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As the most abundant and conserved internal modification in eukaryote RNAs, N6-

methyladenosine (m6A) is involved in a wide range of physiological and pathological

processes. The YT521-B homology (YTH) domain-containing family proteins

(YTHDFs), including YTHDF1, YTHDF2, and YTHDF3, are a class of cytoplasmic

m6A-binding proteins defined by the vertebrate YTH domain, and exert extensive

functions in regulating RNA destiny. Distinct expression patterns of the YTHDF family

in specific cell types or developmental stages result in prominent differences in

multiple biological processes, such as embryonic development, stem cell fate, fat

metabolism, neuromodulation, cardiovascular effect, infection, immunity, and

tumorigenesis. The YTHDF family mediates tumor proliferation, metastasis,

metabolism, drug resistance, and immunity, and possesses the potential of

predictive and therapeutic biomarkers. Here, we mainly summary the structures,

roles, and mechanisms of the YTHDF family in physiological and pathological

processes, especially in multiple cancers, as well as their current limitations and

future considerations. This will provide novel angles for deciphering m6A regulation

in a biological system.
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1 Introduction

In recent years, more than 170 different chemical RNA modifications have been

identified, drawing more attention to the epitranscriptome (1). Among them, N6-

methyladenosine (m6A), which adds a methyl group to the sixth nitrogen atom of

adenine, is the most abundant internal transcriptome modification in eukaryotes (2, 3). By

identifying the consensus motif “RRACH” (R = A/G; H = A/C/U), m6A usually occurs in the
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3’ untranslated region (3’UTR) and coding sequence (CDS),

especially in the vicinity of stop codons (4, 5). Accordingly, m6A

modification regulates the metabolism of multiple types of RNAs and

are ultimately participating in various pathophysiological processes.

The m6A methylation is dynamic and reversible, regulated by a

series of m6A-modifying enzymes which can be classified into

“writers”, methyltransferases that install m6A modifications, and

“erasers”, demethylases that remove m6A from mRNA, as well as

“readers” that recognize and bind to m6A-modified mRNA to mediate

their ultimate fate. Methyltransferase complex (MTC) is the main

“writers”, including methyltransferase like 3/14 (METTL3/14), Wilms’

tumor 1-associating protein (WTAP) (6, 7). They catalyze the

formation of m6A methylation synergistically. Conversely, the fat

mass and obesity-associated protein (FTO) and AlkB homolog 3/5

(ALKBH3/5) that belong to the “erasers” act as key proteins in m6A

demethylation (8, 9). Moreover, “readers” are important m6A binding

proteins such as YTHDFs, YTH domain-containing 1/2 (YTHDC1/2),

heterogeneous nuclear ribonucleoproteins (HNRNP) family, insulin-

like growth factor 2 mRNA-binding proteins (IGF2BP1/2/3), and

eukaryotic initiation factor 3 (eIF3) (5, 10–16). They influence RNA

splicing, export, translation, and decay, and then regulate diverse

downstream signaling pathways.

The YTHDF family is the most studied “readers” of m6A, which

includes YTHDF1, YTHDF2, and YTHDF3. They regulate the

translation and stability of target mRNAs to alter the expression of

downstream molecules, thus affecting diverse biological processes (10,

17). In this review, we summarize the structures and functions of the

YTHDF family, especially the m6A-binding specificity. Moreover, we

focus on its underline mechanisms in multiple physiological and

pathological processes, especially in tumors, hoping to provide

possible application value.
2 M6A methylation regulators

In “writers”, MTC is the main component that catalyzes the

formation of m6A. Among them, METTL3 installs methyl groups in

S-adenosylmethionine to RNA target sites, while METTL14 selects

RNA adenine bases and stabilizes the catalytic process (6, 18, 19).

WTAP, RBM15/15B, VIRMA, and ZC3H13 are also components of

the MTC, directing complexes to nuclear speckles as well as RNA sites

(7, 20–22). In addition to MTC, METTL16, ZCCHC4, and METTL5

also can catalyze m6A modification of specific RNAs (23–25). In

contrast, FTO and ALKBH3/5 act as key “erasers” proteins in m6A

demethylation (8, 9, 26). FTO and ALKBH5 target mRNA and are

associated with obesity and spermatogenesis, respectively (9, 27).

Whereas ALKBH3 removes m6A on tRNA (26).

Moreover, “readers” are required in m6A-regulated diverse

downstream signaling pathways. For example, YTHDC1 promotes

mRNA splicing in the nucleus as well as nuclear export (11, 12).

Furthermore, YTHDC1 accelerates the function of XIST to silence the

transcription of genes on the X chromosome (20). Interestingly,

YTHDC2 promotes mRNA translation with a concomitant decrease

in mRNA abundance and has ATPase and 3’ to 5’ RNA helicase

activities (13, 28). In addition, the HNRNP family regulates the
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alternative splicing of mRNA through an “m6A-switch” mechanism

(29–33). IGF2BPs stabilize target mRNAs in different ways under

normal and stress conditions (15). And eIF3 binds m6A on the 5’UTR

of mRNA and promotes mRNA translation in a cap-independent

manner (16).

The YTHDF family was identified by selecting proteins containing

the YTH domain and subsequently obtained in pull-down experiments

using methylated RNA bait (5, 34, 35). Now, the features of the

YTHDF family have been gradually unraveled. The YTH domains of

YTHDFs have a hydrophobic pocket, which is critical to the

recognition of m6A in the cytoplasm (36). But the role of each

protein is different, for example, YTHDF1 promotes RNA

translation, YTHDF2 facilitates RNA decay, and YTHDF3 exhibits a

dual function depending on its binding partner (37). Thus, the YTHDF

family is closely associated with many cancers and other biological

processes (Figure 1).
3 The structures and functions of the
YTHDF family

The YTHDF family is composed of a C-terminal YTH domain and

an N-terminal domain rich in P/Q/N (Pro/Gln/Asn). The YTH

domain is the basis of recognizing m6A RNA specifically and its

targeted position and consensus sequence are similar to the distribution

pattern of m6A sites on mRNA (20, 38). YTH domain can also directly

bind to N1-methyladenosine (m1A), but with a lower affinity thanm6A

(39). The prion-like low-complexity sequence regions (LCRs) of the N-

terminal domain are associated with the liquid-liquid phase separation

(LLPS) (40). The mRNA-YTHDF complexes are located in different

membrane-less compartments in the cytoplasm, such as processing

bodies (P-bodies), stress granules (SGs), or neuronal granules, which

are the result of LLPS and can be enhanced by multivalent m6A

modifications (41). Proteomic studies revealed that YTHDFs can be

phosphorylated and myristoylated to regulate their expression and

clustering (42). Additionally, the EGFR/SRC/ERK pathway stabilizes

YTHDF2 protein by phosphorylating YTHDF2 at serine39 and

threonine381 in glioblastoma cells (43). YTHDF2 can also be

SUMOylated at site K571, thereby enhancing its binding affinity with

m6A-modified mRNAs and accelerating cancer advancement (44).

Therefore, targeting post-translational modifications represent a novel

opportunity for YTHDFs to regulate their functions.

The crystal structures of the three YTH domains and

their complexes with an m6A mononucleotide (or m6A

oligoribonucleotides) have been revealed (45, 46). The YTH domains

share a mixed a-helix-b-sheet fold, where the a-helices surround a

barrel-shaped center arranged by the b-sheets. The surface of the YTH
domain has a positively-charged groove in which m6A is tightly locked.

Specifically, m6A is located in a hydrophobic pocket formed by three

highly conserved aromatic residues called an aromatic cage. In the

YTHDF-m6A complex, the m6A adenine moiety is sandwiched

between the rings of two aromatic residues, paralleling them (Trp411

and Trp470 in YTHDF1, Trp432, and Trp491 in YTHDF2, Trp438,

and Trp497 in YTHDF3). And the methyl group of m6A points to the

ring of one aromatic residue (Trp465 in YTHDF1, Trp486 in
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YTHDF2, Trp492 in YTHDF3) (36, 47, 48). As well as aromatic

residues, some amino acids (aa) of the YTH domain also interact with

m6A. For example, the backbone NH of Tyr397 in YTHDF1 and

Tyr418 in YTHDF2 form hydrogen bonds with the N3 of m6A. The

carbonyl oxygen of Cys412 in YTHDF1, Cys433 in YTHDF2, and

Cys439 in YTHDF3 bind to the N6 of m6A by hydrogen bonding. To

sum up, theP-P interactions between them6A adeninemoiety and the

aromatic cage, the cation-P interactions between the methyl group and

the aromatic cage, and a series of hydrogen bonds lay a foundation for

m6A recognition (36) (Figure 2).

