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A novel immunogenic cell
death–related subtype
classification and risk signature
for predicting prognosis and
immunotherapy efficacy in
gastric cancer
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and Yimin Cui2,3*

1Department of General Surgery, Peking University First Hospital, Beijing, China, 2Department of
Pharmacy, Peking University First Hospital, Beijing, China, 3Institute of Clinical Pharmacology, Peking
University, Beijing, China
Themajority of gastric cancer (GC) patients are in a progressive stage at the initial

stage of treatment, and the overall response rate to immunotherapy remains

unsatisfactory largely due to the lack of effective prognostic biomarkers.

Immunogenic cell death (ICD) was identified as a new form of regulated cell

death that can activate adaptive immune responses and further promote

immunotherapy efficacy. Therefore, we attempted to characterize the

ICD-associated signature to stratify patients who could benefit from

immunotherapy. In our study, two subgroups of patients were identified based

on the data of 34 ICD-related genes extracted from The Cancer Genome Atlas

database via consensus clustering. The estimated scores, stromal scores,

immune scores, tumor purity, and survival rate showed significant differences

between the low and high ICD groups. Then, we constructed an ICD-related risk

signature, including IFNB1, IL6, LY96, and NT5E, using least absolute shrinkage

and selection operator Cox regression analysis; then, high- and low-risk groups

could be clearly distinguished. Notably, the risk score is a reliable predictor of the

prognosis and immunotherapy outcome in GC, which was further validated in an

immunohistochemistry assay. These results suggest that ICD is closely

associated with the prognosis and tumor immune microenvironment in GC.

Taken together, this study first constructed and validated a prognostic ICD-

related signature to predict the survival and effect of immunotherapy in GC,

which provided new insight for potent individualized immunotherapy strategies.
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1 Introduction

Gastric cancer (GC) is a common malignant tumor and the

leading cause of death from malignant tumors worldwide. In recent

years, with the development of medical technology and improved

treatment for GC, the diagnosis rate, survival time, and quality of life

of early GC have all improved significantly. However, two-thirds of

patients are already in a progressive stage at the time of initial

treatment, and the 5-year survival rate is still less than 30%, even

when treated with a combination of mainly surgical treatments (1).

Therefore, to improve the survival rate of GC, more effective tumor

molecular subtypes and prognostic markers need to be developed.

The current status of treatment for patients with advanced GC is not

optimistic, the efficacy of chemotherapy has reached a bottleneck, and

different degrees of resistance (primary and acquired) are

encountered during targeted therapy, which remain a major

obstacle to clinical targeted therapy (2), resulting in the current

treatment options for GC being quite limited. With the

accumulation of evidence based on immunotherapy in advanced

GC, the Chinese Society of Clinical Oncology and the European

Society for Medical Oncology have adopted immunotherapy as the

recommended third-line treatment for advanced GC (3).

Immunotherapy can provide some survival benefits for some

patients and maintain a sustained treatment effect for a long

period. However, the overall objective response rate with

immunotherapy is low, the efficiency of third-line immunotherapy

is not high, and patients have short progression-free survival (4). It is

therefore particularly important to increase the effectiveness and the

proportion of patients who benefit from immunotherapy.

Immune checkpoint inhibitor (ICI) therapy is primarily

responsible for enhancing antitumor immunity by targeting

regulatory pathways on T cells (5). The ICI-mediated antitumor

response depends on the degree of infiltration of T cells capable of

recognizing and killing tumor cells. A lack of T cells in the tumor may

lead to resistance to immunotherapy, and the immunosuppressive

tumor microenvironment (TME) prevents the immune efficacy of

programmed cell death protein 1 (PD-1) checkpoint inhibitors (6).

Thus, low immunogenicity remains a major challenge for ICI therapy.

As a regulated form of cell death, immunogenic cell death (ICD)

activates adaptive immune responses in immunologically active

individuals (7). ICD is characterized by the release or exposure of

damage-associated molecular patterns from dead tumor cells,

thereby stimulating an antitumor immune response (8).

