attached to

the bottom membrane were fixed with 4% paraformaldehyde (PFA)

and stained with crystal violet (0.05% [w/v]). A photomicroscope

took images in three randomly selected fields in each well.
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2.12 Scratch wound healing assay

MuM-2B cells were seeded at 5 × 10^5 cells per well in a 6-well

microplate. Scratches were made in the middle of the well with a sterile

200 mL pipette tip when cells reached 95% confluence. Serum-free

medium replaced 10% FBS-supplemented RPMI-1640. Photographs

were taken at 0 h, 24 h, and 48 h to estimate gap closing. 2.13 RNA

extraction and real-time quantitative PCR (RT-qPCR) assays

TRIzol Reagent (Invitrogen, USA) extracted total RNA from

cells, and cDNA was generated from 1 mg of RNA using the M-

MLV Reverse Transcriptase Kit (Promega, USA) according to the

manufacturer’s instructions. A Bio-Rad iQ5 RT-qPCR System

performed RT-qPCR. GAPDH normalized transcript expression.

Table S3 lists the primer sequences used in this study.
2.14 Western blot

The to ta l ce l l p rote in was i so l a t ed us ing rad io

immunoprecipitation assay buffer (RIPA; Beyotime, China) and

quantified using BCA Protein Assay Kits (Pierce, Rockford, IL,

USA). SDS-PAGE separated the identical protein samples, which

were electro-transferred into PVDF membranes (Millipore Corp,

Atlanta, GA, USA). After 1 hour of blocking in 5% non-fat milk,

anti-MGLL (1:1000 dilution, #A6654, ABclonal, China) and anti-b-
actin (#4970, Cell Signaling Technology, USA) primary antibodies

were incubated overnight at 4°C. HRP-conjugated secondary

antibodies (Cell Signaling Technology, USA) were incubated for 1

h at room temperature. Thermo Fisher ECL reagents detected band

signals. It is recommended that strips be washed with stripping buffer

(P0025, Beyotime, China) to ensure that the previous antibody has

been removed and imaging can be repeated if necessary.
2.15 THP-1 polarization

THP-1 cells were seeded at 1 x 10^6 per well in 6-well plates and

treated with PMA (100 nmol; Sigma-Aldrich, St. Louis, MO, USA)

for 48 h. M1 macrophages were polarized by incubation with IFN-

gamma (20 ng/mL; R&D System, USA) and LPS (100 ng/mL;

Sigma, USA) for 48 h. IL-4 (100 ng/ml; PeproTech) was added

for 48 h to elicit M2-phenotype polarization.
2.16 Statistical analysis

The data were analyzed using R (version 4.0.3) and GraphPad

Prism (version 8.0.1). Univariate and multivariate Cox proportional

hazards regression identified independent prognostic factors. After

multivariate Cox regression analysis, a nomogram was created to

predict 3-year RFS and validated with C‐index. Following the

regrouping of patients by age, sex, and metastasis, a subgroup

analysis was conducted. Student’s t-test was used for statistical

analysis between two groups, however one-way ANOVA was

applied when there were three or more groups. P < 0.05 was

statistically significant.
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3 Results

3.1 Two LMRGs-based molecular subtypes
and their prognostic significance

Gene expression profiles and clinical data for 80 UM patients

were gathered from the TCGA data portal. First, univariate Cox

analysis screened gene sets linked with UM patient survival, then 47

LMRG-associated genes were selected (Table S4). Unsupervised

consensus clustering established the optimal number of groups (k =

2) based on the expression patterns of 47 survival-related LMRGs

genes (Figures 2A–C). We found two kinds of UM patients: cluster

1 (45, 56.25%) and cluster 2 (35, 43.75%). These survival-related

LMRGs genes in the two clusters differed, as shown by the heatmap

(Figure 2D). Cluster 2 had a substantially lower OS rate than cluster

1 (Figure 2E, P < 0.001). These data showed that LMRGs are greatly

linked to UM patients’ overall survival.
3.2 Identification of differentially expressed
lipid metabolism-related genes and
functional annotation