Evidence confirms that the YTHDF family plays an integral role in

the translation and degradation of m6A-modified mRNAs. YTHDF2 is

the most explored YTHDFs and is generally expressed at much higher

levels than YTHDF1 and YTHDF3 in most cells (42). YTHDF2 binds

to m6A-modified mRNAs and recruits the CCR4-NOT deadenylase

complex through its N-terminal 101-200 aa to initiate deadenylation,

which is a prior condition of P-body localization and decay of targeted

mRNAs (10, 49, 50). Additionally, m6A-modified mRNAs can also

bind to YTHDF2 in an HRSP12-dependent manner, and subsequently

cleaved by RNase P/MRP (endoribonucleases) (51, 52). In particular,

HRSP12 bridges the N-terminal 100 aa of YTHDF2 and RNase P/

MRP, contributing to the rapid degradation of mRNAs. And m6A-

containing circular RNAs (circRNAs) are also degraded by this

pathway. Interestingly, under heat shock stress, nuclear-translocated

YTHDF2 protects m6Amotifs in the 5’ untranslated region (5’UTR) of

stress-induced transcripts and activates cap-independent translation

initiation (53). The N-terminal of YTHDF1 (100-200 aa) is in charge of

the translation of mRNAs with m6A modifications (54). YTHDF1 not

only transports more mRNAs to translation machinery and promotes

ribosome occupancy, but also enhances the translation-initiation rate

by correlating eIF4G-mediated loop structure through interaction with
Frontiers in Immunology 03
eIF3 in a cap-dependent manner (17). YTHDF1 can also trigger

translational elongation through interaction with elongation factors

in some cancer cells (55–57). Apart from the above results, Li et al.

found that YTHDF1 interacts with Argonaute 2 (AGO2) to stimulate

the production of P-bodies for mRNA degradation (58). In addition,

YTHDF3 augments m6A-mRNA translation by cooperating with

YTHDF1 and interacting with the 40s/60s ribosome subunits (59).

Besides that, YTHDF3 recruits eIF4G2 to m6A sites, driving translation

initiation of circRNAs (60). YTHDF3 also promotes m6A-modified

mRNA decay by working together with YTHDF2 (37). A recent study

found that the effect of YTHDF3 in regulating targeted mRNA

deadenylation during somatic cell reprogramming relies on the

recruitment of the PAN2-PAN3 deadenylase complex (61).

Interestingly, the YTHDF family forms a classic functional

model: upon entry into the cytoplasm, m6A-modified mRNAs

are first bound by the YTHDF3 or YTHDF3-YTHDF1 complex

and then recognized by YTHDF2, thereby regulating the

different fates of the targeted mRNA (62). Nevertheless, it has

recently been discovered that YTHDFs have redundant

functions to a large extent (63). Those three YTHDFs share

highly homologous structures (about 85% of aa sequence

similarity) (64), similar RNA-binding properties (20), and a

similar set of binding proteins, jointly regulating mRNA

destiny in an m6A-dependent manner (65). Indeed, the distinct

functions of YTHDFs depend on their expression levels, spatial

locations, and post-translational modifications. Also, YTHDFs

are affected by additional RNA-binding proteins that interact

with YTHDFs, such as fragile X mental retardation protein

(FMRP) (66, 67), and Proline-rich coiled-coil 2 A (Prrc2a)

(68). Collectively, the role of YTHDFs in regulating gene

expression is complex and requires further investigation.
FIGURE 1

The regulation mechanism of m6A modification. METTL3, METTL14, WTAP, RBM15, VIRMA, and ZC3H13 all belong to the “writers” and catalyze the
formation of m6A modification by constituting MTC. The “erasers” includes FTO and ALKBH5, which act as key proteins in m6A demethylation.
YTHDF1/2/3, YTHDC1, IGF2BP, hnRNP family, and EIF3 as “readers” that bind to m6A and affect RNA splicing, output, translation, and decay.
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4 The roles of the YTHDF
family in physiological and
pathological processes

4.1 Embryonic development

Among the three YTHDFs, YTHDF2 is expressed and plays a

pivotal role throughout mammalian gametogenesis. YTHDF2-

knockout female mice are infertile while male mice are hypo

fertile (65, 69). Specifically, YTHDF2 is intrinsically required for

oocyte competence to support early zygotic development rather

than MII oocytes formation and fertilization process (69).

YTHDF2 regulates appropriate maternal transcript dosage

during oocyte maturation by selectively mediating transcript

destabilization. Additionally, YTHDF2 clears m6A-dependent

matrix metallopeptidase transcripts to promote the adhesion

and proliferation of spermatogonia during spermatogenesis (70).

Knockout of YTHDF2 results in morphologically deformed and

functionally impaired sperm, even severe loss (65, 71).

Intriguingly, unlike the previous view that maternal mRNAs

clearance and maternal-to-zygotic transition (MZT) are dependent

on YTHDF2, Kontur et al. found that individual YTHDFs deletion

does not prevent embryonic development, whereas double mutations

of YTHDF2/YTHDF3 disrupts oogenesis and triple YTHDF depletion

causes lethality in zebrafish (72, 73). Despite evidence for the

redundant functions of YTHDFs in early mouse embryonic
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development, depletion of YTHDF2 causes lethality at late

embryonic development stages with embryos exhibiting severe

neurological deficits (65, 74). Zheng et al. found that YTHDF3

reduction is an adaptive mechanism under a hypoxic environment

in early embryonic development (75). Specifically, YTHDF3 binds to

the m1A site of insulin-like growth factor 1 receptor (IGF1R) mRNA

and degrades IGF1R mRNA, hindering migration and invasion

of trophoblast.
4.2 Stem cell fate

Somatic cells are reprogrammed into induced pluripotent stem

cells (iPSCs), which have unlimited proliferation and pluripotent

differentiation potential similar to human embryonic stem cells

(ESCs) (76). YTHDF2 and YTHDF3 play an essential role in this

reprogramming process by clearing somatic mRNAs, especially Tead2,

through distinct m6A-dependent deadenylation mechanisms (61).

While YTHDF1 is capable of increasing the expression of the

transcription factor Btg2 and promoting the reprogramming of

induced neuronal cells (77). In terms of iPSCs functions, the

YTHDF1/YTHDF2 orchestration is involved in METTL3-m6A-

mediated maintenance of pluripotent state in porcine iPSCs by

elevating JAK2 level, reducing SOSC3 expression, and provoking

STAT3/KLF4/SOX2 signal axis (78). YTHDF1 upregulation depends

on MATR3 and maintains a MATR3-mediated pluripotent state in

human iPSCs by maintaining the expression of OCT4 and LIN28A
FIGURE 2

The structures of the YTHDF family, especially the YTH domain. (A) The YTH domain of YTHDFs: YTHDF1 (UniProt ID: Q9BYJ9), YTHDF2 (UniProt ID:
Q9Y5A9), YTHDF3 (UniProt ID: Q7Z739). (B) Structures of YTHDFs in complex with m6A. YTHDF1 (PDB ID:4RCJ), YTHDF2 (PDB ID:4RDN), YTHDF3
(PDB ID:6ZOT). The secondary structures of proteins are shown in gray, and RNA molecules are shown in color.
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transcripts (79). Importantly, YTHDF2 is overexpressed and disrupts

the expression of a group of m6A-modified mRNAs associated with

neurodevelopment, thereby blocking neural differentiation and

promoting pluripotency in human iPSCs (80). Similarly, YTHDF3

reduces gene expression associated with the formation of three germ

layers, and the absence of YTHDF3 impairs pluripotency in ESCs (81).

Several studies have revealed that the specification and

characteristics of hematopoietic stem cells (HSCs) are significantly

regulated by YTHDF2. The m6A-YTHDF2-mediated decay of Notch1

mRNA is critical for the generation of the earliest hematopoietic stem/

progenitor cells (HSPCs) during the endothelial-to-hematopoietic

transition (EHT) in both zebrafish and mice embryos (82, 83). Li

et al. first reported that YTHDF2 specifically mediates the ex vivo

expansion of human HSCs due to the regulation of the stability of

multiple mRNAs essential for HSC self-renewal (84). Therefore,

inhibition of YTHDF2 makes it possible to obtain a sufficient

number of HSCs from human umbilical cord blood (hUCB), which

facilitates the application of hUCBHSCs transplantation. Furthermore,

YTHDF2 deletion also promotes the expansion and regeneration of

HSCs by eliminating the decay of both WNT-targeted and survival-

related genes under stress conditions (85). Interestingly, although

YTHDF2 is dispensable for steady-state multilineage hematopoiesis,

long-term deficiency of YTHDF2 dramatically impairs HSCs activity

and blocks reconstitution of multilineage hematopoiesis (86). Given

that hematopoietic-specific YTHDF2 deficiency-induced long-term

HSCs impairment is consistent with the adverse consequences of

inflammation in HSCs, the inflammation-induced increase in

YTHDF2 may be a protective mechanism for the long-term integrity

of HSCs. YTHDF3 is also involved in the regulation of HSCs. YTHDF3

binds m6A on the 5’UTR of CCND1 mRNA and cooperates with

PABPC1 and EIF4G2 to promote the expression of CCND1, a positive

regulator of HSCs reconstitution capacity (87). While YTHDF3

facilitates the translation of FOXM1 and ASXL1 transcripts and is

critical for maintaining HSC properties under stress conditions (88).

YTHDF1 is indispensable for maintaining intestinal stem cells

(ISCs) during regeneration after intestinal damage by driving a positive

feedback loop of the YTHDF1/TCF4/WNT signaling axis (89).

Similarly, YTHDF1 sustains the stemness of ISCs through a targeted

translation of transcriptional-enhanced associate domain 1 (TEAD1)

(90). In addition, YTHDF1 is also involved in the m6A-mediated self-

renewal of mouse female germline stem cells (mFGSCs) (91).
4.3 Fat metabolism

YTHDFs play key roles in adipogenesis, particularly YTHDF2.