Extracellularly released high mobility group box 1 (HMGB1) and

ATP engage and activate antigen-presenting cells, contributing to

the infiltration of tumor-specific T cells, while calmodulin

calreticulin (CRT) exposed on the surface of dead cells provides

an ‘eat me’ signal (9). A number of chemotherapeutic agents are

known to induce ICD in cancer cells, including oxaliplatin,

mitoxantrone, and adriamycin, thereby initiating an antitumor

immune response and enhancing the efficacy of ICI therapy (10).

Therefore, different ICD statuses can influence the efficacy of

immunotherapy and may be a good marker for immunotherapy.

Herein, we pinpointed the importance of ICD genes in the TME

and first identified an ICD-related risk signature to predict overall
Frontiers in Immunology 02
survival (OS) and immunotherapy response in GC, which showed

good predictive accuracy. Collectively, this study provided potential

prognostic biomarkers for GC and laid the foundation for new

therapeutic targets.

2 Materials and methods

2.1 Data collection

Clinical data, transcriptional data, and mutation data were

obtained from The Cancer Genome Atlas database (TCGA,

https://portal.gdc.cancer.gov/) containing data from 375 stomach

adenocarcinoma (STAD) patients and 32 normal samples. The

STAD dataset GSE28541 was obtained from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).
2.2 Identification and integration of
immunogenic cell death–related genes

It has been found that 34 genes are involved in the development

of ICD, as described in previous reports (11). A protein−protein

interaction (PPI) network of 34 ICD genes was created by STRING

(https://string-db.org/), and the interaction score was set to 0.9. A

differentially expressed gene (DEG) analysis of the STAD cohort

was conducted with the R package “limma” (12) between ICD high

and ICD low in the STAD cohort, using |log fold change (FC)| > 0.5

and adjusted p-values < 0.05 as cutoff criteria.
2.3 Functional enrichment analysis

After identifying DEGs between the ICD high and ICD low

groups in the STAD cohort, to investigate the potential functions

and signaling pathways of the DEGs, we performed Gene Ontology

(GO, http://www.geneontology.org/), Kyoto Encyclopedia of Genes

(KEGG, http://www.genome.jp/kegg/), and Gene Set Enrichment

Analysis (GSEA, http://www.gsea-msigdb.org/gsea/index.jsp).

Enrichment analysis was performed by using the R package

“clusterProfiler” (13).
2.4 Consensus clustering

To identify molecular subtypes related to ICD, we used the R

package “ConcensusClusterPlus” for consensus clustering, and the

best results were obtained by evaluating the number of clusters

between k = 2 and 10.
2.5 Mutation landscape analysis

We downloaded STAD somatic mutation data from the TCGA

database and then used the R package “Maftools” to aggregate and

visualize the STAD mutation landscape.
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2.6 Survival analysis

According to clustering typing, the samples were divided into

ICD high and ICD low groups, and the difference in OS between the

two groups was estimated by the Kaplan−Meier method using the R

packages “survminer” and “survival.” Survival curves were

compared using the log-rank test. The significance threshold was

defined as p< 0.05.
2.7 Construction and validation of the
immunogenic cell death–related
risk signature

In this study, the STAD data from the TCGA and GEO databases

were used as the training set to generate the signatures, and univariate

Cox regression analysis was performed to identify hub ICD genes

significantly associated with patient outcomes. Then, the least

absolute shrinkage and selection operator (LASSO) regression

model was used to remove redundant factors and find the most

significant ICD genes associated with survival based on the most

appropriate l values for the genes and their coefficients. The risk

score was obtained using the following formula:

Risk   score =o
n

1
Kn*An

An is the expression level of ICD-related genes, Kn is the

regression coefficient of prognosis-related genes, and n is the

number of ICD-related genes.
2.8 Tumor immune correlation analysis

The cell-type identification by estimating relative subsets of

RNA transcripts (CIBERSORT) algorithm was used to estimate the

proportion of 22 different immune cell types, and furthermore, we

calculated the difference in the estimate score, immune score,

stromal score, and tumor purity between high- and low-risk

groups based on the “bestimate” R package. The risk score and

immune cell correlations were determined by Spearman’s

correlation test based on RNAseq data from STAD and

corresponding clinical information. Finally, the differences in

immune checkpoint and HLA gene expression were calculated,

and potential immunotherapeutic responses were predicted using

the tumor immune dysfunction and exclusion (TIDE) algorithm.
2.9 Immunohistochemistry

