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in the bone marrow niche
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Health Sciences, University of Pretoria, Pretoria, South Africa
Dysregulation of the bone marrow niche resulting from the direct and indirect

effects of HIV infection contributes to haematological abnormalities observed in

HIV patients. The bone marrow niche is a complex, multicellular environment

which functions primarily in the maintenance of haematopoietic stem/

progenitor cells (HSPCs). These adult stem cells are responsible for replacing

blood and immune cells over the course of a lifetime. Cells of the bone marrow

niche support HSPCs and help to orchestrate the quiescence, self-renewal and

differentiation of HSPCs through chemical and molecular signals and cell-cell

interactions. This narrative review discusses the HIV-associated dysregulation of

the bonemarrow niche, as well as the susceptibility of HSPCs to infection by HIV.
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Introduction

The existence of the bone marrow niche was first proposed by Schofield (1) as a

specialised microenvironment for the maintenance of haematopoietic stem and progenitor

cells (HSPCs), and can be found in the marrow of long bones, vertebrae and iliac crest. The

presence of multiple niches within the bone marrow has been proposed due to the presence

of distinct subsets of HSPCs in close proximity to non-haematopoietic cell types (2). The

bone marrow niche consists of bone matrix and various non-haematopoietic cells,

including endothelial cells, stromal cells, neuronal cells and adipocytes (3). Cells of the

niche contribute directly to HSPC quiescence, tethering in the bone marrow, homing to

niche regions and mobilisation into the circulation, as well as differentiation through

intercellular contact and paracrine signalling (3–5).

The bone marrow niche is separated into endosteal (6–8) and perivascular regions (4, 5,

9), each thought to serve a distinct function in the maintenance and mobilisation of HSPCs.

Osteolineage cells, perivascular mesenchymal stromal/stem cells (MSCs), CXC chemokine

ligand (CXCL)12-abundant reticular (CAR) cells and endothelial cells produce

chemoattracting gradients of CXCL12 (also known as stromal-derived factor 1 (SDF-1)

and stem cell factor (SCF)) which draw HSPCs to both the endosteal and perivascular
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1163012/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1163012/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1163012&domain=pdf&date_stamp=2023-07-11
mailto:michael.pepper@up.ac.za
https://doi.org/10.3389/fimmu.2023.1163012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1163012
https://www.frontiersin.org/journals/immunology


Herd et al. 10.3389/fimmu.2023.1163012
regions (4, 5, 7). Non-myelinating Schwann cells and

megakaryocytes activate transforming growth factor beta (TGF-b)
which has been implicated in maintaining quiescence (5).

Megakaryocytes are also thought to contribute to the niche

funct ion by releas ing CXCL4 and smal l amounts of

thrombopoietin (TPO) which encourage quiescence (4). Coupled

with long-range and short-range cytokines regulating

haematopoiesis, signalling networks in the bone marrow are

extremely complex and have not been fully elucidated. The

process of haematopoiesis is well studied and involves many

cytokines, chemokines, cell-to-cell interactions and extracellular

matrix interactions. However, the in vivo functionality, frequency

and longevity of HSPCs in humans has not been fully defined.

The classical model of haematopoiesis is represented by a

hierarchical structure with long-term HSPCs at the apex of the

hierarchy (10–12). These cells possess self-renewal capabilities and

give rise to short-term HSPCs with limited self-renewal capabilities.

Short-term HSPCs differentiate to form multipotent progenitors
Frontiers in Immunology 02
(MPP), which are precursors of common lymphoid and myeloid

progenitors (CLPs/CMPs). MPPs are not able to self-renew but are

capable of full lineage differentiation (13). Progeny of CLPs

differentiate into lymphoid and natural killer (NK) cells, while

progeny of CMPs form granulocyte–macrophage progenitors

(GMP) or megakaryocyte–erythrocyte progenitors (MEP). These

differentiate into granulocytes and macrophages, and erythrocytes

and megakaryocytes, respectively (14). Recent studies suggest that

haematopoiesis is more complex than the classical model makes

provision for, which includes myeloid-restricted progenitors with

long-term repopulating potential (15) and HSPCs expressing

platelet-biased genes while having the ability to self-renew (16).

These examples represent only a fraction of the data demonstrating

the non-classical differentiation potential of HSPCs. Technological

advances in the past decade have resulted in a revised model

depicted in Figure 1.