YTHDF2 binds and degrades JAK1 mRNA to block the JAK1/STAT5/

C/EBPb pathway, thereby inhibiting the adipogenic differentiation of

bonemarrow stem cells (92). Similarly, YTHDF2-mediated silencing of

the JAK2/STAT3/C/EBPb pathway impedes adipogenesis (93). Indeed,

YTHDF2 also impairs adipogenesis by degrading multiple target

transcripts through methylation-dependent modifications. Cell cycle

factors, including CCNA2, CDK2, and CCND1 promote cell cycle

progression and mitotic clonal expression in adipocytes (94, 95).

Epigallocatechin gallate (EGCG) and metformin reduce CCNA2 and

CDK2 levels by increasing m6A modification in an FTO-YTHDF2-
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dependent manner (96, 97). Conversely, Zinc finger protein (Zfp217)

binds and sequesters YTHDF2 to reduce m6A levels, thus reversing

CCND1mRNA degradation (98). YTHDF2 also reduces the content of

FAM134B, fatty acids synthesis-related proteins such as FASN, and

autophagy-related proteins, including ATG5 and ATG7, which inhibit

adipogenesis (99–101). Furthermore, the liver Bmal1 regulates the

circadian clock of lipid metabolism by controlling the abundance of

m6A modifications on transcripts (102). Mechanistically, Bmal1

knockdown inhibits PPARa expression in an m6A-YTHDF2-

dependent manner, which increases lipid accumulation. Moreover,

AMPK upregulates CD36 levels through YTHDF2-dependent Parkin

reduction, which enhances intestinal long-chain fatty acid uptake and

induces obesity in high-fat diet mice (103).

Intriguingly, YTHDF1 inhibits ovine adipogenesis and promotes

porcine adipogenesis by promoting the expression of PNPLA2 and

MTCH2, respectively (62, 104). Chen et al. found that YTHDF1

restrains PPARg expression in mice by promoting the translation of

m6A-modified TRAF4 transcripts, while curcumin exerts an anti-

obesity role by reducing the effect of ALKBH5 demethylation on

TRAF4 m6A modification (105). In addition, YTHDF1 together with

METTL3 amplifies the function of Rubicon that inhibits autophagy by

stabilizing Rubicon mRNA, and further blocks the clearance of lipid

droplets (LDs) in mouse nonalcoholic fatty liver disease

(NAFLD) (106).
4.4 Neuromodulation

YTHDF1 mainly regulates axonal function as well as learning and

memory, and YTHDF2 is mainly involved in neural development and

differentiation. Functional axon regeneration under peripheral nervous

system injury is supported by m6A-YTHDF1-derived increases in

global protein translation (107). And YTHDF1 is a key player in

enhancing Robo3.1 mRNA translation and guidance of pre-crossing

commissural axons in the spinal cord, whereas YTHDF1 is inhibited by

floor plate-induced signals in post-crossing axons guidance (108).

Furthermore, dual depletion of YTHDF1/YTHDF3 affects spine

morphology and excitatory synaptic transmission in hippocampal

neurons (109). Further study revealed that YTHDF1 accelerates basal

transmission and long-term potentiation of synapses by advancing

neuronal stimulation-induced protein translation, thereby promoting

learning and memory, especially long-term memory (110). In a

Drosophila short-term memory experiment, memory-storing

neurons require YTHDF to maintain normal memory function

during aging (111). Furthermore, YTHDF1-mediated Dvl1 mRNA

translation has a synergistic effect with YTHDF2-mediated Wnt5a

mRNA degradation in inhibiting axon growth of cerebellar

neurons (112).

During neural development, YTHDF2 is overexpressed and

positively regulates early brain development by promoting the

proliferation and differentiation of neural stem/progenitor cells

(NSPCs) (74). Knockout of YTHDF2 significantly reduces cerebral

cortical thickness and induces differentiated neurons to produce

abnormal stress-sensitive neurites. Interestingly, YTHDF2-silenced

NSPCs cannot differentiate into glial cells. Wu et al. showed that

YTHDF2 competes with Prrc2a for binding to Olig2 mRNA, resulting
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in impaired oligodendrocyte specification and myelination (68).

Moreover, YTHDF2 is detrimental to the extension and maintenance

of retinal ganglion cell (RGC) dendritic arborization (113).

YTHDFs are also involved in a variety of brain disorders. For

example, downregulated miR-421-3p in microglia after cerebral artery

occlusion/reperfusion (MCAO/R) relieves the repression of YTHDF1,

thereby promoting p65 mRNA translation, leading to aggravated

inflammation and brain injury (114). Impairments of fine motor and

cognitive function in young mice exposed to multiple sevoflurane are

attributable to a specific decrease in YTHDF1 expression (115).

Overexpression of YTHDF1 ameliorates diabetes-induced cognitive

impairment (116). Additionally, elevated YTHDF2 under persistent

light impedes cognitive behavior in mice by perturbing the stability of

TrkappaB mRNA (117). And a recent case report found that most

individuals with YTHDF3 haploinsufficiency show intellectual

disability and/or developmental delay of variable degrees (118).
4.5 Cardiovascular effect

YTHDF1 promotes cardiomyocyte (CM) differentiation, whereas

YTHDF3 does the opposite (81). YTHDF1, which is positively

regulated by ALKBH5, also promotes CM proliferation in injury-

induced cardiac regeneration by enhancing YAP mRNA translation

(119). Xu et al. indicated that YTHDF2 degrades Myh7 mRNA to

mitigate cardiac hypertrophy during heart failure development (120).

Conversely, lncRNA MIAT-induced YTHDF2 high expression

stimulates cardiac hypertrophy by downregulating CPT-1a levels in

the PPARa pathway (121). Moreover, YTHDF1 and YTHDF2

promote ocular pathological angiogenesis via the METTL3-m6A-

LRP6 axis and the FTO-m6A-FAK axis, respectively (122, 123).

YTHDF1/YTHDF2 cooperation stimulates the atherogenic

inflammatory cascade in the vascular endothelium by upregulating

NLRP1 and downregulating KLF4 (124). Furthermore, loss of either

YTHDF1 or YTHDF2 alleviates the proliferation of pulmonary arterial

smooth muscle cells and pulmonary hypertension under hypoxia.

Mechanistically, YTHDF1 promotes the translation of MAGED1

mRNA while YTHDF2 activates the PI3K/AKT signaling pathway

by degrading PTEN mRNA (125, 126). And YTHDF3 knockout

protects lung epithelial cells from inflammatory injury by inhibiting

inflammatory cytokine secretion after hypoxia/reoxygenation (127).
4.6 Viral infection

YTHDFs play anti-viral roles in the life cycle of Epstein-Barr virus

(EBV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Zika virus

(ZIKV), and enterovirus 71 (EV71) (128–133). For example, the

knockdown of each DF in EBV-infected cells promotes EBV lytic

replication and reactivation. Mechanistically, YTHDF1 attracts ZAP,

DDX17, and DCP2 forming RNA degradation complexes to accelerate

the decapping of m6A-modified RNAs and degrade EBV cleavage gene

transcripts (128). Furthermore, activation of caspases cleaves D166 and

D367 sites on YTHDF2 upon EBV reactivation reduces YTHDF2

expression, thereby increasing caspase-8 protein levels and enhancing

EBV replication (129). Alternatively, YTHDFs inhibit HCV infection
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by reducing viral particle production rather than blocking viral RNA

replication (131). During the chronic HCV infection state, YTHDFs

relocate to lipid droplets, bind to the m6A site in the HCV E1 region,

and antagonize viral packaging caused by the binding of the viral core

protein to the non-m6A site in the E1 region. In contrast, YTHDF2

promotes simian virus 40 (SV40) and influenza A virus (IAV)

replication (134, 135). Moreover, YTHDF1 and YTHDF3 induce

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

infection, YTHDF1 inhibits chikungunya virus (CHIKV) infection,

and YTHDF2 functions opposite to that of YTHDF1 in both SARS-

CoV-2 and CHIKV (136–138).

Notably, the regulation of YTHDFs in the transcription and

replication of human immunodeficiency virus type 1 (HIV-1) and

Kaposi’s sarcoma-associated herpesvirus (KSHV) remains

controversial. Evidence suggests that YTHDFs hinder HIV-1

replication in target cells contradicting previous views that YTHDFs

increase viral transcript and protein levels (139–141). Specifically, after

HIV-1 infection into cells, YTHDFs impede HIV-1 reverse

transcriptase by degrading incoming HIV-1 genomic RNA (gRNA)

in an m6A-dependent manner, thereby limiting viral replication (139).

Nevertheless, YTHDFs facilitate HIV-1 structural protein Gag

synthesis and virus release, while forming a complex with HIV-1

Gag protein and viral and cellular RNAs in virus-producing cells (140).

To ensure optimal HIV-1 infectivity, HIV-1 protease cleaves YTHDF3,

which enters the virion in a nucleocapsid-dependent fashion (142).