We used the “limma” R tool to compare gene expression

between groups. The two clusters had 647 DEGs, 170 upregulated

and 477 downregulated (Figure 3A). To elucidate these DEGs’

immunity-related functions, GO (Figures 3B, C) and KEGG

(Figure 3D) analyses were conducted. Most of these DEGs were

involved in antigen processing and presentation, Th1 and Th2 cell
Frontiers in Immunology 05
differentiation, and other immune-related functions, according to

signaling pathway analyses. The PPI analysis identified 14 sub-

models, most of which (MCODE1, 2, 5, 7, 8, 10, and 12) were

closely related to tumor formation and immunity, suggesting that

immunity may contribute to UM through lipid metabolism

(Figure 3E; Table S5). GSEA was performed in the two clusters to

determine the relationship between enriched pathways and immune

cell infiltration in UM patients, which found that T cell receptor

signaling pathway, natural killer cell-mediated cytotoxicity, antigen

processing and presentation, cytokine-cytokine receptor

interaction, and chemokine signaling pathways expressed highly

in cluster 1 patients (Figure 3F). These findings suggest that LMRG

expression is crucial in the UM TME.
3.3 UM patients in two molecular subtypes
exhibited significant differences in TME and
immune status

The scoring signature of tumor-infiltrated immune cells can

predict immunological treatment response and UM prognosis (42).

Thus, we identify the relationship between lipid metabolism and

TME in UM. We calculated each subgroup’s immune score,

ESTIMATE score, and stromal score using the ESTIMATE

technique to see if there was an immunological difference. Cluster

2 showed much higher immune scores than cluster 1 (Figure 4A).

Furthermore, we estimated immune infiltration in the UM

microenvironment using the TIMER database. Cluster 1 had

more fibroblasts, but cluster 2 had more T cells, CD8 T cells,
D

A B

E

C

FIGURE 2

The analysis of consensus clustering. (A–C) Consensus clustering is best performed with K = 2. (D) A heatmap illustrating the differential expression
of lipid metabolism genes between the two groups. (E) Two subgroups of patients displayed different survival curves.
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cytotoxic lymphocytes, NK cells, monocytic lineage, and myeloid

dendritic cells (Figure 4B). B lineage, neutrophils, and endothelial

cells were not statistically different between these two clusters

(Figure 4B). Cluster 1 had a relatively low immune status, while

cluster 2 was high (Figures 4C, D). These findings suggest that two

molecular subtypes have distinct TME.
3.4 Construction of a risk model

A prognosis prediction model was used to test LMRGs’ ability

to predict UM prognosis. We extracted four LMRGs in UM] at the

minimum likelihood of a deviative pattern (lmin = 0.09) using Lasso

regression on these DEGs (Figures 5A, B). Four genes (ENPP2,

MGLL, PLCD1, and SLC44A3) were discovered through

multivariate Cox regression. These four genes were utilized to

create a risk regression model that categorized UM patients into

low- and high-risk groups (Figure 5C). Patients with high risk

exhibited significantly shorter survival periods than those with low

risk (P = 4.7e-13; Figure 5D). The model’s robustness was assessed
Frontiers in Immunology 06
by plotting ROC curves for 1-year, 3-year, and 5-year OS, with areas

under curves (AUCs) of 0.86, 0.95, and 0.93, respectively

(Figure 5D), indicating a positive accuracy rate. We used the

ESTIMATE algorithm to evaluate the two groups’ TME to better

understand TME involvement in the UM risk model. The high-risk

group had significantly higher stromal, immune, and ESTIMATE

scores than the low-risk group (Figure 5E). Generally, high immune

cell infiltration in the TME is associated with a positive prognosis,

but in the UM it is associated with poor outcomes (42), which is

consistent with our findings.

Additionally, the verification cohort was used to validate the

created predictive risk score model. The heatmap showed the four

candidate genes expression in the verification cohort stratified by

risk level (Figure 5F). Survival analysis showed that the high-risk

group had a worse prognosis than the low-risk group (P = 1.9e-7;

Figure 5G). ROC analysis showed that the risk model predicted 5-

year survival best (Figure 5H). Our findings show that the risk score

model we created can correctly forecast the prognosis of

UM patients.
D

A B

E F

C

FIGURE 3

The analysis of differentially expressed genes and the evaluation of their functions. (A) Volcano plot illustrates the expression of DEGs between the
two subgroups. (B, C) Visualization of biological processes that have been enhanced by GO analysis using bubble diagrams and networks. (D) A
circle plot displaying the signaling pathways that KEGG analysis has enriched. (E) An analysis of DEGs based on PPI. (F) A GSEA plot depicts the
signaling pathway analysis.
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3.5 Testing for independence in the
constructed risk model