Since the discovery of the human immunodeficiency virus

(HIV) in the early 1980s (17–20), it has spread globally, infecting
FIGURE 1

Revised model of haematopoiesis including HSPC phenotypes. Red and purple streams indicate lineage preferences. The grey area indicates cells
between which lineage commitment may be reversed. HSC, haematopoietic stem cell; HSPC, haematopoietic stem/progenitor cell; MPP, multipotent
progenitor; CLP, common lymphoid progenitor; CMP, common myeloid progenitor; GFM, granulocyte-macrophage progenitor; MEP, megakaryocyte-
erythrocyte progenitor. Adapted from Velten et al., 2017, Brown et al., 2018, and Liggett & Sankaran, 2020. Figure created in BioRender.com.
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more than 38 million people worldwide according to the latest

available statistics (21). The ability of the virus to evade the immune

system (22) and escape antiretroviral therapy (ART) pressure (23)

contributes to its persistence in vivo. Drug escape and immune

evasion are achieved through the action of viral proteins (24–26),

immune dysregulation as an indirect consequence of infection (27–

30), as well as the high mutation rate of the virus conferred by the

low-fidelity HIV reverse transcriptase enzyme (31–33). The

majority of HIV infections are caused by HIV-1 group M strains

(34), with HIV-1 subtype B (HIV-1B) and C (HIV-1C) claiming

11% and 48% of worldwide infections, respectively (35). Most HIV-

1 infections in India, southern Brazil (36) and sub-Saharan Africa

are due to HIV-1C (37), while HIV-1B is confined to high income

regions such as North America, Europe and Australia (37–40).

Despite the prevalence of HIV-1C, HIV-1B dominates the research

landscape. Variation between subtypes has been documented for

phenotypic properties such as co-receptor tropism (41–45),

replication rate and disease progression (45–50), transmission

mechanics (51–54), and mutation patterns (55–57). Furthermore,

reverse transcription (58) and the emergence of drug resistance

(59–62) have been reported to vary between subtypes.

HIV primarily infects cells of the immune system that express

cluster of differentiation (CD) 4, C-C-motif chemokine receptor

type 5 (CCR5) and C-X-C-motif chemokine receptor type 4

(CXCR4), including CD4+ T-cells and monocyte/macrophages

(63); in the case of the former, this results in the depletion of

CD4+ cells. The viral reservoir is made up of latently-infected cells

which harbour proviral DNA but do not produce viral particles

(64). Once established, the reservoir is the most challenging barrier

to curing HIV. Latency is complex and regulated at several levels,

reviewed elsewhere (64–67). Activation of viral production from

latently-infected cells contributes to viral persistence throughout

the lifetime of an infected individual. This is evidenced through

lineage-tracing which has shown the resurgence of sequences that

were dominant during early infection, in the later stages of infection

(68–74).

HIV has several concomitant effects once an individual becomes

infected. Direct infection of cells with HIV is not the only cause of

blood cell depletion, referred to as cytopenia, in HIV patients.

Multifactorial, indirect effects associated with HIV infection can

also cause cytopenia and other haematological abnormalities. A

plethora of cytopenias may present in HIV patients including

leukopenia, lymphopenia, anaemia, neutropenia, thrombocytopenia,

and pancytopenia (10, 75–81). In a large study conducted in Beijing,

neutropenia, thrombocytopenia, and anaemia were partially restored

in ART-naïve patients following initiation of treatment (76).

However, multiple factors influence restoration of cytopenia

following induction of ART (82) including concomitant infections,

viral load, tropism and drug resistance, and individual response/

adherence to treatment. With the exception of lymphopenia, HIV-

associated cytopenias cannot be explained by the lytic cycle of HIV

infection. It is unclear whether the haematological abnormalities

observed in HIV-infected individuals are due to direct or indirect

effects of infection on HSPCs. Various studies suggest these

cytopenias may be attributed to disruption of the bone marrow

niche housing HSPCs, which maintain the continuous production of
Frontiers in Immunology 03
blood and immune cells throughout life (83–85). This review will

discuss both these possibilities in detail.
Indirect effects of HIV on HSPCs

The bone marrow is considered a primary and secondary

lymphoid organ allowing for continuous interactions of immune

cells (86). The indirect effects of HIV on HSPCs may stem

from infection of bone marrow niche cells (87), the effects of

HIV proteins on bone marrow cells, or dysregulation of the

cytokine milieu which is instrumental in orchestrating dynamic

physiological processes including haematopoiesis. The effects of

HIV infection on bone marrow niche cells and the consequences for

haematopoiesis are described in detail below and are illustrated

in Figure 2.
Perivascular niche

The perivascular region around blood vessels that permeate the

bone marrow contains perivascular cells, endothelial cells, CAR

cells, and nerve fibres including non-myelinated Schwann cells.

