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Introduction: The incidence of colon adenocarcinoma (COAD) has recently

increased, and patients with advanced COAD have a poor prognosis due to

treatment resistance. Combining conventional treatment with targeted therapy

and immunotherapy has shown unexpectedly positive results in improving the

prognosis of patients with COAD. More study is needed to determine the

prognosis for patients with COAD and establish the appropriate course of

treatment.

Methods: This study aimed to explore the trajectory of T-cell exhaustion in

COAD to predict the overall survival and treatment outcome of COAD patients.

Clinical data were derived from the TCGA-COAD cohort through "UCSC", as well

as the whole genome data. Prognostic genes driving T-cell trajectory

differentiation were identified on the basis of single-cell trajectories and

univariate Cox regression. Subsequently, T-cell exhaustion score (TES) was

created by iterative LASSO regression. The potential biological logic associated

with TES was explored through functional analysis, immune microenvironment

assessment, immunotherapy response prediction, and in vitro experiments.

Results: Data showed that patients with significant TES had fewer favorable

outcomes. Expression, proliferation, and invasion of COAD cells treated with TXK

siRNA were also examined by cellular experiments. Both univariate and

multivariate Cox regression indicated that TES was an independent prognostic

factor in patients with COAD; in addition, subgroup analysis supported this

finding. Functional assay revealed that immune response and cytotoxicity

pathways are associated with TES, as the subgroup with low TES has an active

immune microenvironment. Furthermore, patients with low TES responded

better to chemotherapy and immunotherapy.
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Conclusion: In this study, we systematically explored the T-cell exhaustion

trajectory in COAD and developed a TES model to assess prognosis and

provide guidelines for the treatment decision. This discovery gave rise to a

fresh concept for novel therapeutic procedures for the clinical treatment of

COAD.
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Introduction

Colon adenocarcinoma (COAD) is a malignant gastrointestinal

tumor that originates in the colon and is the third most prevalent

tumor and the second leading cause of cancer-related death

worldwide (1). Early-stage COAD is often difficult to detect, and

despite rapid advances in early cancer screening technology, most

COAD patients are diagnosed with advanced COAD only when

they have obvious symptoms such as hematochezia and colonic

obstruction, etc (2). Patients with advanced COAD are often not

eligible for surgical resection and can only be treated with

traditional chemotherapy and targeted therapy (Monoclonal

antibody drugs such as bevacizumab and cetuximab) (3, 4).

However, treatment resistance often occurs in advanced COAD,

leading to a worse prognosis for patients (5). As cancer treatment

has entered the field of immunotherapy, most cancer patients have

achieved clinical success (6). However, only a small percentage of

patients respond positively to immunotherapy.

Most patients with advanced cancer have T cells in a state of

exhaustion, and T-cell exhaustion is an important factor in the

efficacy of immunotherapy (7). T-cell exhaustion is a common

feature of the cancer process and immune dysfunction, resulting

from sustained antigenic stimulation and immune response (8).

Exhausted T cells have a progressive loss of immune effector

function, persistent high expression of suppressor receptors (such

as ENTPD1, LAYN, LAG3, and HAVCR2) (9), and loss of self-

renewal capacity, along with a unique transcriptional signature (8,

10). Recent studies suggest that interventions to alleviate T-cell

exhaustion may lead to superior clinical outcomes and dramatic

advances in cancer immunotherapy (11). Encouragingly, related

studies have made some progress in lung cancer (12, 13). Thus,

finding pre-depleted T cells in COAD could lead to a larger clinical

window. Single-cell sequencing technology provides a new

perspective for analyzing T-cell exhaustion trajectories (14), and

by integrating scRNA-Seq data and bulk RNA-seq data, we may be

able to gain a preliminary understanding of the T-cell trajectories

and core regulatory targets that are pre-exhausted in COAD. This

will facilitate initial protocol development and the development of

novel targeted therapies.

Tumor processes are complex dynamic systems, and although it

is commonly assumed that exhausted T cells result from sustained

antigenic stimulation, the phenotype and transcriptional
02
characteristics of exhausted T cells are also shaped by multiple

factors in the immune microenvironment (15). Including the

expression of suppressive receptors and ligands, the regulation of

suppressor cells such as Tregs, suppressor cytokines such as IL-10

and TGFb, and some metabolic products also suppress T-cell

function (15). Identification of the transcriptional pathways

mediating T cell dysfunction is complex because the genetic

profile of exhausted T cells overlaps to a considerable extent with

that of activated T cells (16, 17). It has been suggested that failing T

cells cannot be accurately defined by suppressor molecules alone

(8), however, the driver genes that regulate T cell failure in COAD

are currently unknown. These genes may be a breakthrough in

targeting T-cell exhaustion and may also serve as important clinical

prognostic treatment targets.