Additionally, Hesser et al. showed that YTHDF2 exerts pro- and anti-

KSHV effects in iSLK and B cell lines, respectively (143). Instead, Tan

et al. observed that YTHDF2 inhibits KSHV gene expression and virion

production in iSLK cells (144). Together, the paradoxical phenomenon

of YTHDFs in viral regulation may be explained by differences in cell

types, viral life cycle stages, and experimental approaches.
4.7 Immunity

The type I interferon (IFN) signaling pathway relies on the

expression of IFN-stimulated genes (ISGs) to mediate a powerful

innate antiviral immune response. YTHDF1-mediated upregulation

of IFITM1, a subset of ISGs, initiates antiviral responses (145). Another

study showed that YTHDF1 prevents viral double-stranded RNA

(dsRNA)-driven IFN responses (146). YTHDF1 induces the IFN-

mediated expression of ADAR1, which disrupts the secondary

structure of dsRNA in an adenosine-to-inosine (A-to-I) RNA editing

manner. Furthermore, YTHDF2 deletion enables increased levels of

IFN-band inflammatory factors, including interleukin-6 (IL-6) by

stabilizing host antiviral transcripts (147, 148). YTHDF2 also binds

and sequesters m6A-modified viral RNA, which protects viral RNA

from RIG-I recognition, thereby inhibiting RIG-I activation and the

downstream IFN signaling pathway (149, 150). In contrast, YTHDF2 is

an essential cofactor for the IFN-a-induced degradation of m6A-

methylated HBV RNA by ISG20 (151). Additionally, enterovirus 2A

proteases cleave YTHDFs and limit antiviral responses during early

viral infection (152). Among them, the cleavage of YTHDF3 dampens

the IFN-I-stimulated JAK/STAT signaling pathway. Interestingly, only

YTHDF3 attenuated ISGs expression in the absence of viral infection

(153). Mechanistically, YTHDF3 rapidly translates forkhead box
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protein O3 (FOXO3) mRNA through cooperation with PABP1 and

eIF4G2 in an m6A-independent way, thereby suppressing

ISGs expression.

Inflammatory responses are also an important part of immunity.

YTHDF1 counteracts the excessive and persistent development of

inflammation in the septic response by promoting the expression of

SOCS1, a negative regulator of macrophage-mediated inflammation

(154). However, YTHDF1 knockout suppressed inflammatory lung or

intestinal damage (155, 156). Macrophage-specific YTHDF1

knockdown may be a protective therapy against brain injury in

severe sepsis rats with ECMO by enhancing adaptive immune

function and alleviating inflammatory damage (157). YTHDF2 also

negatively regulates inflammation. YTHDF2 inhibits the MAPK and

NF-kB signaling pathways by downregulating the expression of

MAP2K4, MAP4K4, STAT1, and PPAR-g, and subsequently

prevents macrophage polarization and proinflammatory cytokine

secretion (158–160). And YTHDF2-dependent decay of KDM6B

mRNA restricts H3K27me3 demethylation, which impedes

transcription of proinflammatory cytokine genes (161).

Strikingly, the expression of YTHDFs has a strong relationship

with the immune regulation of various tumors. The expression of

YTHDF1 is not only the highest in normal immune cells but also

dramatically correlated with tumor immune-infiltrated cells in cancer,

especially CD8+ T cells, macrophages, and dendritic cells (DCs) (162).

Han et al. revealed that YTHDF1 is an important target for anti-tumor

immunotherapy (163). YTHDF1 depletion accelerates tumor antigen

presentation and cross-priming of CD8+ T cells by retarding lysosomal

cathepsin translation in DCs in an m6A-dependent manner. And the

loss of YTHDF1 recruits DCs and activates IFN-g receptor 1 and JAK/
STAT1 signaling pathways, thereby promoting antitumor immunity in

GC (164). Li et al. demonstrated that YTHDF1 hinders CD8+ T cell

infiltration and increases immune checkpoint expression, such as PD-

L1 and V-domain Ig suppressor of T cell activation (VISTA), in CRC

(165). To this end, YTHDF1 consumption can be synergistic with anti-

PD-1/PD-L1 immunotherapy for effective anti-tumor therapy.

Similarly, YTHDF2-deficient tumors increased the sensitivity to anti-

PD-1/PD-L1 immunotherapy by stabilizing PD-L1 mRNA in ICC

(166). However, YTHDF2 participates in anti-tumor and anti-viral

infection by regulating the maturation, proliferation, and effector

functions of NK cells (167) (Figure 3).
5 The role of the YTHDF
family in cancers

5.1 Digestive system cancers

5.1.1 Liver cancer
Studies have reported that YTHDF1 is an oncogene that is highly

expressed and positively correlates with the pathology stage in

hepatocellular carcinoma (HCC) (168, 169). YTHDF1 is also an

independent factor for an unfavorable HCC prognosis. Lin et al.

suggested that Snail induces epithelial-mesenchymal transition

(EMT) to enhance the metastasis of HCC cells. Mechanistically,

m6A-modified CDS facilitates translational elongation of the Snail
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mRNA in a YTHDF1/eEF2-dependent manner (55). In addition, the

YTHDF1-mediated aggressive phenotypes are also associated with the

activation of the AKT/GSK-3b/b-catenin pathway (170). Chi et al.

perceived that the effect of YTHDF1 in enhancing HCC proliferation

can be antagonized by hsa-miR-139-5p (171). YTHDF1 also promotes

HCC cell growth by upregulating the PI3K/AKT/mTOR signaling

pathway (172). Hu et al. showed that METTL3-m6A-YTHDF1-

mediated RBM14 overexpression promotes Kupffer cell polarization

and HCC progression (173). Furthermore, YTHDF1 is involved in the

regulation of HCC under hypoxic stress. For example, hypoxia-

inducible factor-1a (HIF-1a)-mediated upregulation of YTHDF1

promotes autophagy-associated genes ATG2A and ATG14

translation, thus aggravating HCC malignancy behavior (174).

FOXO3 is a negative regulator of hypoxia-induced autophagy and

mediates the sorafenib sensitivity in HCC (175). Importantly, YTHDF1

binds to METTL3-methylated m6A modification in the FOXO3

mRNA 3’UTR and increases its mRNA stability rather than

translation. Moreover, under the sublethal heat stress from

insufficient radiofrequency ablation (IRFA), YTHDF1 binds to the

m6A site on the 5’UTR of EGFRmRNA and triggers EGFR translation,

eventually resulting in HCC recurrence after IRFA (176).

Notably, YTHDF3 is also reported as a potential oncogene in HCC.

YTHDF3 enhances HCC metastasis by maintaining ZEB1 mRNA

stability in an m6A-dependent mechanism (177). YTHDF3/integrin

subunit alpha 6 (ITGA6) is positively regulated by the lysine-specific

demethylase 5B (KDM5B)/microRNA-448 axis and thereby enhances

the self-renewal of HCC cells (178).

Intriguingly, YTHDF2 has a paradoxical effect on HCC in

different studies. Zhong et al. professed that hypoxia-induced

YTHDF2 downregulation reverses the repression of YTHDF2 on

the ERK/MAPK signaling pathway, subsequently removing the

inhibitory effect of YTHDF2 on the proliferation and growth of

HCC cells (179). Mechanistically, YTHDF2 suppresses the

activation of the ERK/MAPK signaling pathway by selectively

recognizing the m6A site at the 3’UTR and triggering EGFR

mRNA degradation. Hou et al. confirmed that YTHDF2 is

significantly downregulated in HCC cells and YTHDF2

deficiency elicits inflammation, vascular abnormalization, and

metastatic progression (180). Specifically, YTHDF2 destabilizes

the mRNA of m6A-modified interleukin 11 (IL11) and serpin

family E member 2 (SERPINE2) to exert an inhibitory effect.

Conversely, YTHDF2 is also considered a tumor-promoting

factor in HCC (181, 182). Yang et al. discovered that

microRNA-145 targets the 3’UTR of YTHDF2 mRNA to

attenuate its expression and thereby inhibits the proliferation

of HCC cells (183). And YTHDF2 participates in METTL3-m6A-

mediated HCC malignancy by shortening the half-life of the

suppressor of cytokine signaling 2 (SOCS2) mRNA (184).

Additionally, YTHDF2 increases the m6A levels in the 5’UTR

of OCT4 mRNA in tandem with promoting OCT4 expression,

eventually accelerating the HCC cancer stem cell (CSC)

phenotype and metastasis (185). And PA2G4 depends on

YTHDF2 to stabilize FYN mRNA and promote EMT-induced

HCC metastasis (186). The discrepancy in the effect of YTHDF2

on HCC may be due to different cellular microenvironments or

tumor heterogeneity (187).
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In addition, YTHDF1 and YTHDF2 facilitate the advancement of

intrahepatic cholangiocarcinoma (ICC) through increasing EGFR

mRNA translation and IFIT2 mRNA decay, respectively (188, 189).

Meanwhile, YTHDF2 silencing restrains ICC resistance to the exposure

of cisplatin by reversing the degradation of cyclin-dependent kinase

inhibitor 1B (CDKN1B) mRNA (190).
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5.1.2 Gastric cancer
YTHDF1 mutations occur in approximately 7% of gastric cancer

(GC) patients, and high expression of YTHDF1 is correlated with high-

risk progression and poor prognosis in patients (191–193). YTHDF1

deficiency is capable to attenuate GC progression, including

proliferation and metastasis in vitro and in vivo. Mechanistically,
frontiersin.or
FIGURE 3

The roles of the YTHDF family in embryonic development, stem cell fate, fat metabolism, neuromodulation, cardiovascular effect, viral infection, and
immunity. In embryonic development, YTHDF2 is essential for sperm, oocyte, zygote, and embryo formation. In stem cell fate, the YTHDF family
promotes somatic cell reprogramming and the properties of iPSCs. In addition, YTHDF2 and YTHDF3 participate in the fate of HSC, and YTHDF1 in
the fate of ISCs as well as mFGSCs. In fat metabolism, YTHDF1 and YTHDF2 regulate adipogenesis and fatty acid metabolism. In neuromodulation,
YTHDF1 affects axonal function as well as learning and memory, YTHDF2 regulates neural development and differentiation, and YTHDF3 participates
in intellectual development. In cardiovascular effect, YTHDF1 and YTHDF2 are closely related to the fate of CM, vascular endothelial cells, and
pulmonary artery smooth muscle cells. In a viral infection, the YTHDF family is involved in the life cycle of several viruses, especially EBV, HCV, and
HIV. In immunity, the YTHDF family plays an important role in antiviral immunity, inflammatory immunity, and anti-tumor immunity.
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YTHDF1 relies on m6A modification to promote the translation of

frizzled7 (FZD7) and USP14, which transmit WNT/b-catenin
signaling and AKT/ERK signaling, respectively (192, 193). In

addition, METTL3 promotes the malignancy behavior of GC

through YTHDF1/eIF3a-dependent post-transcriptional translation

of SPHK2 (194).