Non-myelinating Schwann cells sheath neuronal axons in the

perivascular niche of the bone marrow, and participate in niche

regulation (88). These cells have been found to activate latent TGF-

b released from the bone marrow extracellular matrix (89), and to

facilitate circadian regulation of CXCL12 production in Nestin+

MSCs (88). Together, these functions probably account for the

maintenance of a quiescent perivascular HSPC pool very closely

associated to neuronal axons. Non-myelinating Schwann cell

depletion results in reduced HSPC numbers as early as three

days post-depletion (89), although the mechanism is unclear.

Investigation into HIV-associated neuropathy revealed that the

HIV glycoprotein (gp)120 protein stimulated lysosomal exocytosis

in Schwann cells (90), releasing axon-exciting adenosine

triphosphate (ATP) into the extracellular environment. Exocytosis

of lysosomes increased calcium and induced reactive oxygen

species (ROS) generation in neighbouring axons, which in turn

activates latent TGF-b (91). This could contribute to impaired

haematopoiesis by driving HSPCs toward quiescence. Since

infection of Schwann cells has only been documented once by

electron microscopy (92), HIV-associated neurotoxicity is likely

caused by either viral proteins or neurotoxic cytokines released by

activated/infected glial cells. The interaction between gp120 and

CXCR4 on Schwann cells results in the release of several

chemokines, including CC chemokine ligand (CCL)-5 (also

known as RANTES) and CXCL1. Release of CCL5 results in the

production of TNF-a by dorsal root ganglion neurons and

subsequent autocrine neurotoxicity mediated by TNFR1 (93),

whereas the release of CXCL1 results in the recruitment of

macrophages in mice (94).

Several subtypes of endothelial cells, the cells which line blood

vessels, have been identified in the bone marrow, and the distinct

functions of each subtype are still being elucidated. Arteriolar,

sinusoidal, and endothelial cells expressing endoglin (CD105) are
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among these. Netrin-1 is expressed by arteriolar endothelial cells

and binds to the receptor Neogenin-1 on HSPCs, which is

correlated with quiescence and self-renewal of HSPCs in vivo

(95). Furthermore, arteriolar endothelial cells have been found to

produce the majority of endothelial cell-derived SCF, in addition to

producing CXCL12. Knock-out of SCF in arteriolar endothelial cells

results in reduced CD150+CD48-Lin-Sca-1+c-Kit+ primitive

HSPCs in mice (96, 97). In bone marrow injury such as

irradiation or chemotherapy, an endothelial cell population

expressing endoglin (CD105) produces interleukin (IL)-33, which

expands umbilical cord blood-derived CD34+ HSPCs in vitro and

promotes angiogenesis and osteogenesis for bone marrow

regeneration (98). Work on the cytokine profiles produced by

different endothelial subtypes is lacking. Previous studies in the

1990s showed that endothelial cells produce messenger RNA

(mRNA) for cytokines supporting and inhibiting haematopoiesis

(99, 100). Cytokines supporting haematopoiesis include

granulocyte-macrophage colony-stimulating factor (GM-CSF),

IL-1, IL-7, IL-6, TGF-b, IL-8, and IL-11, while thymosin-b4 is a

small molecule that inhibits haematopoiesis (100). Endothelial cells

also produce mRNA for macrophage inflammatory protein (MIP)-

2, platelet-derived growth factor (PDGF), merozoite surface protein

(MSP)-1, interferon (IFN)-g, IL-13 and inhibitin (100). However,

the relationship between cytokine mRNA and protein production

by endothelial cells for these cytokines is unclear.
Frontiers in Immunology 04
In a study comparing bone marrow microvascular

endothelial cells from HIV seropositive to those from healthy

uninfected donors, these cells have been shown to be permissive

to HIV infection in vivo (101). HIV-infected microvascular

endothelial cells expressing von Willebrand Factor (vWF) were

found to produce the HIV protein p24 in long-term culture.

Endothelial cells from HIV seropositive donors showed a

significant reduction in IL-6 and GM-CSF production in response

to IL-1a stimulation compared to uninfected controls (101). In

addition to being susceptible to productive HIV infection in vivo,

HIV proteins contribute to endothelial cell activation, apoptosis,

and conversely, stimulate angiogenesis, proliferation, and migration

of endothelial cells through various mechanisms (102, 103).