In this study, we aimed to characterize the dynamic trajectory of

T-cell exhaustion in COAD and identify prognostic markers

associated with exhausted CD8+ T cells. We first depicted the

evolutionary trajectory of CD8+ T cells in a single-cell dataset and

identified core regulatory genes of the exhausted CD8+ T trajectory

based on the pseudo-time trajectory. Based on these genes we

constructed a T-cell exhaustion score (TES) to assist in prognosis

and quantify the degree of exhaustion. We then assessed the

heterogeneity of different TES subgroups in terms of function,

immune infiltration, and genomic alterations, and evaluated the

predictive efficacy of the TES for immunotherapy. Finally, we

preliminarily validated the core genes of TES by qRT-PCR, CCK8

assay, and transwell invasion experiment. In conclusion, this study

not only identified the trajectory of exhausted CD8+ T cells in

COAD and provided a tool to quantify T-cell exhaustion. Moreover,

it confirmed the reliable efficacy of T-cell exhaustion in predicting

COAD prognosis and immunotherapy. We hope that this study will

provide novel prognostic markers and immunotherapeutic targets

for COAD patients.
Methods

Data collection

For the TCGA-COAD cohort, we obtained copy number

variant (CNV) data from the UCSC Xena (https://xena.ucsc.edu)

database, somatic variant data from maf files on the Muctect 2
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platform, and transcriptome RNA-seq data. Additionally, relevant

clinical follow-up data was gathered. A TCGA-COAD cohort of 432

COAD patients was collected and utilized as a training cohort after

patients with pathological typing as COAD were included and

patients with missing follow-up information were excluded.

Additionally, data from three large COAD cohorts: GSE14333

(18), GSE17536 (19), and GSE41258 (20) from the GEO database

was gathered. After data combination and removing those with

insufficient follow-up data, 654 patients with COAD were included

after collecting the patient follow-up data from the original

Supplementary Material. The external validation was done using

the meta-GEO COAD cohort. Finally, a single-cell transcriptome

dataset GSE146771 of 10 primary tumor sections, was obtained and

processing use “Seurat” R packages. We explore T-cell exhaustion

trajectories in colon cancer through the single-cell data. The specific

data processing and standardization pipeline can be obtained from

the original article (21).
Exploring T-cell depletion trajectories in
colon cancer

First, we evaluated the cytotoxicity score and cell exhaustion

score of each cell in the scRNA-seq dataset by the “AUCell” package

based on previously reported genetic markers (9, 14). Subsequently,

the R package “monocle” was used to calculate and map the pseudo-

time trajectories of T cells. The differentialGeneTest() function was

used to calculate the characteristic genes in different trajectories.

Finally, we identified the signature genes in the T cell depletion

trajectories as T cell depletion markers in COAD.
Construction of the T-cell exhaustion
scoring model

In order to find independent predictive markers for COAD, we

first conducted a univariate cox regression analysis for T-cell

exhaustion markers. The T-cell exhaustion score (TES) was then

created using LASSO regularization through 300 random iterations.

After selecting a penalty factor l, the regularization model will

remove insignificant markers and generate coefficients for each TES

model gene. To prevent overfitting, we set up a 5-fold cross-

validation and determine the final stable TES model based on the

number of builds in 300 random iterations. The final TES model

was generated GAS according to the following equation:

TES =oiCoefficient(mRNAi)� Expression(mRNAi)

In order to evaluate prognostic effectiveness, the “survcomp”

program computed the C-index of the TES (22). A prediction made

by the model that is more optimum and stable has a higher C-index.