Zhang et al. showed that the knockdown of YTHDF2 inhibits GC

cell proliferation and accelerates apoptosis in vitro (195). And lncRNA

LINC00470 relies on YTHDF2 to degrade m6A-containing PTEN

mRNA and thus promote GC advancement (196). Additionally, the

HIF-1a-induced increase of lncRNA-CBSLR suppresses ferroptosis

and chem-sensitive under hypoxic stress through the YTHDF2-CBS-

ACSL4 axis (197). Specifically, CBSLR contributes to CBS mRNA

destabilization by binding to the m6A site on the CDS of CBS mRNA

by recruiting YTHDF2. However, Shen et al. found that YTHDF2 plays

a suppressive role in GC by destabilizing FOXC2 mRNA (198).

5.1.3 Pancreas cancer
Among the YTHDF family, YTHDF2 is the most studied protein

in pancreatic cancer. YTHDF2 is elevated in pancreatic cancer and

orchestrates the migration/proliferation dichotomy (199). Specifically,

YTHDF2 prevents EMT, migration, and invasion by downregulating

YAP signaling and enhances proliferation by activating AKT/GSK3B/

CCND1 pathway. However, YTHDF2 downregulates the levels of

PERP and PER1 mRNA to promote cell proliferation and migration

in an m6A-dependent manner (200, 201). METTL3-m6A-YTHDF2-

mediated decay of nucleobindin 1 (NUCB1) mRNA counteracts the

effects of NUCB1 in halting pancreatic cancer growth and augmenting

the antitumor with gemcitabine (GEM) (202). Conversely, another

study showed that the rs142933486 G>T polymorphism in PIK3CB

improves PIK3CB mRNA and protein levels by derailing m6A-

YTHDF2-dependent degradation mechanisms, which is significantly

associated with the poor prognosis of PTEN-deficient pancreatic

cancer patients (203). And compared with PIK3CB[T], YTHDF2

mainly binds to PIK3CB[G]. Similarly, FTO reverses YTHDF2-

regulated degradation of platelet-derived growth factor C (PDGFC)

mRNA and promotes cell proliferation by reactivating the AKT

signaling pathway (204). Notably, YTHDF1 is associated with the

immune microenvironment and prognosis of pancreatic cancer (205–

207). A recent study found that a novel antineoplastic drug, Olean-

28,13b-lactam (B28), inhibits glutamine metabolism by reducing the

expression of YTHDF1, which induces pancreatic cancer cell death

(208). In addition, YTHDF3-mediated downregulation of lncRNA

DICER1-AS1 reverses the repression of glycolysis by miR-5586-5p in

pancreatic cancer (209).

5.1.4 Colorectal cancer
In colorectal cancer (CRC), YTHDF1may be amolecular target for

diagnosis and treatment (210). Mechanistically, elevated YTHDF1 in

CRC is mainly attributed to an increase in DNA copy number (211).

The oncogene c-MYC, WNT signaling, and APC mutation can also

upregulate YTHDF1 expression at the translational level (89, 212).

Further studies found that YTHDF1 promotes tumorigenicity and

CSC-like activity by amplifying theWNT/b-catenin pathway with little
effect on normal intestinal development (211). And deletion of
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YTHDF1 in ISCs shrinks tumor size and prolongs the lifespan of

CRC-formed mice substantially. YTHDF1 can promote CRC

progression and metastasis by translating m6A-modified Rho/Rac

guanine nucleotide exchange factor 2 (ARHGEF2) mRNA and

activating RhoA signaling (213). Furthermore, circular RNA protein

tyrosine kinase 2 (circPTK2) restores the miR-136-5p-mediated

repression of YTHDF1 by competitively binding to miR-136-5p,

resulting in the CRC advancement and chemoresistance (214). Chen

et al. suggested that YTHDF1-mediated glutamine metabolism reduces

the sensitivity of CRC cells to cisplatin (215). Specifically, YTHDF1

targets the m6A of glutaminase 1 (GLS1) mRNA 3’UTR to promote its

translation. And METTL3 deletion inhibits LDHA mRNA translation

by reducing the binding of YTHDF1 to LDHA mRNA CDS, thereby

hindering glycolysis and promoting 5-fluorouracil sensitivity in CRC

cells (216). Interestingly, the rs8100241 G>A mutation in ANKLE1

increases ANKLE1 levels in an m6A-YTHDF1-dependent fashion,

thereby inhibiting proliferation and maintaining the genomic stability

of CRC (217).

In addition, YTHDF2 often collaborates with “writers” and

participates in CRC progression. For example, METTL3

downregulates YPEL5 in an m6A-YTHDF2-dependent manner and

boosts CRC progression (218). METTL14 exerts an inhibitory effect in

CRC by promoting the degradation of SYR-related high-mobility-

group box 4 (SOX4) mRNA and long noncoding RNA XIST, which is

dependent on YTHDF2 (219, 220). Han et al. deciphered that

glutaminolysis inhibition increases ATF4 expression through FTO-

mediated demethylation and YTHDF2-regulated decay, which further

inactivates mTOR and promotes pro-survival autophagy of CRC cells

(221). Moreover, in CRC, silencing of microRNA-6125 destabilizes

GSK3bmRNA by upregulating the expression of YTHDF2, ultimately

increasing WNT/b-catenin/Cyclin D1 pathway-related proteins and

promoting CRC growth (222). Intriguingly, Zhou et al. found that HIF-

1a-induced upregulation of lncRNA STEAP3-AS1 activates theWNT/

b-catenin signaling pathway through overexpression of STEAP3,

leading to CRC progression in a hypoxic environment (223).

Specifically, after combining YTHDF2, STEAP3-AS1 prohibits

STEAP3 mRNA from binding with YTHDF2, thus antagonizing

STEAP3 mRNA decay.

Moreover, Ni et al. revealed that the long noncoding RNA GAS5-

YAP-YTHDF3 axis forms a feedback loop in CRC (224). In detail, the

downregulation of GAS5 enhances CRC proliferation and invasion by

inhibiting phosphorylation and ubiquitin-mediated decay of YAP,

which positively regulates YTHDF3. And YTHDF3 promotes the

degradation of GAS5 mRNA by recognizing the m6A in GAS5

mRNA. Furthermore, YTHDF3 recruits eIF2AK2 and eIF3A on the

5’UTR of target mRNAs and promotes translation in oxaliplatin-

resistant CRC (225).
5.2 Respiratory system cancers

The expression of YTHDF1 and YTHDF2 is markedly upregulated

in tumor tissues of lung cancer series and possesses tumor-promoting

activities (226). Shi et al. demonstrated that YTHDF1 is amplified and

increases the translation of key regulators of the G0/G1 cell cycle
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transition, including CDK2, CDK4, and cyclin D1 mRNAs,

intensifying non-small cell lung cancer (NSCLC) progression under

normoxia conditions (227). In addition, microRNA-376c, delivered by

endothelial cells through extracellular vesicles, inhibits the YTHDF1

and WNT/b-catenin pathway in NSCLC cells, resulting in the

malignant progression of NSCLC cells (228). Nevertheless, under

cisplatin-induced oxidative stress, YTHDF1 deficiency activates the

antioxidant Nrf2-AKR1C1 axis by inhibiting the Keap1 mRNA

transition, which resulted in cisplatin resistance and poor prognosis.

Furthermore, the YTHDF1-m6A-enolase1 (ENO1) translation axis is a

crucial pathway for stimulating glycolysis and tumorigenesis (229). In

KRAS and TP53 co-mutated lung adenocarcinomas, YTHDF1

recognizes m6A modification and contributes to tumor proliferation

and poor prognosis through the upregulation of cyclin B1 (230).

In addition, YTHDF2 promotes translation but not clearance of 6-

phosphogluconate dehydrogenase (6PGD) mRNA in an m6A-

dependent manner by interacting with eIF3a/b, which enhances the

pentose phosphate pathway (PPP) flux for tumor growth (231). The

transcriptional repressor ZBTB4 and the tumor suppressor DAPK2 are

negatively regulated by YTHDF2 and significantly associates with

smoking-induced lung cancer (232, 233). However, ALKBH5

attenuates YTHDF2-mediated downregulation of oncogenic drivers

such as SOX2, SMAD7, and MYC, contributing to the progression of

aggressive lung cancer with KRAS mutation/LKB1 loss (234).