Specimens were dewaxed in xylene, hydrated by immersion in

graded alcohol, and then incubated at room temperature for 10 min

with 3% hydrogen peroxide in the dark. Specimens were incubated

with goat serum for 10 min after antigen repair and incubated

overnight using primary anti-IFNB1 (1:400 dilution, 27506-1-AP),

anti-IL6 (1:400 dilution, 21865-1-AP), anti-LY96 (1:400 dilution,
Frontiers in Immunology 03
11784-1-AP), and anti-NT5E (1:400 dilution, 12231-1-AP). Samples

were incubated with horseradish peroxidase (HRP)-conjugated

secondary antibody for 1 h at room temperature. Then,

diaminobenzidine (DAB) staining was used, and hematoxylin

restaining was performed. The specimens were finally observed

using a light microscope (DX45, Olympus Microsystems Ltd.,

Japan), and the sections were imaged at ×10 magnification. All

antibodies were purchased from Proteintech (Rosemont, IL, USA).

The study was approved by the Biomedical Research Ethics Committee

of Peking University First Hospital (license number: 2021R054).
2.10 Statistical analysis

Bioinformatics analysis was carried out using R software

(version 4.2.0). The analysis of data from the biology experiments

section was performed using GraphPad Prism 8. Means of normally

distributed variables were compared between two groups using

unpaired t tests. Non-normally distributed data were compared

using the Wilcoxon test. *P< 0.05, **P< 0.01, and ***P< 0.001 were

considered significant.
3 Results

3.1 Expression analysis and consensus
clustering of immunogenic cell death–
related genes

The flow chart of the study is presented in Figure 1. We

identified 34 ICD-related genes from previous studies, including

BAX, ATG5, CASP1, CALR, CASP8, CD4, CD8B, CD8A, CXCR3,

ENTPD1, EIF2AK3, HMGB1, FOXP3, HSP90AA1, IFNA1, IFNB1,

IFNG, IFNGR1, IL10, IL17A, IL17RA, IL1R1, IL1B, IL6, MYD88,

LY96, NLRP3, P2RX7, NT5E, PDIA3, PRF1, PIK3CA, TLR4, and

TNF. We obtained expression data from 32 normal and 407 STAD

tissues in TCGA and further analyzed the expression of these 34

ICD genes, showing that the majority of ICD genes were highly

expressed in STAD compared to normal tissues (Figure 2A). To

further explore the correlations between the ICD genes, a PPI

coexpression network was constructed. The two linked genes

interact in expression. The constructed PPI coexpression network

showed strong interactions between ICD genes (P< 0.001)

(Figure 2B). Based on the ICD gene expression and the survival

data of each sample, the samples were clustered using consensus

clustering, and we found that the best clusters were the C1 and C2

subtypes when the number of clusters was 2 (Figures 2C–E). Then,

we calculated the difference in the expression of ICD genes between

different subtypes and found that the expression of ICD genes was

higher in C1 than in C2 (Figure 2F); thus, we defined C1 as the ICD

high group and C2 as the ICD low group. Accordingly, the The

Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD)

sample was divided into ICD high and ICD low groups. The

survival analysis of the two groups showed that the prognosis of

the ICD high group was significantly worse than that of the ICD low

group (p = 0.003) (Figure 2G).
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3.2 Screening and enrichment analysis of
differentially expressed genes based on
immunogenic cell death grouping

After dividing TCGA-STAD into ICD high and ICD low

groups, we analyzed the DEGs in both groups (Figures 3A, B).

A total of 656 DEGs were screened out, and GO enrichment

analysis was performed (Figures 3C, D). The DEGs were mainly

involved in leukocyte chemotaxis, leukocyte migration, and

chemokine activity. KEGG enrichment analysis was also

performed (Figure 3E), and the results showed that the DEGs

were mainly involved in cytokine−cytokine receptor interactions,

the IL-17 signaling pathway, the chemokine signaling pathway, and

the transforming growth factor (TGF)-beta signaling pathway.