The independent prognostic significance of TES was thoroughly

investigated using Kaplan-Meier survival analysis, univariate and

multifactorial Cox regression, and time-dependent ROC (tROC)

curves. High TES and low TES groups were separated by the median

value of TES. Finally, to measure the chance of survival more
Frontiers in Immunology 03
accurately for specific patients, we created a nomogram based on

TES and other clinical characteristics.
Cell culture

The normal human colonic epithelial cell line NCM460 and the

human colon cancer cell lines SW460 and SW48 were bought from

Bioss, China. All cells were grown in DMEM media with 10% FBS

in a 37°C cell incubator with 5% CO2.
qRT-PCR

We then used qRT-PCR to assay patient tissues and COAD cell

lines to assess TXK level. ChamQ Universal SYBR qPCR Master

Mix was used to run each real-time PCR experiment (Vazyme,

China). Using GAPDH as a control, the amplified PCR products

were measured and standardized.
Cell proliferation detection

For the transfection of siRNA in this work, LipofectamineTM

2000 Transfection Reagent (Invitrogen, USA) was used. Cell

Counting Kit-8 kit was used to measure the proliferation rate of

COAD cells (Bioss, China). At a density of around 1500 cells per

well, the digested single-cell solution was injected in 96-well plates.

Three wells from each group were chosen at random at 0, 12, 24, 48,

and 72 hours. Then, 10 mL of the Cell Counting Kit-8 reagent was

added, and the wells were incubated at 37°C for two hours.

identification of 450 nm absorbance values.
Transwell cell invasion analysis

We used a Transwell kit (Merck Millipore, USA) with a pore

size of 8um to detect the degree of invasion of different SW460 cells.

Briefly, SW460 cells were inoculated in the upper chamber of a 24-

well plate, and DMEM medium containing 20% FBS was added

dropwise in the lower chamber. Cells in the upper layer of transwell

chambers were wiped off with a cotton swab after incubation for

32 h at 37°C in an incubator. The invading cells were stained with

0.1% crystal violet staining solution (Solarbio, China) and counted

using ImageJ software after microscopic visualization.
Assessment of immune heterogeneity
between TES subgroups

In each COAD sample, we calculated the relative abundance of 22

different immune cell types using the “CIBERSORT” program (23).

The “ESTIMATE” system evaluated the samples’ immunological score

and tumor purity (24). The ssGSEA algorithm of the “GSVA” software

was then used to evaluate the activity of the relevant immunological
frontiersin.org
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pathways. The changes in the expression of 6 classical immunological

checkpoints between subgroups were then examined.
Dissecting genomic alterations
between subgroups

The “maftools” package was used to handle the maf files, and it

computed the amount of nonsynonymous mutations for each

patient (25). The variations in top 20 mutated genes across

subgroups were next examined using OncodriveCLUST

algorithm. We also used the “Sigminer” package to extract

significant mutation signatures from the maf files for different

subgroups and compared the mutation signatures with the

COSMIC database (26). Finally, Gistic2.0 was used to process

CNV data and count amplicons and deletions according to a

threshold of 0.2. The “ggplot2” package was used for visualization.
Assessment of chemotherapy applications
for TES

Three medications routinely used in COAD (5-FU, Cisplatin,

and Camptothecin) were initially predicted using “pRRophetic,”

which was built on the GDSC database (27). IC50 values were

estimated by ridge regression, with lower IC50 values indicating
Frontiers in Immunology 04
higher sensitivity. Since the differentially expressed genes between

the high and low TES subgroups were thought to represent potential

therapeutic targets, we uploaded the Top150 up- and down-

regulated genes to the CMap database (https://clue.io/) to

investigate prospective small molecule compounds. Additionally,

to revealing the biomolecular pathways that medications target, it

may infer pharmaceuticals based on gene expression patterns.
Predicting immunotherapy response

We calculated the Immunophenoscore (IPS) of patients based

on the genetic profile of different immune cell phenotypes (28). A

higher IPS indicates an active immune response and a higher

response to immunotherapy. We used the TIDE method to

mimic the tumor immune escape mechanism in order to forecast

how each patient would respond therapeutically to immune

checkpoint inhibitors (29). In addition, we collected two well-

established immunotherapy cohort, Imvigor210, which contained

298 patients with complete follow-up information who received

anti-PD-L1 immunotherapy for uroepithelial cancer (30). And Liu

David. cohort, which contained 121 patients who received anti-PD-

1 immunotherapy for melanoma (31). In order to evaluate the TES’s

immunotherapy prediction capability, the transcriptome data from

the Imvigor210 cohort and Liu David. cohort were utilized to build

the TES based on the same methodology.
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FIGURE 1

Exploring the trajectory of T-cell exhaustion in COAD. (A) The landscape of 7 CD8+ T cell subtypes in GSE146771. (B) Overall pseudo-time
differentiation trajectory of seven T cell subtypes. (C, D) The pseudo-time differentiation trajectory of cytolytic T cell subtypes. (E) Density of cytolytic
scores of different T cell subtypes. (F) Comparison of cytolytic scores of different T cell subtypes. (G) Cytolytic scores for different differentiation
trajectories. (H-J) The pseudo-time differentiation trajectory of exhaustion T cell subtypes. (J) Density of exhaustion scores of different T cell
subtypes. (K) Comparison of exhaustion scores of different T cell subtypes. (L) Exhaustion scores for different differentiation trajectories.
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Bioinformatics and statistical analysis