Subgroup analysis and regression analysis were used to evaluate

the risk model’s independence and the risk score’s relevance to

clinical features. Risk scores did not differ between patients of

different sexes (Figure S1A), ages (Figure S1B), or distant

metastases (Figure S1C), indicating no correlation between risk

scores and clinical characteristics. The risk model was highly

predictive when patients were classified by sex (Figures S1D, E),

age (Figures S1F, G), or distant metastasis (Figures S1H, I). The risk

model was also an independent predictor of patient prognosis in the

univariate Cox regression study (Table 1). These findings

demonstrate that the risk model is extremely independent in

predicting UM patients’ prognoses.
Frontiers in Immunology 07
3.6 Construction and calibration
of an integrated nomogram combining
clinicopathological features and
risk signature

Clinical parameters should be considered while predicting UM

patients’ prognoses, therefore risk score, age, gender, and distant

metastases were used to create a prognosis nomogram for UM

patients (Figure S2A). The nomogram was validated in the training

and verification cohorts using the concordance index (C-index) and

calibration curve. The nomogram’s C‐index in the training group

was 0.919 (95% CI, 0.887–0.951, Figure S2B), which matched the

verification cohort (Figure S2C), indicating its predictive power.

Overall, the nomogram was more accurate in predicting UM

patients’ prognosis.
D

A

B

C

FIGURE 4

A comparison of immune infiltration between the two clustered subgroups. (A) The Violin diagram presented the calculation of stromal score,
immune score, and estimate score in two subgroups. (B) MCP evaluated the abundance of ten immune filtrating cells. (C) A heatmap displays the
level of enrichment for 28 immune-related cells based on a ssGSEA algorithm. (D) Statistical analysis of ssGSEA. *p < 0.05; **p < 0.01; ***p < 0.001
****p < 0.0001.
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3.7 MGLL affects the proliferation,
migration, and invasion of UM cells in vitro

When ENPP2, MGLL, PLCD1, and SLC44A3 mRNA expression

levels in ARPE-19 cells and MuM-2B cells were compared, we found

that MGLL had significantly higher expression while PLCD1 and

SLC44A3 had significantly lower expression (Figure 6A). ENPP2

mRNA expression was not detectable in this study. MuM-2B cells

were found to have much higher expression levels of MGLL than
Frontiers in Immunology 08
ARPE-19 cells (Figure 6B, Figure S3). siRNA-targeted MGLL and

siRNA control were transfected into MuM-2B cells to explore the

functional role of MGLL in UM. Transfection effectiveness was

assessed using Western blotting (Figures 6C, S4). The impact of

MGLL on cell proliferation was then assessed using the CCK-8 test,

which revealed that MGLL knockdown reduced the proliferation of

MuM-2B cells (Figure 6D). Additionally, after reducing the

expression of MGLL, MuM-2B cells’ capacity for migration and

invasion was suppressed (Figures 6E–G, S5–S7). According to these
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FIGURE 5

Construction and verification of a risk model. (A) Analysis using LASSO with a minimal lambda. (B) A heatmap displays the survival status and risk
score of UM patients based on the expression of four potential genes in two groups. (C) Survival curves of UM patients in two different groups.
(D) A risk model with ROC curves that are time-dependent. (E) Stomal score, immune score, and ESTIMATE score are calculated using the ESTIMATE
algorithm. (F) Four candidate genes were expressed in the verification cohort with survival status and risk score indicated. (G) An analysis of the
survival curves for high-risk and low-risk patients in the verification cohort. (H) The ROC curve for the risk model’s verification cohort. **p < 0.01;
***p < 0.001
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findings, MGLL inhibition reduced cell proliferation and migration

in UM.
3.8 Pan-cancer MGLL expression
and prognosis

Differential expression analysis of pan-cancer samples revealed

that MGLL was generally underexpressed in cancers, including

bladder urothelial carcinoma (BLCA, p < 0.001), breast invasive

carcinoma (BRCA, p < 0.001), colon adenocarcinoma (COAD, p <

0.001), glioblastoma multiforme (GBM, p < 0.01), head and neck

squamous cell carcinoma (HNSC, p < 0.001), kidney renal papillary

cell carcinoma (KIRP, p < 0.01), liver hepatocellular carcinoma

(LIHC, p < 0.05), lung adenocarcinoma (LUAD, p < 0.001), lung

squamous cell carcinoma (LUSC, p < 0.05), prostate

adenocarcinoma (PRAD, p < 0.001), rectum adenocarcinoma

(READ, p < 0.05), stomach adenocarcinoma (STAD, p < 0.05),

and uterine corpus endometrial carcinoma (UCEC, p < 0.001), with
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the exception of kidney renal clear cell carcinoma (KIRC, p <

0.001) (Figure 7A).