GSEA was then carried out (Figures 3F, G), and the results were
Frontiers in Immunology 04
similar to those of KEGG. These enrichment analyses all indicated

that ICD DEGs were significantly associated with immunity.
3.3 Somatic mutation and tumor
microenvironment landscape

Next, we analyzed the somatic mutations, calculated the tumor

mutation burden (TMB) for both groups, and plotted the waterfall

of the top 20 genes with the highest mutation frequency

(Figures 4A, B). In the ICD high group, TTN, TP53, MUC16,

LRP1B, and ARID1A were the most frequently mutated genes,

accounting for 50%, 38%, 30%, 27%, and 27% of the mutations,

respectively. In the ICD low group, the genes with the highest

mutation frequencies were 50%, 45%, 30%, 27%, and 24%,
FIGURE 1

Study flow chart.
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respectively, as in the ICD high group. The mutant gene cloud was

mapped based on mutation rates (Figure 4C). Furthermore, among

the two groups of mutated genes, the mutation rates of TP53,

ARID1A, HMCN1, ZFHX4, DNAH5, and RYR2 were significantly

different. It was clear that the gene with the most significant

difference in mutation frequency between the two groups was TP53.

Given that enrichment analysis is very relevant to immunity,

some analyses were performed on immunity. In the TME, immune

cells and stromal cells are the two main types of non-tumor

components, and the ratio of immune cells to stromal cells has a

significant impact on the tumor prognosis. Thus, we first analyzed

the ESTIMATE score (Figure 4D), immune score (Figure 4E),

stromal score (Figure 4F), and tumor cell purity (Figure 4G). The
Frontiers in Immunology 05
results showed that the ESTIMATE score, immune score, and

stromal score were higher in the ICD high group than in the ICD

low group, while the abundance of tumor cells was lower in the ICD

high group than in the ICD low group. We next analyzed the

differences in the infiltration of 22 immune cells between the two

groups, and the ratio of 22 immune cells in GC patients is shown in

Figure 4H, with the different colors representing the different

immune cell types. In addition, violin plots (Figure 4I) were used

to visualize the differences in immune cell infiltration between the

two groups, showing that the degree of infiltration of plasma cells

and T-cell regulatory cells (Tregs) was significantly lower in the ICD

high group than in the ICD low group, while the infiltration of

gamma delta T cells, resting natural killer (NK) cells, M2
B

C D E

F G

A

FIGURE 2

Identification of different immunogenic cell death (ICD)–related subtypes. (A) The expression of 34 ICD genes in normal and The Cancer Genome
Atlas-Stomach Adenocarcinoma (TCGA-STAD) patients. (B) The construction of a protein–protein interaction (PPI) coexpression network of 34 ICD-
related genes. (C) The heatmap of consensus clustering (k = 2). (D) The cumulative distribution function (CDF) curve. (E) The relative changes in the
area under the CDF curve as the number of clusters varies from k to k + 1. k varies from 2 to 9 and the optimal k = 2. (F) The expression of 34 ICD-
related genes in different subtypes. (G) The Kaplan–Meier (K-M) survival analysis of the two subtypes. *, **, and *** represented p < 0.05, p < 0.01,
and p < 0.001, respectively.
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macrophages, activated mast cells, eosinophils, and neutrophils

showed the opposite trend. The correlation heatmap of 22

immune cells is shown in Figure 4K, and most immune cells were

negatively correlated with each other. Only a small proportion was

positively correlated with each other, for example, activated

memory CD4 T cells with CD8 T cells (0.47), neutrophils with

activated mast cells (0.46), and activated mast cells with resting NK

cells (0.38). The induction of an adaptive antitumor response

requires two steps, the most critical of which is the presentation

of tumor antigens by the human leukocyte antigen (HLA) to

activate CD8 T cells (14). Considering the important role of HLA,

we analyzed the expression of each HLA type in the two groups and

showed that in the differential HLA-DMB, HLA-DOA, HLA-

DPA1, HLA-DPB1, HLA-DQA 1, HLA-DQB1, HLA-DRA, HLA-

DRB1, HLA-DRB5, HLA-E, HLA-H, and HLA-L, the ICD high

group was significantly higher than the ICD low group (Figure 4J).