Fisher’s exact test was used to find proportional differences, the

Wilcoxon test or T-test to determine group differences, the Kaplan-

Meier plotter to produce survival curves, and the log-rank test to

detect differences in survival. The R package “survivalROC” was

used to plot time-dependent ROC curves (tROC). Using the R

package “survival,” univariate and multivariate Cox regressions

were carried out. The nomogram and calibration curves were

plotted using the R package “rms”. The prediction power of

several variables on the outcome of immunotherapy was

evaluated using the R package “pROC”. If not mentioned

differently, two-tailed p-values 0.05 were regarded as significant.

Every analysis was done using the R software (Version 4.1.0).
Results

Exploring T-cell exhaustion trajectories in
colon cancer

We first identified seven CD8+ T cell subtypes based on the cell

annotation in the original article (Figure 1A). The overall

differentiation trajectory of CD8+ T cells was then identified by

monocle algorithm (Figure 1B). The results showed that CD8-

CX3CR1 was at the beginning of the trajectory, while CD8+ T cells

with high expression of the exhaustion marker LAYN were

distributed at the end of the trajectory. Subsequently, we

differentiated two different developmental trajectories based on

the cell exhaustion fraction and cytolytic fraction. Among them,

the cytolytic trajectory was mainly composed of CD8-CX3CR1 cells

with CD8-LEF1 and CD8-GPR183 at the beginning (Figures 1C,

D). We found the strongest cytolytic activity of the CD8-CX3CR1

(Figures 1E, F). Over time, the exhaustion score showed an

increasing trend while the cytolytic score showed a decreasing

and then increasing trend (Figure 1G). The cell exhaustion

trajectory was mainly composed of CD8-LAYN and CD8-GZMK,

with CD8-LAYN distributed at the beginning and the end of the

trajectory and CD8-GZMK mainly distributed at the end of the

trajectory (Figures 1H, I). Subsequently, we found the highest

exhaustion score of CD8-LAYN, which confirmed the reliability

of the exhaustion trajectory (Figures 1J, K). Over time, the cell

exhaustion score increased while the cytolytic activity decreased

(Figure 1L). Finally, we identified 477 ordered genes in the cell

exhaustion trajectory as the T-cell exhaustion markers in COAD.
Dissecting key T-cell exhaustion genes
in COAD

Based on a P<0.05 criterion, 27 T-cell exhaustion genes were

discovered (Figure 2A). A correlation network for these 27 genes was

constructed and the results indicated that most of them were positively

correlated (20/27) (Figure 2B). In the TCGA-COAD cohort, the

mutation landscape of these 27 genes was shown in Figure 2C. The

gene with the greatest frequency of mutations is RASGRP2, and
Frontiers in Immunology 05
missense mutations are the most common form of mutation

(Figure 2D). Finally, we summarized the CNV events of the 27 key

genes (Figure 2E). The results showed that prevalent CNV events

occurred in most genes, the highest amplification frequency was

LIME1, and the highest deletion frequency was RUNX3.
Construction of T-cell exhaustion score

To construct a more robust TES model, we enrolled 27 T-cell

genes with independent prognostic efficacy and performed 300

iterations of LASSO regression to retrieve the most robust model.

The results showed that the model containing 13 genes was the

most robust TES model (215/300) (Figure 3A). Good predictive

efficacy was demonstrated in both TCGA and meta-GEO cohorts

(C index: 0.666 for TCGA; 0.635 for GEO) (Figure 3A). Compared

to the commonly used clinical indicators, TES was slightly weaker

than stage but better than age and gender (Figure 3B). In many

COAD cohorts, survival analysis revealed that patients in the high

TES group had worse results than its rival (Figures 3C, D). Roc

analysis showed that TES had acceptable performance in the TCGA

cohort (ROC>0.65, Figure 3E), while a favorable effect was also

observed in the GEO cohort (ROC>0.65, Figure 3F). The tROC

results showed that TES had an effective performance in predicting

survival within five years in both cohort (Figures 3G, H).
Analysis of the predictive efficacy and
independence of TES

First, we used univariate and multifactorial Cox regression to

investigate the relationship between TES and patients’ clinical

variables (e.g., age, gender, and stage). In the training and validation

cohorts, univariate Cox regression indicated that TES was an

independent predictor (p 0.05) (Figure 4A). In both the training and

validation cohorts, multifactorial Cox regression showed that TES

remained an unfavorable predictor of OS (P<0.05) (Figure 4B). In

addition, subgroup analysis showed that TES performed best in

predicting prognosis in all subgroups of patients, especially those

with advanced tumors in all age groups (Figure 4C). Therefore, TES

could be a trustworthy prognostic indicator of OS in COAD patients.