MGLL expression was then evaluated in relation to OS, DSS,

and PFS. An analysis of 44 tumors using cox regression revealed

that MGLL expression was significantly positively related to the OS

of UM patients (p = 1.5e-6), acute myeloid leukemia patients

(LAML, p = 9.8e-4 in TCGA, p = 5.9e-3 in TARGET), and

pancreatic adenocarcinoma patients (PAAD, p = 1.2e-3), but

negatively related to the OS of KIRC patients (p = 1.9e-3) and

sarcoma patients (SARC, p = 0.03) patients (Figure 7B). Further cox

regression analysis of 38 tumors indicated that MGLL expression

significantly correlated with PFS in 5 cancers and was a risk factor

for UM (p = 6.0e-7), PAAD (p = 1.7e-3), STAD (p = 4.0e-3), and

ACC (p = 0.03), but a protective factor for ovarian serous

cystadenocarcinoma (OV, p=0.03; Figure 7C). MGLL expression

was significantly correlated with DSS in four tumors. For UM (p =

3.2e-7) and PAAD patients (p = 1.1e-3), MGLL was a protective

factor, whereas for KIRC (p = 2.5e-4) and SARC patients (p = 0.01),

it was a risk factor (Figure 7D).
TABLE 1 Univariate analysis of risk score and characteristics in training cohort.

Characteristics Total (N)
HR (95% CI) Univariate

analysis
P value Univariate

analysis
HR (95% CI) Multivari-

ate analysis
P value Multivariate

analysis

Age 80 1.046 (1.008 - 1.085) < 0.05 1.092 (1.019 - 1.171) < 0.05

Gender 80 0.316

Male 45 Reference

Female 35 0.649 (0.274 - 1.536) 0.325

Clinical T stage 80 0.169

T2 5 Reference

T3 36 0.956 (0.116 - 7.864) 0.966

T4 39 2.163 (0.278 - 16.817) 0.461

Clinical N stage 80 0.058

N0 76 Reference Reference

NX 4 6.177 (1.302 - 29.304) < 0.05 8.059 (0.560 - 115.918) 0.125

Clinical M stage 80 < 0.01

M0 73 Reference Reference

M1 3 35.072 (4.689 - 262.335) < 0.001 0.241 (0.006 - 9.795) 0.452

MX 4 2.226 (0.507 - 9.778) 0.289 0.694 (0.051 - 9.367) 0.783

Clinical stage 80 < 0.001

Stage II 39 Reference Reference

Stage III 37 1.235 (0.504 - 3.028) 0.644 1.074 (0.318 - 3.623) 0.909

Stage IV 4 72.950 (7.056 - 754.174) < 0.001 20.228 (0.383 - 1066.974) 0.137

Metastasis 80 < 0.001

Yes 26 Reference Reference

No 54 0.044 (0.010 - 0.189) < 0.001 0.118 (0.015 - 0.956) < 0.05

RiskScore 80 36.695 (8.799 - 153.035) < 0.001 12.017 (1.637 - 88.233) < 0.05
HR, hazard ratio; CI, confidence interval.
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Tumor tissues contain many non-tumor cells, including

immune cells, stromal cells, and interstitial cells, which help

tumor formation and growth (32). Tumor purity correlated with

clinical characteristics, genome expression, and characteristics (43).
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Thus, MGLL expression and tumor purity should be assessed in

tumor samples (Figure 7E). 22 tumors had significant Pearson

correlations, 1 of which was positive and 21 of which were

negative (Table S6).
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FIGURE 6