Finally, we analyzed the differences in immune checkpoint

expression between the two groups (Figure 4L), showing that the

expression of almost all immune checkpoints differed between the

two groups except for SIGLEC15, and, among the differentially
Frontiers in Immunology 06
expressed immune checkpoints, the expression in the ICD high

group was also significantly higher than that in the ICD low group.
3.4 Construction and evaluation of the
immunogenic cell death risk signature

The univariate Cox analysis of ICD-related genes was

performed, and five prognosis-related genes were identified:

IFNB1 (P = 0.019), IL1R1 (P = 0.034), IL6 (P = 0.025), LY96 (P =

0.009), and NT5E (p = 0.02), followed by forest plotting

(Figure 5A). We use the TCGA-STAD as the training dataset and

GEO28541 as the testing dataset. Based on these five genes, LASSO

regression analysis was performed, from which four genes, IFNB1,

IL6, LY96, and NT5E, were screened for the construction of the risk

signature (Figures 5B, C), and the coefficients of the four genes are

presented in Supplementary Table. We verified this signature from

many aspects. First, according to the prognostic signature, the

TCGA and GEO data were divided into high-risk and low-risk

groups, and then survival analysis was carried out. The results
B

C D E

F G

A

FIGURE 3

Identification and enrichment analysis of differentially expressed genes (DEGs). (A) Identification of DEGs in different subtypes. (B) Volcano map of
DEGs. (C, D) Gene Ontology (GO) enrichment analysis. (E) Kyoto Encyclopedia of Genes enrichment analysis. (F, G) Gene Set Enrichment Analysis.
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showed that patients in the low-risk group had a better survival

prognosis (P = 0.006 and P = 0.003) (Figures 5D, E). We analyzed

the expression of the four genes that make up the prognostic

signature in the two groups of TCGA-STAD samples and found

that these four genes showed high expression in most samples in the

high-risk group and low expression in the low-risk group

(Figure 5F). Furthermore, we analyzed the survival status of

patients in TCGA-STAD, and patients in a state of death tended

to have high-risk scores (Figures 5G, H). Finally, we performed

univariate and multifactorial Cox analyses, showing that ICD-
Frontiers in Immunology 07
related risk scores were an independent prognostic predictor of

OS in patients with GC (Figures 5I, J).
3.5 Correlation of risk scores with
immune cells and predictive role
for immunotherapy

Given the role of ICD-related genes in the immune

microenvironment, we analyzed the correlation between risk
B C

D E F G

H I

J

K

L

A

FIGURE 4

Analysis of somatic mutations and tumor microenvironment (TME) landscape differences between the two subtypes. (A, B) Somatic mutations in the
ICD-high and ICD-low groups. (C) The cloud map of mutant genes based on mutation rates. Violin plots of the ESTIMATE score (D), immune score
(E), stromal score (F), and tumor purity (G) between the ICD-high and ICD-low groups. (H) The proportion of 22 immune cells in each TCGA-STAD
cohort. (I) The differences in immune cell infiltration between the ICD-high and ICD-low groups. (J) Box plots of differentially expressed HLA genes.
(K) Correlation heatmap of 22 immune cells. (L) Box plots of differentially expressed immune checkpoints. *, **, and *** represented p < 0.05,
p < 0.01, and p < 0.001, respectively.
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scores and immune cells. We found that risk scores showed a

positive correlation with the number of M1 macrophages

(Figure 6A), M2 macrophages (Figure 6B), and activated

memory CD4 T cells (Figure 6C) and a negative correlation

with plasma cells (Figure 6D). Furthermore, the impact of risk

scores on ICI therapy was assessed using Tumor Immunity

Functioning (TIDE) (http://tide.dfci.harvard.edu/query/), and
Frontiers in Immunology 08
it was found that the risk score for non-responders was