Furthermore, YTHDF2 produces a positive effect on lung

adenocarcinoma progression through the mRNA decay of AXIN1, a

negative regulator of the WNT/b-catenin pathway (235). YTHDF2

produces the same effect in a VIRMA-m6A-dependent fashion in lung

adenocarcinoma and NSCLC by reducing BTG2 mRNA and DAPK3

mRNA stability, respectively (236, 237). Nevertheless, YTHDF2

induces sensitivity of lung adenocarcinoma to gefitinib via cleavage

of circASK1 (238). Interestingly, YTHDF2 promotes proliferation and

downregulates the FAM83D-TGFb1-SMAD2/3 pathway to inhibit

migration and invasion in lung adenocarcinoma cells (239). In lung

squamous cell carcinoma, up-regulation of YTHDF2 under hypoxic

conditions activates the mTOR/AKT signaling pathway and induces

EMT to play a tumor-promoting role (240).

Interestingly, YTHDF1 and YTHDF2 regulate YAP expression by

competitively binding to YTHDF3-m6A-YAP mRNA, thereby

aggravating and attenuating the malignancy behavior of NSCLC,

respectively (241). YTHDF1/3 recruits eIF3a/b to promote YAP

mRNA translation, while YTHDF2/3 recruits AGO2 to promote

YAP mRNA decay. And YTHDF3 indirectly increased YAP levels to

empower NSCLC progression and drug resistance by enhancing

MALAT1 mRNA stability (242).
5.3 Urogenital system cancers

5.3.1 Bladder cancer
YTHDF family plays a tumor-promoting role in bladder cancer.

Specifically, METTL3 and YTHDF1 are closely related to malignant

transformation and tumorigenesis in the presence of chemical

carcinogens, with the m6A-methylated 3’UTR promoting oncogene

CDCP1 translation (243). Moreover, YTHDF1/3 promotes aggressive

phenotypes by translating ITGA6 mRNA, while YTHDF2 facilitates
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migration by degrading the mRNAs of the tumor suppressors SETD7

and KLF4 (244, 245).

5.3.2 Prostate cancer
YTHDF2 acts as a facilitator and is negatively regulated by miR-

493-3p in prostate cancer (PCa) (246). Du et al. considered that

KDM5A abrogates the inhibition of miR-495 on YTHDF2, and then

upregulated YTHDF2 intensifies PCa progression by inducing m6A-

MOB3B mRNA decay (247). In addition, YTHDF2 clears METTL3-

mediated m6A-dependent mRNA of LHPP, NKX3-1, and USP4 (248,

249). The decrease of LHPP and NKX3-1 causes PCa proliferation and

migration by inducing AKT phosphorylation. And downregulated

USP4 promotes ARHGDIA expression by reducing ELAVL1 protein,

thus accelerating invasion and metastasis of PCa. METTL14-mediated

m6A modification of Thrombospondin 1 (THBS1) mRNA promotes

PCa proliferation in a YTHDF2-dependent manner of transcriptome

degradation (250).

5.3.3 Breast cancer
In breast cancer, high expression of YTHDF1 and YTHDF3 is

associated with gene copy number amplification and induces a poor

prognosis (251, 252). YTHDF1 targets FOXM1 mRNA and positively

regulates breast cancer progression (253). Additionally, hypoxia-

mediated downregulation of miR-16-5p restored YTHDF1

expression, thereby promoting tumor glycolysis by enhancing PKM2

mRNA translation (254). Sun et al. demonstrated that YTHDF1

stabilizes E2F8 mRNA, which accelerates DNA damage repair and

chemoresistance to adriamycin, cisplatin, and the PARP inhibitor

olaparib in breast cancer cells (255). YTHDF1/eEF1-mediated

translational elongation of KRT7 mRNA and YTHDF3-induced

mRNAs translation of ST6GALNAC5, GJA1, and EGFR is involved

in breast cancer lung and brain metastasis, respectively (57, 256). And

YTHDF3 can be antagonized by miR-106b-5p (257). Moreover,

YTHDF3 stabilizes ZEB1 mRNA to promote the invasion and

migration of triple-negative breast cancer (TNBC) cells (258).

Furthermore, YTHDF2 is upregulated in TNBC cells and prevents

cell apoptosis (259, 260). YTHDF2 also targets the m6A site 5’UTR

region of ATF3 mRNA to mitigate the resistance of breast cancer cells

to tamoxifen (261).
5.3.4 Ovarian cancer
YTHDF1 and YTHDF2 are considered oncogenes in ovarian

cancer. YTHDF1 is recruited to the m6A site of EIF3C mRNA and

stimulates EIF3C as well as overall protein translation (262). YTHDF1

also confers cisplatin-resistant ovarian cancer cells with CSC-like traits

by promoting m6A-TRIM29 mRNA translation (263). Furthermore,

FBW7 abrogates the mRNA degradation of YTHDF2 on pro-apoptotic

gene BMF by inducing YTHDF2 decay, disrupting ovarian cancer

progression (264). Moreover, YTHDF2 can be directly targeted and

inhibited by miR-145 in ovarian cancer cells (265).

5.3.5 Cervical cancer
In cervical cancer (CC) cells, YTHDF1 accelerates m6A-augmented

glycolysis and cancer progression by promoting translational

elongation of pyruvate dehydrogenase kinase 4 (PDK4) mRNA and
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stabilization of hexokinase 2 (HK2) mRNA (56, 266). Specifically, the

YTHDF1/eEF-2 complex binds the m6A site of PDK4 mRNA at the

5’UTR and YTHDF1 recognizes the m6A-modified 3’UTR of HK2

mRNA. Furthermore, YTHDF1 plays a tumor-promoting role by

facilitating mitosis-associated RANBP2 mRNA translation in an

m6A-mediated approach, while YTHDF2 exerts the same role by

degrading the tumor suppressor GAS5 mRNA (267, 268). YTHDF2

deficiency suppresses the proliferation of CC cells, promotes apoptosis,

and arrests the cells at the S phase (269). YTHDF2 can also facilitate

EMT and cisplatin resistance in CC cells by stabilizing AXIN1

mRNA (270).

5.3.6 Endometrial cancer
YTHDF1 and YTHDF2 modulate the negative regulator PHLPP2

and positive regulator mTORC2 of AKT respectively, which is

unfavorable to the tumorigenicity of the AKT pathway in

endometrial cancer (EC) (271). In addition, YTHDF2-mediated

transcript degradation of IRS1 is accompanied by inhibition of the

AKT/MMP9 signaling pathway, thereby impairing the activity of

endometrial cells (272). And YTHDF2 deficiency activates the WNT

signaling pathway by reducing the decay of HOXB13 mRNA, and thus

promotes EC invasion and metastasis (273). Conversely, YTHDF2

degrades lncRNA FENDRR to enhance the expression of SOX4, which

ultimately promotes EC cell proliferation and hinders apoptosis (274).
5.4 Cancers in other systems

5.4.1 Glioblastoma
YTHDF1 and YTHDF2 were found to be highly overexpressed in

glioblastoma (GBM) tissues compared to normal tissues (275).

YTHDF1 is required for maintaining GBM CSC properties and

promoting proliferation, migration, and chemoresistance (276). And

Musashi-1(MSI1) is a GBM hyper-oncogenic regulator and positively

regulates YTHDF1 expression. YTHDF1 also assists METTL3 in

increasing levels of ADAR1 and thereby stimulates GBM cell growth

(277). In addition, YTHDF2 is positively regulated by the EGFR/SRC/

ERK pathway and facilitates the malignancy progression of GBM by

degrading downstream transcripts, including LXRa, HIVEP2, UBXN1,
and ASS1 mRNAs in an m6A-dependent manner (43, 278, 279).

Among them, LXRa and ASS1 are related to cholesterol homeostasis

and arginine metabolism, respectively. Strikingly, YTHDF2 recognizes

m6A methylation to maintain MYC mRNA stability, thereby

promoting the expression of the downstream effector IGFBP3,

leading to GBM CSC growth (280). And this process occurs

specifically in GBM CSCs but not in normal neural stem cells

(NSCs). Chen et al. verified that YTHDF2 promotes temozolomide

desensitization in GBM cells (281). Mechanistically, YTHDF2 activates

PI3K/AKT and NF-kB signaling pathways by targeting the 3’UTR and

downregulating the mRNAs stability of EPHB3 and TNFAIP3.

5.4.2 Melanoma
YTHDF1 is amplified in melanoma, and the combination of

YTHDF1 and HNRNPA2B1 significantly increases the diagnostic

validity (282). However, YTHDF1 inhibits ocular melanoma
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progression by facilitating HINT2 mRNA translation (283).

YTHDF2 knockdown promotes tumor growth and reduces the

sensitivity of anti-PD-1 therapy by enhancing the mRNAs stability of

the intrinsic genes PD-1 (PDCD1), CXCR4, and SOX10 in an m6A-

dependent fashion (284). Yu et al. discovered that histone lactylation

promotes YTHDF2 expression in ocular melanoma, and YTHDF2

stimulates tumorigenesis by degrading m6A-modified PER1 and TP53

mRNAs (285). Similarly, YTHDF3 also promotes ocular melanoma

progression by promoting CTNNB1 mRNA translation in an m6A-

dependent manner (286).

5.4.3 Merkel cell carcinoma
The occurrence of Merkel cell carcinoma (MCC) is mostly

attributed to the attack of the small T antigen of Merkel cell

polyomavirus (MCPyV) (287). Meanwhile, overexpression of

YTHDF1 improves the proliferative and clonogenic capacity of MCC

cells by recruiting eIF3a/b to promote the translation initiation of small

T antigen mRNA. Mechanistically, overexpression of YTHDF1 is

caused by increased gene copy number.