MGLL knockdown reduces UM cell migration, invasion, and activity in vitro. (A) Using qRT-PCR, the expression levels of ENPP2, MGLL, PLCD1, and
SLC44A3 in ARPE-19 and MuM-2B cells were determined. ENPP2 mRNA expression was undetectable. Normalization of Ct values to GAPDH was
performed. (Student’s t-test) (B) Using WB, MGLL levels in ARPE-19 and MuM-2B cells were examined, and relative protein expression was adjusted
using -actin levels. (left: images indicative of three independent experiments; right: quantitative analysis, n = 3, paired Student’s t-test) (C) Western
blotting revealed MGLL protein level in response to MGLL-siRNA treatment; relative protein expression levels were normalized based on -actin
levels. (left: photos indicative of three independent experiments; right: quantitative analysis, n = 3, paired Student’s t-test) (D) Using the CCK-8 test,
growth curves for MuM-2B cells treated with MGLL knockdown were determined. (Student’s t-test) (E) To determine the migration of MuM-2B cells,
a Transwell test was carried out. (left: typical images from three independent experiments; right: quantitative analysis, n = 3, unpaired Student’s t-
test, scale bar represents 100 mm) (F) A Transwell experiment was conducted to identify the invasion of MuM-2B cells following MGLL knockdown
treatment. (left: typical images from three independent experiments; right: quantitative analysis, n = 3, unpaired Student’s t-test, scale bar represents
100 mm) (G) MuM-2B cells were used in a wound healing experiment to identify MGLL knockdown-induced migration. (typical images of three
independent experiments, scale bar represents 200 mm) *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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3.9 Immune infiltration analysis

Since this work indicated a relationship between MGLL

expression and immune cell infiltration in various malignancies

(Figure 7E), we explored immune cell infiltration in pan-cancers.

QUANTISEQ analyzed the immune cell infiltration of a uniformly

normalized dataset from the UCSC database. MGLL and immune

cell infiltration scores were strongly associated with 10,180 tumor

samples from 44 tumor types. Besides, MGLL expression and
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immune infiltration were correlated in 43 cancer types

(Figure 8A). Interestingly, MGLL gene expression was highly

positively related to M1-type macrophages in acute lymphoblastic

leukemia (ALL, R = 0.58) and lymphoid neoplasm diffuse large B-

cell lymphoma (DLBC, R =0.60; Figure 8A) and considerably

positively associated with M2-type macrophages in UM (R =

0.60; Figure 8A).

Using TIMER2, we examined the connection between pan-

cancer macrophage infiltration and MGLL expression and found a
D
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FIGURE 7

A correlation between MGLL and prognosis in pan-cancer samples. (A) Expression levels of MGLL across pan-cancer samples in the TCGA dataset.
(http://timer.cistrome.org/) (B) Cox regression model study of MGLL expression and OS in the UCSC dataset. (C) Cox regression model-based
analysis of PFS and MGLL expression. (D) Cox regression analysis of MGLL expression with DSS in different types of tumor. (E) MGLL expression
and tumor purity were correlated using the ESTIMATE algorithm in the UCSC dataset. DSS, disease-specific survival; PFS, progression-free survival.
*p < 0.05; **p < 0.01; ***p < 0.001.
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positive correlation between them in DLBC, testicular germ cell

tumor (TGCT), thymoma (THYM), and UM (Figure 8B).

CIBERSORT algorithm also revealed a favorable association

between UM MGLL expression and M2 macrophages (R = 0.59;

Figure 8B). Therefore, MGLL affects immune cell infiltration

especially macrophage polarization in various cancers.
3.10 Effect of MGLL on macrophage
infiltration in TME

We used Uniform Manifold Approximation and Projection

(UMAP) to cluster and designate 59,916 cells into 40 categories

utilizing UM single-cell sequencing data (GSE139829) to study

MGLL expression and function in TME at single-cell resolution

(Figure 9A). Each sample’s cell type fraction, with cancer cells,

makes up practically the entire part (Figure 9B). Cancer cells and

macrophages predominately expressed MGLL (Figure 9C). We then

examined MGLL expression in cancer cells and macrophage

makeup invading them (Figures 9D, S8A–F) and found that

MGLL expression on cancer cells was positively correlated with
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SPP1-ACP5 macrophage infiltration (Figure 9D). SPP1-ACP5

macrophages were confirmed using the gene markers TLR2 of

macrophage M1 and CD36 of M2. SPP1-ACP5 and IL1B

macrophages express high levels of CD36 (Figure S8G), while

ARG and IL1B macrophages express high levels of TLR2 (Figure

S8H). Interestingly, MGLL may polarize M2 macrophages (SPP1-

ACP5) by eliminating IL1B macrophages (Figure 9D).