significantly higher than that for responders, suggesting that

the ICD risk score was a good predictor of immunotherapy

effectiveness (Figure 6E). We used clinical tissues to validate the

predictive effect of this signature on immunotherapy. Then,

immunohistochemistry (IHC) was performed to investigate the

differences expression of the four genes that make up the
B C

D E

F

G

H

I

J

A

FIGURE 5

Construction and evaluation of the ICD risk signature. (A) Forest plot of univariate Cox analysis for evaluating the prognostic value of the ICD genes.
(B, C) Lasso Cox analysis identified four ICD-related genes. (D) K-M analysis of the risk model in the training dataset TCGA-STAD. (E) K-M analysis of
the risk model in testing dataset Gene Expression Omnibus data. (F) The expression heatmap of the four genes that make up the prognostic
signature in the high-risk and low-risk groups of TCGA-STAD. (G, H). Risk score distribution (F) and survival status (G) of each patient in TCGA-STAD.
(I, J) Univariate Cox (H) and multivariate Cox (I) analyses evaluating the association of the risk score and clinical factors with patient OS.
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signature between patients who responded or did not respond to

immunotherapy. Encouragingly, we found a lower expression of

these four genes in patients who responded to immunotherapy

compared to non-responders, which is consistent with our study

where patients with high-risk scores responded less well to

immunotherapy (Figure 7).
3.6 Assessing protein expression of genes
comprising the immunogenic cell death
risk signature using immunohistochemistry

We explored the expression of genes comprising the ICD risk

model, including IFNB1, IL6, LY96, and NT5E, by IHC using

pathological sections from GC patients of different pathological

grades. The results showed that the expression of these four genes

was significantly higher in patients with high malignancy than in

those with low malignancy (Figure 8).
Frontiers in Immunology 09
4 Discussion

Over the past few years, comprehensive treatments for GC have

developed rapidly, especially in the area of immunotherapy, which

has made significant progress. ICI therapy is an emerging cancer

treatment that targets immune checkpoint proteins on the surface

of immune cells or tumor cells to activate antitumor immunity for

tumor-killing effects (15). Several clinical trials have shown that ICI

therapy has controlled toxicity and good antitumor effects in GC

patients (16). However, different studies have shown that the

objective remission rate of ICI therapy in GC varies widely from

10% to 26% (17). Not all patients produce a good response. It is

therefore particularly important to increase the proportion of

patients who benefit from immunotherapy and the effectiveness

of immunotherapy. There have been many studies focusing on

immunotherapeutic biomarkers for GC (18–20), such as PD1/

programmed cell death 1 ligand 1 (PD-L1) immunohistochemical

staining, TMB, and MSI, but all of them have some problems:
B

C D

E

A

FIGURE 6

The correlation of risk scores with immune cells (A–D) and the predictive role for immunotherapy (E).
FIGURE 7

IFNB1, IL6, LY96, and NT5E expression was verified by IHC in clinical tissues that responded or non-responded to immunotherapy (scale bar: 200
and 40 mm).
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programmed cell death 1 ligand 1 (PD-L1) IHC results are not fully

consistent with the patient response; there is no accepted standard

formula for the calculation of TMB, nor is there an absolutely

definitive threshold to distinguish between high and low tumor

mutation load in patients; the evaluation of MSI is influenced by the

spatial heterogeneity within the tumor; and different results may be

obtained when different parts of the tumor are evaluated (21).

Therefore, the search for the development of new biomarkers holds

great promise in screening sensitive patients for precise therapies

for tumor ICIs. Therefore, the search for new biomarkers is of great

importance in screening sensitive patients for precise treatment

with tumor ICI therapy.

In this study, we analyzed the expression of 34 ICD genes and

identified two subtypes based on consensus clustering analysis: ICD

high and ICD low groups. Patients in the ICD-high subtype

tended to have longer OS than those in the ICD low group.

Moreover, the two subtypes also differed significantly in genetic

mutation, tumor cell purity, HLA gene expression, and immune

checkpoint expression. Precision medicine in the era of tumor

immunotherapy may be supported by multiparametric

biomarkers; therefore, we built an immune-related signature to

predict the prognosis of GC patients based on four hub genes and

found that this predictive model could well predict the outcomes

of immunotherapy.