We then created a Nomogram to more accurately measure the risk

assessment of COAD patients (Figure 4D). The calibration curve of

Nomogram showed high stability and accuracy after 1, 3 and 5 years

(Figure 4E). tROC study showed that Nomogram model performed

better than TES alone (Figure 4F). Finally, DCA analysis showed that

the nomogrammodel had the best decision effectiveness after 1, 3 and 5

years (Figure 4G).
Cellular experimental validation of key TES
model indicator

We extracted risk coefficients for each indicator in the final TES

model, and the results showed that TXKwas themost potent risk factor

(Figure 5A). We sought to explore whether TXK affects the malignant
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FIGURE 2

Identification of ordered T-cell exhaustion indicators in TCGA-COAD. (A) Univariate Cox regression identified 27 key T-cell exhaustion indicators
with prognostic efficacy. (B) The correlation network of 27 key T-cell exhaustion indicators. (C) The landscape of somatic mutation of 27 key T-cell
exhaustion indicators. (D) The summary of somatic mutation of 27 key T-cell exhaustion indicators. (E) The summary of CNV status of 27 key T-cell
exhaustion indicators.
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activity of tumor cells to influence prognosis through cellular

experiments. We first found that the mRNA expression level of TXK

was increased in COAD cell lines compared to normal colonic

epithelial cell lines (Figure 5B). We then found the reduced

proliferative activity of cells after knockdown of TXK in SW480 cell

line by CCK8 kit (Figure 5C). After knockdown of TXK in SW460,

invasive cells in transwell cells were reduced (Figure 5D). By counting

the invading cells, we found that the degree of invasion of SW460 cells

was significantly reduced after knockdown of TXK (Figure 5E).
Low TES is associated with abundant
immune infiltration

We then dissected the tumor immune microenvironment of

TES. Estimate results revealed more tumor purity in the high TES
Frontiers in Immunology 07
group, while the low TES group had better estimate and

immunological scores (Figure 6A). Further we found elevated

expression of six typical immune checkpoints (PD-1, CTLA-4,

LAG-3, TIM-3, PD-L2, and PD-L1) in low TES (Figure 6A). We

also found increased enrichment of CD8+ and CD4+ T cells in the

low TES group and increased infiltration of Tregs and M0

macrophages in the high TES group (Figure 6A). Subsequently,

we examined the differences in immune recycling cycles between

the two subgroups, and the results showed an increased recruiting

of CD4+ T, DC, and macrophages in the low TES group,

accompanied by an increased promotion of antitumor immunity

in step V (Figure 6B). We then assessed immune-related pathway

activity using ssGSEA. The findings indicated that the low TES

group had a considerable enrichment of most immune-related

pathways (Figure 6C). Finally, GSEA results showed significant

enrichment of cell adhesion, MAPK, NOTCH and VEGF signaling
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FIGURE 3

Construction of the T-cell exhaustion scoring model. (A) Iterative LASSO regression to select the most stable prognostic model. left: frequency of
different gene pairs in LASSO models; right: C-index of the best combination in TCGA and GEO datasets. (B) Comparison of C-index differences
between TES model and clinical characteristics. ***: P<0.001. (C) Kaplan-Meier survival curve of patients with high and low TES in TCGA dataset. (D)
Kaplan-Meier survival curve of patients with high and low TES in the meta-GEO dataset. (E) ROC curves of TES at 1, 3, and 5 years in the TCGA
dataset. (F) ROC curves of TES in the meta-GEO dataset at 1, 3, and 5 years. (G) tROC curves of TES in 5 years in the TCGA dataset. (H) tROC curves
of TES in 5 years in the GEO dataset.
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pathways in the high TES group (Figure 6D). In contrast, the TCA

cycle, fatty acid metabolism, protein export, and oxidative

phosphorylation pathways were significantly enriched in the low

TES group (Figure 6E). Therefore, our hypothesis was that CD8+

and CD4+ T cells enhanced anti-tumor immunity in the low TES

group, but Tregs reduced anti-tumor immune responses in the high

TES group.
Frontiers in Immunology 08
Correlation of TES with
genomic alterations