5.4.4 Acute myeloid leukemia
Nguyen et al. first reported that YTHDF2 is identified as a novel

acute myeloid leukemia1 (AML1) T translocation partner gene (288).

Notably, YTHDF2 is highly expressed in different AML subtypes (289).

And inhibition of YTHDF2 specifically impairs AML initiation and

progression while expanding hematopoietic stem cells (HSCs) and

maintaining normal hematopoietic function. In detail, YTHDF2

promotes the development and propagation of AML CSCs by

degrading multiple m6A-modified mRNAs such as TNF receptor

superfamily member 1b (TNFRSF1b) that are associated with the

functional integrity of AML CSCs. Moreover, the AML1/ETO-HIF1a
loop transactivates the YTHDF2 promoter to promote t (8, 21) AML

cell proliferation (290). However, YTHDF2 may interfere with the

glycolytic process of AML cells by destabilizing transcripts of

phosphofructokinase platelet (PFKP) and lactate dehydrogenase B

(LDHB) (291). Interestingly, the three YTHDFs can jointly degrade

the associated transcripts and inhibit the differentiation of AML cells

(63) (Figures 4–6) (Tables 1–3).
6 Limitations and perspectives

Although it has been revealed that the YTHDF family is involved

in a variety of biological processes as the “readers” of m6A

modification, there are still many mysteries about the YTHDF family

that need to be discovered and solved in terms of structure, function,

and treatment.

The discussion of the structure and function of YTHDFs is

partially doubtful due to the limitations of technology and

conditions. The reason why YTHDFs select the same or different

target mRNAs and m6A sites on mRNAs, and why YTHDFs pair with

different cooperating m6A regulators, has not been reached. In

addition, YTHDFs can be localized in different cellular

compartments and may re-enter the nucleus or transport out of the

cell membrane, thus expanding the regulation of YTHDFs. The post-
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transcriptional modifications of YTHDFs and interactions of YTHDFs

with other proteins also add to the structure and function complexity of

YTHDFs. Therefore, the development of emerging technologies, the

control of various conditions, and the change of different stimulus

states are necessary to further investigations in the YTHDF family.

At present, many experiments have successfully constructed the

YTHDF1/2/3 genetic KO mouse model using different techniques.

First, the whole-body YTHDF1/2/3 KO mice are generated directly

based on CRISPR/Cas9 by deleting a certain exon or inducing the

premature appearance of a stop codon (87, 88, 110, 213). Second, the

Cre/LoxP technique is used to generate cell-specific conditional

YTHDF1/2/3 KO mice (74, 84, 108, 165, 167, 174, 227, 289). This

represents an improvement in experimental research moving from in

vitro to in vivo. However, the specific mutation of functional RNA

binding sites of YTHDFs in mice needs to be further realized. In

addition, one of the important purposes of experimental research is

clinical transformation, so it is of great need to explore the application

value of targeting YTHDFs in the clinic, especially in tumors. Many

clinical-related studies have analyzed the expression profile of the m6A

regulator in tumors and its association with the immune

microenvironment, grading, staging, therapeutic effect, and

prognosis. For example, the analysis of 162 HCC samples from the

Zhou et al. and 177 HCC samples from the Nakagawa et al. showed

that YTHDF1 was related to poor prognosis of HCC and YTHDF2 was

related to HCC recurrence, respectively (169, 182). YTHDF1 was

associated with a poor prognosis of GC in a study of 379 patients

with GC (164). Interestingly, high expression of YTHDF1 and

YTHDF2 was associated with a better prognosis in 603 cases of

resected NSCLC, which might be due to increased tumor-infiltrating

lymphocytes (TILs) and decreased co-inhibitor molecule PD-L1 (226).
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In addition, an assessment of single nucleotide polymorphisms (SNPs)

in the YTHDF1 gene in 313 cases of hepatoblastoma showed that

rs6090311 A>G was correlated with a reduced risk of hepatoblastoma

(292). A similar SNPs assessment found that the YTHDF2 rs3738067

variant significantly increased glioma risk in 171 pediatric patients

(293). Moreover, increasing evidence confirms the efficacy of

bioinformatics analysis based on TCGA and other databases for the

YTHDFs-associated model. To sum up, the expression of YTHDFs is

significantly correlated with the grades and stages of various tumors

and may be used as indicators to judge the occurrence and

development of tumors. YTHDFs may act as independent prognostic

factors for many tumors and affect survival-related indicators such as

overall survival (OS), disease-free survival (DFS), and progression-free

survival (PFS). At the therapeutic level, targeting YTHDFs can not only

directly modulate the malignancy behavior of tumors, but also affect

the sensitivity of chemotherapy and immunotherapy. Besides,

YTHDFs also have the possibility of effective clinical application in

non-cancer, including hematopoietic, anti-obesity, anti-viral, and

anti-inflammatory.

However, studies of YTHDFs are still in the preclinical stage and

many issues need attention. First, the clinical application of YTHDFs in

different diseases, alone or in combination with other targets, requires

further investigation. Second, the effectiveness of YTHDFs in

diagnosing and predicting prognosis may vary across disease types,

grades, and stages. Most importantly, the specific molecules targeting

YTHDFs have not yet been developed. So how can YTHDFs be used in

clinical treatment? The expression of YTHDFs can be regulated by

other strategies. Targeting upstream or metabolic mechanisms of

YTHDFs is an alternative approach to indirectly regulate the levels of

YTHDFs (Figure 7). YTHDF2 has the capability of inhibiting the
FIGURE 4

The mechanism of the YTHDF1 family in cancers. “↓” is the decrease
of target mRNAs. “↑” is the increase of target mRNAs.
FIGURE 5

The mechanism of the YTHDF2 family in cancers. “↓” is the decrease
of target mRNAs. “↑” is the increase of target mRNAs.
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TABLE 1 The role of the YTHDF1 in cancers.

Cancers Roles Cooperative
m6A regula-

tors

Target
mRNAs

“Rea
pos

Hepatocellular
carcinoma

Oncogene METTL3 Snail CDS

METTL3 RBM14 –

– ATG2A and
ATG14

CDS

METTL3 EGFR 5’UTR

Tumor
suppressor

METTL3 FOXO3 3’UTR

Intrahepatic
cholangiocarcinoma

Oncogene – EGFR 3’UTR

Gastric cancer Oncogene – FZD7 3’UTR

– USP14 CDS

METTL3 SPHK2 –

Colorectal cancer Oncogene – ARHGEF2 3’UTR

– GLS1 3’UTR

METTL3 LDHA CDS

Tumor
suppressor

METTL3/14 and
WTAP

ANKLE1 –

Chen et al. 10.3389/fimmu.2023.1162607
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progression of HCC, and this effect can be antagonized by HIF-2a
(180). Therefore, the HIF-2a antagonist (PT2385) can indirectly

restore the effect of YTHDF2. And CDK1 inhibitors promote

YTHDF2 proteolysis in AML (294). Furthermore, the delivery of

target genes using viral vectors is also a feasible approach to target

YTHDFs. YTHDF1 overexpression therapy can be achieved by

injecting adeno-associated virus (AAV)-YTHDF1 into the

hippocampus of diabetic cognitively impaired mice (116). In

conclusion, clarifying the limitations of YTHDFs is conducive to

better clinical transformation.
7 Conclusions

With multi-omics advancement, the roles of m6A

modification have been gradually and seriously excavated. By

binding to m6A, the YTHDF family plays an important role in

the regulation of various physiological and pathological processes,

including embryonic development, stem cell fate, fat metabolism,

neuromodulation, cardiovascular effect, viral infection, immunity,

and especially in tumors. In particular, YTHDFs regulate multiple

tumor phenotypes such as proliferation, metastasis, metabolism,

drug resistance, and immunity. Additionally, YTHDFs can be

used as biomarkers for the diagnosis, treatment, and predictors of
FIGURE 6

The mechanism of the YTHDF3 family in cancers. “↓” is the decrease
of target mRNAs. “↑” is the increase of target mRNAs.
ding”
ition

The mechanism
of target mRNAs

Functional classifica-
tion

References

Promoting translation EMT and metastasis (55)

Promoting expression Growth and metastasis;
Kupffer cells polarization

(173)

Promoting translation Hypoxia-induced
autophagy, growth, and
metastasis

(174)

Promoting translation Viability and metastasis (175)

Increasing stability Sorafenib sensitivity (176)

Promoting translation Proliferation, migration,
and invasion

(188)

Promoting translation Proliferation and
metastasis

(192)

Promoting translation Proliferation and
metastasis

(193)

Promoting translation Proliferation, migration,
and invasion

(194)

Promoting translation Growth and metastasis (213)

Promoting translation Cisplatin resistance (215)

Promoting translation Glycolysis and 5-
fluorouracil resistance

(216)

Promoting translation Proliferation (217)

(Continued)
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TABLE 1 Continued

Cancers Roles Cooperative
m6A regula-

tors

Target
mRNAs

“Reading”
position

The mechanism
of target mRNAs

Functional classifica-
tion

References

Lung cancer Oncogene – CDK2, CDK4,
and cyclin D1

– Promoting translation Proliferation (227)

METTL3 and
ALKBH5

ENO1 CDS Promoting translation Glycolysis and growth (229)

– cyclin B1 3’UTR Promoting translation Proliferation (230)

METTL3 and
ALKBH5

YAP – Promoting translation Growth and metastasis (241, 242)