Somatic mutations are considered critical in disease, and

different mutational states may influence tumor progression,

clinical outcomes, and treatment strategies (22). Somatic

mutations help determine the degree of tumor heterogeneity, and

TMB is an indicator of the total number of somatic mutations in a

particular tumor. Some of these mutations encode neoantigens,

which are presented and promote the rejection of the tumor by T

cells. Thus, the more mutations there are in the tumor, the more

neoantigens may be present (23). In this study, we analyzed the

somatic mutations in the ICD high and ICD low groups and

measured the TMB for each group. Among the two groups of

mutated genes, the mutation rates of TP53, ARID1A, HMCN1,
Frontiers in Immunology 10
ZFHX4, DNAH5, and RYR2 were significantly different. Some

studies have shown that TP53 is one of the most widely studied

oncogenes, and its mutation not only eliminates the tumor

suppressor function but also produces certain pro-cancer

functions (24). ARID1A deletion induces the chemotaxis of

polymorphonuclear bone marrow–derived suppressor cells, the

main type of invasive immune cell that causes immune evasion,

and promotes the progression of prostate cancer (25). In addition,

ARID1A mutations are associated with extensive DNA damage

repair defects and an immunogenic TME (26). HMCN1 belongs to

the extracellular matrix (ECM) protein family and encodes an

extracellular protein of the immunoglobulin superfamily.

HMCN1 is mutated and aberrantly expressed in a variety of

tumors, and, in ccRCC, HMCN1 mutations are a key event in

tumor progression (27). In breast cancer, intratumoral

heterogeneity of HMCN1 mutant alleles is associated with a poor

patient prognosis (28), and mutations in HMCN1 occur in

approximately 60% of patients, regardless of the MSI status in GC

patients (29). There are frequent mutations in ZFHX4 in esophageal

squamous cell carcinoma (30). Meanwhile, DNAH5 has a high

mutation rate in myeloma (31). RYR2 mutation enhances the

antitumor immune response by activating memory M1

macrophages and CD4+ T cells as well as enriching CD8 T cells

(32). Therefore, mutations in these genes significantly influence the

development of tumors. Consistent with the literature, mutations in

these genes also affect the progression of stomach cancer.

We developed a prognostic signature based on ICD-related genes,

including IFNB1, IL6, LY96, and NT5E. The model was validated in

several ways, including survival analysis, the expression of hub genes,

the correlation between the risk score and the patient survival status,

and univariate and multifactor Cox analyses, showing that the risk

score was an independent prognostic factor for predicting OS,

showing good predictive accuracy in STAD patients. Current

research has found that the TME is closely related to

tumorigenesis, development, and the prognosis and that immune

cells exhibit complex interactions with tumor cells. Therefore, the
FIGURE 8

IFNB1, IL6, LY96, and NT5E expression were verified by IHC in clinical tissues (scale bar: 200 and 40 mm).
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correlation between the risk score and immune cells was analyzed.

Risk scores showed a positive correlation with activated memory CD4

T cells, M1 macrophages, and M2 macrophages and a negative

correlation with plasma cells. Macrophages are classified into two

subgroups, M1 macrophages and M2 macrophages, based on their

function and the level of inflammatory factor secretion. M1

macrophages (classically macrophages), mainly activated by

Interferon g (IFNg); lipopolysaccharide (LPS), secrete low levels of

IL10 and high levels of IL2, mainly to promote the development of

inflammation and phagocytosis (33). M2 macrophages (alternatively

macrophages) are activated by IL4 inflammatory factors and play a

role in processes such as wound healing and tissue repair, mainly

through the secretion of anti-inflammatory cytokines such as IL10

(34). The dysregulation of the M1/M2 ratio in the TME plays a key

role in disease processes such as tumor development, immune escape,

and drug resistance (35), and therefore, a stable M1/M2 ratio is

essential for the TME. CD4 memory T cells are an important

component of the adaptive immune response. ICI-related

immunotherapy has received much attention as the most

promising treatment modality available (36). We therefore

examined the impact of risk scores on ICI therapy, and ICD risk

scores can be a good predictor of the effectiveness of immunotherapy.

Our research still has certain limitations. First, the clinical data

we downloaded from the public database are incomplete and lack

some important clinical details, and this study lacks the validation

of animal models for predicting the effects of immunotherapy. We

need to conduct a prospective and multicenter large-sample study

to verify the accuracy of the ICD signature we established.
5 Conclusions

This study established and validated an ICD-related signature

to accurately predict OS and immunotherapy response in GC

patients and showed potent predictive power. The above results

may help to deepen our understanding of ICD and provide new

strategies for personalized treatment.
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