We then analyzed genome-wide data of the TCGA-COAD to

decipher the genomic alteration status of different TES groups. The

overall mutation profiles among the TES subgroups (including

TMB, mutation signatures, SNP, and CNV) are shown in
B
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FIGURE 4

Verifying the independence and robustness of TES. (A) Univariate COX regression analysis of OS in TCGA and GEO datasets. (B) Multivariate COX
regression analysis of OS in TCGA and GEO datasets. (C) The subgroup analysis of TES in the whole cohort. (D) Nomogram based on TES and
clinical characteristics. (E) Calibration curve of Nomogram. (F) tROC curve of Nomogram and clinical characteristics. (G) The DCA curves of
Nomogram and clinical characteristics at 1, 3, and 5 years.
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Figure 7A. Between the two groups, we didn’t detect any discernible

differences in TMB (Figure 7B). In addition, we discovered no

discernible variations in high frequency mutations across groupings

except for TP53 (Figure 7A). We then detected no change in the

total chromosomal amplification and deletion number between the

two categories (Figures 7C, D). However, we discovered that the

high TES group had greater gain and loss events in both arm and

gene level (Figure 7A), while the low TES group had more deletions

on 2p and 2q arms (Figure 7E).
Patients with low TES are more sensitive
to chemotherapy

We proposed the hypothesis that TES might predict the response

to chemotherapy in COAD patients given the disparities in biological

function and CNV across different TES patients. On the basis of the

GDSC database, we first assessed the IC50 of frequently used

chemotherapeutic agents for COAD in various TES groups. The

findings revealed that patients with low TES were more responsive to

5-Fluorouracil (Figures 8A, B). Contrarily, patients in the validation

group with low TES were more responsive to Cisplatin and

Camptothecin (Figure 8B). We examined the response of patients

with different TES to chemotherapy in the TCGA dataset. The results

showed that patients in the low TES group had a greater chance of

complete and partial remission. In contrast, the proportion of

patients with disease progression was higher in the high TES group

(Figure 8C). Survival analysis showed better survival in the low-TES

group of COAD patients receiving 5-FU and oxaliplatin, especially in

those receiving Oxaliplatin (Figures 8D, F). In contrast, the survival

difference between the different groups of COAD patients receiving
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Irinotecan was not significant, which may be due to the small sample

size (Figure 8E). In conclusion, we speculate that patients with low

TES are more suitable for treatment with 5-FU and platinum-based

chemotherapeutic agents. Finally, we retrieved 20 small molecule

compounds that may target TES through the Cmap

database (Figure 8G)
Inferring immunotherapy response

We hypothesized that the low TES group would respond more

strongly to immunotherapy because they have a more powerful

antitumor immune response. First, we determined the unique IPS

of each patient and found that individuals in the low TES group had

greater IPS in both cohorts (Figures 9A, B). The TIDE algorithm

was then used to predict the response of patients in the TCGA and

GEO cohorts to immune checkpoint inhibitors, and the results

showed that patients with low TES in both cohorts had a higher

response rate to immunotherapy (Figures 9C, D). The efficacy of

TES in the TCGA and GEO cohorts was only lower than MSI with

reliable predictive efficacy compared to other indicators of immune

efficacy (Figures 9E, F). Subsequently, we worked in two real-world

immunotherapy cohorts (Imvigor210 and Liu David). The results

showed significantly better survival in the low-TES group in both

cohorts (Figures 9G, H). Moreover, patients in the low-TES group

had higher remission rates in both cohorts (Figures 9I, J).

Subsequently, we found no significant association between TES

and neoantigens in both cohorts (Figures 9K, L). Although there

was also no significant association between TES and TMB in both

cohorts (Figures 9M, N), TMB was significantly higher in the low-

TES group in the Liu David cohort (Figure 9N).
B C

D E

A

FIGURE 5

Cellular experiments to verify the malignancy of TXK. (A) Gene coefficients in the TES model showed that TXK was the most potent risk factor. (B)
Differential mRNA expression levels of TXK in NCM460, SW480, and SW460 cell lines by qPCR. (C) Cell proliferation of SW480 cells transfected with
TXK siRNA or siNC. (D) Transwell assay of invasive ability of SW460 cells transfected with TXK siRNA or siNC. (E) Cell counting of SW460 transfected
with TXK siRNA or siNC in transwell cells. *** P<0.001.
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Discussion