Tumor
suppressor

– Keap1 – Promoting translation Cisplatin sensitivity (227)

Bladder cancer Oncogene METTL3 and
ALKBH5

CDCP1 3’UTR Promoting translation Growth (243)

METTL3 and
ALKBH5

ITGA6 3’UTR Promoting translation Adhesion, migration, and
invasion

(244)

Breast cancer Oncogene – FOXM1 CDS Promoting translation Proliferation and
metastasis

(253)

– PKM2 CDS Promoting translation Glycolysis, growth, and
metastasis

(254)

METTL14 E2F8 – Increasing stability Growth, DNA damage
repair, and
chemoresistance

(255)

FTO KRT7 CDS Promoting translation Lung Metastasis (57)

Ovarian cancer Oncogene – EIF3C – Promoting translation Proliferation and
metastasis

(262)

– TRIM29 3’UTR Promoting translation The CSC-like phenotype (263)

Cervical cancer Oncogene METTL3 PDK4 5’UTR Promoting translation Glycolysis, proliferation,
and doxorubicin resistance

(56)

METTL3 HK2 3’UTR Increasing stability Warburg effect and
Proliferation

(266)

– RANBP2 – Promoting translation Growth, migration,
invasion, and apoptosis

(267)

Endometrial cancer Tumor
suppressor

METTL3/14 PHLPP2 – Promoting translation Proliferation (271)

Glioblastoma Oncogene METTL3 ADAR1 – Promoting translation Proliferation (277)

Ocular melanoma Tumor
suppressor

METTL3 and
ALKBH5

HINT2 3’UTR Promoting translation Growth and migration (283)

Merkel cell
carcinoma

Oncogene – small T
antigen

– Promoting translation Proliferation and Cloning (287)

The meaning of the symbol "-" is that the specific content has not yet been revealed in the corresponding research.
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TABLE 2 The role of the YTHDF2 in cancers.

Cancers Roles Cooperative
m6A regula-

tors

Target
mRNAs

“Reading”
position

The mechanism
of target
mRNAs

Functional classification References

Hepatocellular
carcinoma

Oncogene METTL3 SOCS2 – Promoting
degradation

Proliferation, migration, and
colony formation

(184)

– OCT4 5’UTR Promoting
translation

CSC phenotype and cancer
metastasis

(185)

– FYN – Increasing stability EMT and metastasis (186)

Tumor
suppressor

– EGFR 3’UTR Promoting
degradation

Proliferation and growth (179)

– IL11 and
SERPINE2

3’UTR Promoting
degradation

Inflammation, vascular
reconstruction, and metastatic
progression

(180)

Intrahepatic
cholangiocarcinoma

Oncogene METTL3 IFIT2 – Promoting
degradation

Proliferation, apoptosis, cell
cycle process, invasion, and
migration

(189)

METTL3 CDKN1B – Promoting
degradation

Proliferation, apoptosis, cell
cycle process, and cisplatin
resistance

(190)

Gastric cancer Oncogene METTL3 PTEN – Promoting
degradation

Proliferation, migration, and
invasion

(196)

METTL3 CBS CDS Decreasing stability Ferroptosis and
chemoresistance

(197)

Tumor
suppressor

– FOXC2 – Decreasing stability Proliferation, migration, and
invasion

(198)

Pancreas cancer Oncogene METTL14 PERP 3’UTR Decreasing stability Growth and metastasis (200)

ALKBH5 PER1 3’UTR Promoting
degradation

Proliferation and metastasis (201)

METTL3 NUCB1 5’UTR Promoting
degradation

Growth and GEM resistance (202)

Tumor
suppressor

METTL3/14 and
WTAP

PIK3CB – Decreasing stability Proliferation and migration (203)

FTO PDGFC 3’UTR Decreasing stability Proliferation (204)

Colorectal cancer Oncogene METTL3 YPEL5 CDS Promoting
degradation

Growth and metastasis (218)

– GSK3b 3’UTR Promoting
degradation

Proliferation (222)

Tumor
suppressor

METTL14 SOX4 – Promoting
degradation

migration, invasion, and
metastasis

(219)

METTL14 XIST – Promoting
degradation

Proliferation and metastasis (220)

FTO ATF4 – Decreasing stability Autophagy (221)

METTL14 STEAP3 – Promoting
degradation

Proliferation and metastasis (223)

Lung cancer Oncogene – 6PGD 3’UTR Promoting
translation

Growth (231)

METTL3 DAPK2 – Decreasing stability Proliferation and migration (233)

– AXIN1 – Promoting
degradation

Proliferation and metastasis (235)

VIRMA BTG2 3’UTR Decreasing stability Proliferation and metastasis (236)

(Continued)
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TABLE 2 Continued

Cancers Roles Cooperative
m6A regula-

tors

Target
mRNAs

“Reading”
position

The mechanism
of target
mRNAs

Functional classification References

VIRMA DAPK3 3’UTR Promoting
degradation

Proliferation, migration, and
invasion

(237)

Tumor
suppressor

ALKBH5 SOX2,
SMAD7, and
MYC

– Decreasing stability Proliferation and migration (234)

METTL3 circASK1 – Promoting
degradation

Gefitinib sensitivity (238)

– FAM83D – Promoting
degradation

Migration and invasion (239)

METTL3 and
ALKBH5

YAP – Promoting
degradation

Growth and metastasis (241)

Bladder cancer Oncogene METTL3 SETD7 and
KLF4

– Promoting
degradation

Migration (245)

Prostate cancer Oncogene – MOB3B – Promoting
degradation

Proliferation, migration,
invasion, and apoptosis

(247)

METTL3 LHPP and
NKX3-1

– Promoting
degradation

Proliferation and migration (248)

METTL3 USP4 CDS Promoting
degradation

Invasion and metastasis (249)

METTL14 THBS1 – Promoting
degradation

Proliferation (250)

Breast cancer Tumor
suppressor

– ATF3 5’UTR Decreasing stability Tamoxifen sensitivity (261)

Ovarian cancer Oncogene – BMF 3’UTR Promoting
degradation

Proliferation (264)

Cervical cancer Oncogene ALKBH5 GAS5 – Promoting
degradation

Growth and metastasis (268)

– AXIN1 – Increasing stability EMT and cisplatin resistance (270)

Endometrial cancer Oncogene FTO FENDRR – Promoting
degradation

Proliferation and apoptosis (274)

Tumor
suppressor

METTL3/14 mTORC2 – Promoting
degradation

Proliferation (271)

METTL14 and
ALKBH5

IRS1 CDS Promoting
degradation

Proliferation and invasion (272)

FTO HOXB13 3’UTR Promoting
degradation

Invasion and metastasis (273)

Glioblastoma Oncogene – LXRa and
HIVEP2

– Promoting
degradation

Proliferation, invasion, and
cholesterol dysregulation

(43)

METTL3 UBXN1 – Promoting
degradation

Proliferation and migration (278)

METTL14 ASS1 – Promoting
degradation

Proliferation, migration, and
invasion

(279)

METTL3 MYC – Increasing stability CSC growth (280)

– EPHB3 and
TNFAIP3

3’UTR Decreasing stability Temozolomide resistance (281)

Melanoma Tumor
suppressor

FTO PDCD1,
CXCR4, and
SOX10

5’UTR and
3’UTR

Promoting
degradation

Growth and anti-PD-1
blockade immunotherapy
sensitivity

(284)

(Continued)
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TABLE 2 Continued

Cancers Roles Cooperative
m6A regula-

tors

Target
mRNAs

“Reading”
position

The mechanism
of target
mRNAs

Functional classification References

Ocular melanoma Oncogene – PER1 and
TP53

3’UTR Promoting
degradation

Proliferation and migration (285)

Acute myeloid
leukemia

Oncogene – TNFRSF1b – Promoting
degradation

The development and
propagation of AML CSCs

(289)

– TNFRSF1b 3’UTR Decreasing m6A
levels

Proliferation (290)

Tumor
suppressor

FTO PFKP and
LDHB

– Promoting
degradation

Glycolysis (291)

The meaning of the symbol "-" is that the specific content has not yet been revealed in the corresponding research.

TABLE 3 The role of the YTHDF3 in cancers.

Cancers Roles Cooperative
m6A regulators

Target mRNAs “Reading”
position

The mechanism of
target mRNAs

Functional classifi-
cation

References

Hepatocellular
carcinoma

Oncogene – ZEB1 – Increasing stability Metastasis (177)

Pancreas
cancer

Oncogene – DICER1-AS1 – Decreasing stability Glycolysis, proliferation,
and metastasis

(209)

Colorectal
cancer

Oncogene – GAS5 – Promoting degradation Proliferation and
invasion

(224)

Lung cancer Oncogene METTL3 MALAT1 – Increasing stability Cisplatin resistance,
growth, and metastasis

(242)

Breast cancer Oncogene – ST6GALNAC5,
GJA1, and EGFR

– Promoting translation Brain metastasis (256)

– ZEB1 – Increasing stability Migration, invasion, and
EMT

(258)

Ocular
melanoma

Oncogene – CTNNB1 – Promoting translation Proliferation and
migration

(286)

The meaning of the symbol "-" is that the specific content has not yet been revealed in the corresponding research.
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FIGURE 7

The upstream regulations of the YTHDF family.
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prognosis evaluation. On-going explorations of YTHDFs in

modeling disease progression are still warranted for a better and

deeper understanding of epigenetic modifications.
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