The HIV trans-activator of transcription (Tat) protein induces

apoptosis in endothelial cells, but also induces the release of IL-6

and the expression of adhesion markers E-selectin, intracellular

adhesion molecule (ICAM)-1, vascular cell adhesion molecule

(VCAM)-1, and endothelial leukocyte adhesion molecule

(ELAM)-1 which recruit monocytes and increase their migration

across the endothelial barrier, increasing monocyte tissue pervasion

(104–106). The HIV negative factor (Nef) protein induces apoptosis

in endothelial cells by increasing ROS production, causing oxidative

stress and cell death (107–111) as well as increasing production of

monocyte attractant protein (MCP)-1 (109). The HIV matrix

protein p17, similar to Tat, promotes angiogenesis (112) and
FIGURE 2

Contrasting healthy and HIV-affected bone marrow niches. HIV-associated changes are shown in red. HIV, human immunodeficiency virus; HSPC,
haematopoietic stem/progenitor cell; MSC, mesenchymal stem/stromal cell; CAR cell, CXCL12-abundant reticular cell; CXCR4, C-X-C-motif
chemokine receptor type 4; CXCL12, C-X-C-motif chemokine ligand 12; CD117, cluster of differentiation molecule 117; SCF, stem cell factor; TGF-b,
transforming growth factor-beta; IL-6, interleukin-6; IFN-I, interferon type-I. Figure created in BioRender.com.
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increases monocyte chemoattractant protein (MCP)-1 production

in endothelial cells, as does Nef (113, 114). The implications of these

contrasting consequences of HIV infection on endothelial cells in

vivo remain to be resolved.

CXCL12 is primarily produced by CAR cells (115, 116) and

osteoblasts (117) in the bone marrow, and is involved in the homing

of cells expressing the cell-surface marker CXCR4 (118, 119), thereby

acting as a potent chemoattractant for HSPCs and their progeny in

the bone marrow. In addition to chemoattraction, CXCL12-CXCR4

interactions provide physical tethering of CD34+ HSPCs to cell-

surface CXCL12 on CAR cells (116, 120). The CXCR4-CXCL12 axis

has been found to be critical for the maintenance of the primitive

HSPC pool, which is diminished in CXCR4 knock-down mice (116).

Neither direct nor indirect effects of HIV infection have been reported

for CAR cells to date. There is ongoing debate as to whether a variant

in the untranslated region of CXCL12 (designated 3’A) is protective

against HIV infection and delays disease progression or whether it is

associated with susceptibility to HIV infection and faster progression

to AIDS (121).

Dendritic cells and macrophages are both present in the bone

marrow stroma in the perivascular niche forming so-called

“immune pockets”, where B- and T-lymphocytes are localised.

While bone marrow dendritic cells do not play an appreciable

role in HSPC maintenance or haematopoiesis, selective ablation of

dendritic cells results in increased HSPC mobilisation through an

indirect mechanism involving CXCR2 (122). Dendritic cells and

macrophages are capable of sustaining HIV replication and could

contribute to viral dissemination in the niche (123–125). The

perivascular niche is also home to megakaryocytes, which have

been found to be susceptible to HIV infection both in vitro (126–

128) and in vivo (128, 129). This relates primarily to viral

production and release in the bone marrow and could contribute

to thrombocytopenia in HIV patients through the loss of

megakaryocytes as a consequence of viral replication.

Circulating monocytes are recruited to tissues and differentiate

into tissue-resident macrophages, where they fulfil critical functions

in tissue homeostasis. Most of the research on bone marrow

macrophages to date has involved murine studies, although

whether the findings translate to human bone marrow is not

clear. Two populations of bone marrow macrophages have been

identified in mice, so-called “osteomacs” present in the endosteal

niche in close contact to osteoblasts and Nestin+ MSCs (130), and

CD169+ macrophages located in the perivascular niche around

Nestin+ MSCs (131). Osteomacs, through cell-to-cell contact,

increase Nestin+ MSC production of prostaglandin (PG)-E2,

which in turn stimulates oncostatin M release by osteomacs,

resulting in increased osteoblast mineralisation and differentiation

(132). Higher levels of PGE2 correlated with increased release of

anti-inflammatory IL-10 (133, 134) by macrophages (135).

Depletion of CD169+ bone marrow macrophages severely

impaired HSPC retention in the niche, and this was associated

with a reduction in Nestin+ MSC expression of CXCL12 and SCF

mRNA (136, 137). Bone marrow macrophages have been reported

to be permissive to HIV infection, although the cytokine profile

did not appear to be altered in vitro following infection with a

number of HIV isolates (138). Whether HIV infection occurs
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macrophages or in tissue-resident macrophages is difficult to

establish. Macrophages may be an important tissue reservoir for

HIV capable of sustaining HIV infection in vivo (87, 139–142) and

their presence would therefore form a large part of the barrier to

HIV eradication. Conversely, other researchers have suggested that

macrophages play a limited role in HIV replication (143–145).