Advanced COAD is extremely malignant and often has a poor

prognosis due to treatment resistance (32). The immune system is

involved in resisting the proliferation and invasion of malignant cells in

COAD process, and T-cell depletion is one of the main causes of

diminished antitumor immunity (33). In addition, targeted T-cell

depletion is emerging in the field of cancer immunotherapy (11). To

provide a new approach to the treatment and prognosis of advanced

COAD, we aimed in this study to analyze the trajectory of T-cell

depletion in COAD patients.
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In this work, by analyzing scRNA-Seq data of TCGA-COAD,

we differentiated cytolytic trajectories and exhaustion trajectories of

CD8 T cells to comprehensively identify the major T-cell

exhaustion indicators. We identified a total of 477 ordered genes

for exhaustion trajectories and subsequently identified 27 effective

T-cell exhaustion markers by one-way Cox regression. We observed

a significant positive correlation between them, suggesting a

potential mutual regulation between them. The primary

transcriptome regulator for all core genes was CNV. we built a

13-gene T-cell depletion score (TES) model based on these 27 core

genes using iterative LASSO regression. We first report the
B

C

D E

A

FIGURE 6

Dissecting the immune microenvironment of different TES groups. (A) The heat map shows the distribution of Estimate score, immune checkpoint
expression and immune cell abundance among different TES groups in TCGA-COAD cohort. (B) Differences in tumor immune cycle among different
TES groups in the TCGA-COAD cohort. (C) Box plots showing the immune-related pathway activity between different TES groups. *: P<0.05; **:
P<0.01; ***: P<0.001; ****: P<0.0001. (D) GSEA analysis revealed 5 enriched pathways in the high TES group. (E) GSEA analysis revealed 5 enriched
pathways in the low TES group. ns, not significant.
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prognostic efficacy of a systematic TES model for COAD patients

compared to previously presented T-cell exhaustion markers

(HAVCR2, ENTPD1, LAYN, and LAG3). We confirmed that TES

is a strong prognostic indicator of OS in COAD patients and that

TES works well in different COAD cohorts.

We next attempted to comprehend the molecular rationale

behind TES, which is the key path of the dynamic processes of T

cell differentiation in malignancies and is involved in the

proliferation and spread of tumor cells. By comparing the two

groups from multiple perspectives, including immune cell

infiltration, immunological pathways, and immune checkpoints,

we were able to explore in more detail the differences in the immune

environment between the different TES groups. the results of

ESTIMATE showed that the immune rating and Estimate

composite score were higher in the low TES group while the

tumor purity was higher in the high TES group. In addition, in

the low TES group, we later found enhanced expression of six

typical immune checkpoints, suggesting that patients with low TES

may benefit more from treatment with immune checkpoint

inhibitors (34). The tumor immune cycle system is characterized

by most of the processes of antitumor immunity (35), and we found

increased activity of the recruiting process of active immune cells

(including T cells, DCs, and macrophages) as well as the positive

regulatory processes of antitumor immunity in the low-TES group.

Most immune-related pathways were also considerably elevated in

the low TES group, supporting lower T-cell exhaustion in the low

TES group, and pointing to a more potent and aggressive antitumor

immune response in this group (35). Notably, there was a

statistically significant increase in the number of Treg cells

infiltrating the high TES group. This finding may have stifled the
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immune environment and antitumor immune response in patients

with high TES, leading to a poorer prognosis (36).