To test if tumor cell-expressed MGLL can polarize macrophages

to the M2 type, ARPE-19 or MuM-2B cells were co-cultured with

THP-1 cells. Co-culturing MuM-2B and THP-1 cells elevated M2

macrophage markers including CD36 (Figure 9F), but not M1

markers like TLR2 (Figure 9E). In contrast, ARPE-19 cells co-

cultured with THP-1 cells showed opposing macrophage

polarization. These data suggest that UM-produced MGLL

regulates macrophage polarization.
4 Discussion

Numerous lines of evidence imply that lipid metabolism is

reprogrammed in cancers (44), which contributes to tumor
A

B

FIGURE 8

Assessment of immune infiltration. (A) Using the QUANTISEQ method, MGLL expression and immune cell infiltration were associated in the UCSC
dataset. (B) Various algorithms identifies a relationship between MGLL expression and macrophages in different types of cancer from the TCGA
database. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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progression and local immunosuppression in the TME (26). Lipids,

cell membrane components and second messengers that transduce

signals within cells serve as vital energy storage sources under

nutrient scarcity (45). The function of lipid metabolic abnormalities

in cancer cells has been a major topic of study in recent years. The

key processes of lipid metabolism are synthesis, storage, and

breakdown. There is evidence that aberrant lipid metabolism

plays a significant role in the development, progression, invasion,

and treatment response of numerous cancers (46).

UM, the most common primary malignant eye tumor has been a

major public health issue. Although UM will be diagnosed earlier as

diagnostic technology advances, a fraction of early-stage patients are

still diagnosed at an advanced stage, and the 5-year survival rate is still

dismal, with the median survival of metastatic UM patients being less

than 1 year due to highmetastasis rates and restricted therapy options

(3, 47, 48). Thus, better risk stratification strategies are needed to

identify high-risk cancer patients to improve their prognosis.

Using consensus clustering, we classified samples into two

categories based on the mRNA expression patterns of 47

prognostic genes derived from univariable Cox analysis. We

found that lipid metabolism abnormalities may affect patient

outcomes, as the two molecular categories had significant

differences in overall survival, which we speculated may be linked

to immune activity. Therefore, the ESTIMATE algorithm was then

used to give additional insight into the immunological landscapes of

UM, revealing that UM patients with bad prognoses had higher

immune scores and ESTIMATE scores than those with better
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prognoses. Based on the aforementioned data, it can be assumed

that immune variants may have a significant role in UM survival.

Furthermore, functional investigations were conducted to

investigate the underlying mechanisms. In this study, we

demonstrated that the prognosis of UM is significantly influenced

by LMAGs through immune-associated signaling pathways, per the

GO analysis and KEGG analysis. Subsequently, GSEA was used to

explore the association between lipid metabolism and aberrant

immunity. The findings showed that cluster 2 had lower immune

cell differentiation expression. These findings provided a

preliminary explanation for the prognostic differences between

the two groupings, showing that immunological activity and the

associated-LMRGs were responsible.

Additionally, we constructed a predictive risk model based on

LMRGs and verified it in a validation cohort to establish that lipid

metabolic disorders affect TME in UM patients.We also constructed a

prognostic risk model using the four LMRGs signatures, including

ENPP2, MGLL, PLCD1, and SLC44A3, and we found that most of

them were correlated with tumor progression. For example, ENPP2,

which encodes autotaxin, is overexpressed in chronic inflammatory

diseases and cancer and synthesizes lysophosphatidic acid (49, 50).