Considering the significant relevance of genomic mutations for

the course of tumor progression and treatment response, especially

immunotherapy response, we then analyzed genome-wide data to

explore the differentiation of genomic variation patterns of TES for

individual patients. We were not able to detect significant TMB

differences between TES subgroups. However, we found that the

TP53 gene was significantly more frequently mutated in the high

TES group. Previous studies have demonstrated that TP53 is the

most frequently mutated tumor suppressor gene during tumor

progression (37). Loss of function or dominant inactivation of

wild type p53 is also frequently detected in patients with colon

cancer (38, 39), which is consistent with our results. Our study

indicates that increased mutations in TP53 may lead to a higher

malignancy of tumor cells in the high TES group, resulting in a

worse prognosis. Finally, we discovered more CNV occurrences in

the group with high TES. Additionally, it has been shown that CNV

has a significant role in the regulation of genes that affect drug

response and metabolism, which in turn speeds up the development

of anticancer drug resistance and results in treatment failure and

disease recurrence (40, 41). As a result, we deduce that patients with

low TES are suited for chemotherapy, whereas those with high TES

are resistant to it. We confirmed the resistance to chemotherapy in

patients with high TES through drug sensitivity data provided by

the GDSC database. We found that low TES patients were more

susceptible to 5-FU. In addition, survival analysis in the TCGA

cohort also demonstrated an elevated remission rate for

chemotherapy in patients with low TES, especially for oxaliplatin

and 5-FU treatment. For high-risk COAD patients based on TES,
B C D

E

A

FIGURE 7

TES distinguishing genomic alteration patterns in COAD patients. (A) Genomic alterations landscape between different TES groups in the TCGA-
COAD cohort, from top to bottom: TMB, mutational signatures, single-nucleotide mutations of top 20 driver mutated genes, CNVs of chromosomal
segments, and CNVs in top 20 driver mutated genes. (B) Correlation of TES with Non-synonymous mutation counts. (C) Correlation between TES
and total amplification number. (D) Correlation between TES and total deletion number. (E) CNV differences between different TES subgroups on the
chromosome arms. *: P<0.05. ns, not significant.
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we also screened for potential therapeutic targets and found

comparable small-molecule drugs. Finally, we identified the 20

most probable small molecule compounds.

Finnaly, we made a prediction that, from a variety of angles,

people with low TES are more susceptible to immunotherapy.

Moreover, IPS was greater among COAD patients with low TES,

indicating that these patients would respond to immunotherapy

better (28). The TIDE algorithm also demonstrated that individuals

with low TES had greater rates of immune checkpoint inhibitor

response (e.g., anti-PD-1, anti-PD-L1, and anti-CTLA-4) (29).

Additionally, TES was more reliable than traditional predictors in

predicting immunotherapy response. It is worth noting that the

predictive efficacy of TES is not higher than that of MSI, which has

been shown in numerous studies to be a reliable predictor of

immunotherapy in colon cancer and is now being tested in
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clinical practice to assist in the prognosis of patients with COAD.

Therefore, although TES does not show a leading advantage, it can

be used as a complement to MSI in clinical practice (42–44).

In addition, two real-world cohorts used for validation

confirmed our predicted results for immunotherapy sensitivity. In

both the Imvigor210 and Liu David cohorts we found that the low

TES group exhibited better survival rates. However, we did not find

a significant association between TES and the number of detected

neoantigens and TMB in these two cohorts. Previous studies have

shown that TMB and neoantigens are indicators of a strong

relationship with immunotherapy efficacy and can be used to

predict benefits for patients. However, TES in our results

exhibited independent predictive accuracy for immunotherapy.

More insight into the specific regulatory mechanisms is needed in

future studies (45, 46).
B

C D E F

G

A

FIGURE 8

TES can predict chemotherapy. The IC50 values of the three commonly used drugs (5-Fluorouracil, Cisplatin, and Camptothecin) in the (A) TCGA
cohort and (B) meta-GEO cohort were predicted based on the GDSC database. (C) Remission rates of different TES patients after receiving
chemotherapy. (D) Kaplan-Meier survival curves for patients treated with 5-Fluorouracil in different TES groups. (E) Kaplan-Meier survival curves for
patients treated with Irinotecan in different TES groups. (F) Kaplan-Meier survival curves for patients treated with Oxaliplatin in different TES groups.
(G) Prediction of TES-related small molecule compounds as well as target pathway from the CMap database.
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This study still contains some limitations. The study only

contains two non-COAD immunotherapy RNA-seq data, which

is due to the scarcity of data in this field. We hope to collect more

immunotherapy sequences or platform data for COAD in the future

to further validate the predictive accuracy of TES for

immunotherapy. In addition, genomic regulation is a large field,

and we have only focused on a portion of mRNAs and may have

neglected data from some other regulatory genomes. Finally, the

mechanism of how TES affects biological function as well as the

phenotype is unclear. However, we synthesized the results of

functional enrichment analysis to make reasonable speculations,

which is an inspiration for future mechanistic studies.
Conclusions

In this study, we identified possible depleted CD8+ T cell

differentiation trajectories in COAD patients and developed a

TES model to quantify the level of T cell depletion in the tumor
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microenvironment. Patients with lower TES responded more

strongly to chemotherapy and immunotherapy and had a better

prognosis. This finding not only advances the development of

cancer genetics and immunotherapy but also provides new

perspectives on the clinical treatment of colon cancer and

innovative immunotherapy strategies.
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