PLCD1 is known to convert phosphatidylinositol bisphosphate into

diacylglycerol and inositol triphosphate, which serve as scaffolds and

signaling molecules (51). PLCD1 is also identified as a new tumor

suppressor gene, which is suppressed by promoter methylation in

various cancer types (51–53). However, SLC44A3’s role in cancer is

unknown. Notably, only MGLL was highly expressed in the risk
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FIGURE 9

MGLL affects macrophage polarization in the TME. (A) Distribution of different cell clusters in the UMAP plot. (B) The fraction of each sample
depends on the type of cell. (C) MGLL expression in distinct clusters of cells. (D) Correlation analysis between expression of MGLL in cancer cells
and composition of infiltrating macrophages (SPP1-ACP5). (E) THP-1 macrophages were polarized towards an M1-like phenotype by the conditioned
media of ARPE-19 cells with reduced MGLL expression. (F) THP-1 macrophages were polarized to an M2-like phenotype by the conditioned medium of
MuM-2B cells with highly expressed MGLL. (n = 3, paired Student’s t-test) **p < 0.01; ***p < 0.001; ****p < 0.0001 ns, no significance.
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model. MGLL is a metabolic enzyme that transforms triglycerides into

free fatty acids and is involved in tumor signaling (54). MGLL has

been implicated to play a pathophysiological role in various cancers

(54, 55). MALL is found to be involved in multiple cellular processes

in cancer cells and is highly elevated in multiple aggressive cancer

types (56). For instance, in endometrial adenocarcinoma, MGLL

promoted tumor proliferation, metastasis, and the occurrence of

progestogen resistance (57). In lung cancer, MGLL inhibition led to

a decrease in cell proliferation, invasion, and metastasis (58, 59). In

addition to inhibiting cell proliferation, migration, invasion, and

tumor growth, MAGL inhibition also induced apoptosis in cervical

cancer (60). According to a study on TNBC suggested that inhibiting

MGLL can suppress inflammation, tumor growth, and brain

colonization (61). Interestingly, MGLL in cancer cells promoted

tumor progression by releasing special fatty acids whereas MGLL in

TAMs suppressed cancer development by attenuating endogenous

cannabinoid receptor 2 signaling (62). Additionally, MGLL has been

reported to play a role in melanoma. Baba et al. observed that

melanoma samples with lymphovascular invasion tended to be

expressed more MGLL than samples without invasion, suggesting

that the expression of MGLL in tumor cells may serve as a marker of

tumor invasion and progression in malignant melanoma (63). In this

study, we found that MGLL is upregulated in UM, and inhibition of

MGLL suppressed the cell proliferation, migration, and invasion of

UM cells, suggesting an oncogenic role of MGLL in UM.

Lipid metabolism has a substantial impact on macrophage

regulatory functions. For example, lipids not only supply energy

but also provide precursors to bioactive lipids and cell membrane

components to macrophage (64). Besides, lipids regulate gene

expression and signal transduction during macrophage activation

(65). Several studies revealed that MGLL can induce the

accumulation of 2-arachidonoylglycerol in the TME, which

promotes the shift of tumor-associated macrophages into a

tumor-promoting M2-like state by activating CB-2 (56, 62).

Similarly, we discovered that MGLL was abundantly expressed in

UM cells, which prompted a phenotypic shift in macrophages to a

pro-tumor M2 state. Therefore, inhibiting MGLL in tumor cells

may be a curative treatment for UM.

The 4-LMRGs risk model assigned a risk score to each UM

patient, and the examination of survival in both the training and

validation cohorts demonstrated powerful prediction ability. Using

univariate/multivariate Cox regression analysis, the built risk model

was an independent predictor of prognosis for UM patients

irrespective of age, sex, or metastatic status. Additionally, we

created and validated a nomogram that combines risk ratings and

clinical characteristics to predict survival. The results indicated that

aberrant lipid metabolism and TME may have an effect on therapy

and survival, particularly in patients with metastatic UM.

Although our established LMRGs-based risk score for the

prognosis of UM patients showed potential, there were

disadvantages to being notified in our study. An initial

disadvantage of the study is that differences in demographic

variables, such as race, lifestyle, and living conditions were not

taken into account. Second, our result was derived from open

databases and not our cohorts’ data. Thirdly, in vivo experiments

are needed to further validate our results.
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In conclusion, we discovered two genetic subgroups based on

LMRGs in UM and assessed the significance of LMAGs in patients’

prognosis and immune microenvironment. In addition, the

molecular mechanisms may include the deregulation of lipid

metabolism, which impedes the immune system and contributes

to a bad prognosis. Additionally, we found that the actions of

LMAGs in UM may be mediated by immune-related signaling

pathways. We also discovered that cancer cells had elevated levels of

MGLL expression, which switched macrophages to the pro-tumor

M2 phenotype. Our work may shed light on the creation of new

targeted medications and gives a potential direction for future UM

research and personalized therapy.
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