While these cells can be infected by HIV, they may not effectively

support viral replication and production. As a result, their

contribution to viral spread and long-term persistence in the

body may be minimal. Although drawing parallels between

murine and human bone marrow is beyond the scope of this

review, it is plausible that macrophage depletion resulting from

direct HIV infection may result in reduced HSPC retention in

the niche and thereby contribute to impaired haematopoiesis

in humans.
Endosteal niche

The endosteal niche is in close proximity to the endosteum of

the bone marrow niche which is made up of osteoclasts, osteoblasts,

and MSCs. Osteolineage cells (osteoblasts and osteoclasts) were

some of the first cells shown to interact with HSPCs and play an

important role in HSPC fate. MSCs destined to become osteoblasts

occupy the endosteal surface of flat and trabecular bones between

the bone and the bone marrow.

Bone marrow MSCs, initially thought to be fibroblasts (146–

148), are a heterogenous population of cells forming part of both the

perivascular and endosteal stromal cell populations. In addition to

replacing osteoblasts and adipocytes as a normal part of cell

turnover, bone marrow MSCs play an important role in

immunomodulation and HSPC maintenance through cytokine

production (149). MSCs constitutively produce IL-6, which is

important in haematopoiesis and suppressing the proliferation of

MSCs and activated T-cells (149–151). MSCs have also been shown

to secrete prostaglandin E2 (PGE2), which is implicated in the

expansion of less primitive HSPCs (152) as well as HSPC recovery

and repopulation after chemotherapy (153, 154). In the perivascular

niche, periarteriolar MSCs produce Netrin-1 (95) similar to

arteriolar endothelial cells, thereby contributing to HSPC

quiescence and self-renewal. MSC heterogeneity in the bone

marrow is much better described in mice than in humans, and

this includes single-cell resolution as has been extensively reviewed

elsewhere (155, 156). In murine bone marrow, Lepr+ MSCs

enriched for adipocyte and osteoblastic precursors secreting SCF

(157) and CXCL12 (116) have been described, which are implicated

in HSPC self-renewal (158) and quiescence, respectively, have been

described. Although LEPR(hi)CD45(low) BM-MSCs were recently

identified in human marrow, the function of these cells remains

poorly described (159). Nestin+ MSCs are typically periarteriolar

and were found to be clustered around nerve fibres where they

produce CXCL12 (156). Characterisation of human bone marrow

MSC heterogeneity at the single-cell level remains crucial to

elucidating the complex niche dynamics supporting HSPCs,

haematopoiesis, as well as immunomodulation in the bone marrow.
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While the susceptibility of bone marrow MSCs to HIV infection

has not yet been conclusively determined (160), more studies

suggest low levels of productive infection - referring to the

production of new virus particles (161–163) than studies which

demonstrate resistance to infection (138). However, exposure to

HIV proteins has varying effects on the differentiation of MSCs.

HIV Tat and Nef proteins reduce MSC proliferation and

differentiation, and encourage senescence, corresponding to

increased oxidative stress and mitochondrial dysfunction (164).

Tat increases nuclear factor kappa-light-chain enhancer of activated

B cells (NF-kB) activity and inflammatory cytokine secretion, while

Nef reduces autophagy, and it was found that the effects of Tat and

Nef are cumulative (164). NF-kB expression also drives IL-6

production in MSCs (149), resulting in increased MSC senescence

which could explain dysregulation of both bone and fat metabolism

in HIV patients. Regulator of expression of virion (Rev) and p55-

gag protein expression results in temporal and quantitative changes

in key osteo- and adipogenic signals, hampering differentiation

(165). Expression of both Rev and p55-gag increase alkaline

phosphatase activity and decrease lipid levels, where Rev increases

calcium deposition in non-differentiating MSCs. Rev also increases

potent peroxisome proliferator-activated receptor gamma (PPAR-

g) expression which drives adipogenic differentiation, and Runt-

related transcription factor (RUNX)2 which drives osteogenic

differentiation in non-differentiating MSCs (165). In a study

assessing the effects of HIV proteins on human MSCs and

osteoblast cell lines, HIV proteins p55 and gp120 reduced calcium

deposition, alkaline phosphatase activity, and key bone remodelling

proteins (166). In contrast, the HIV Rev protein augments MSC

osteogenesis (166). HIV gp120 improves adipogenic differentiation,

impairs endothelial differentiation, and induces apoptosis of vessel

wall-derived MSCs (161). These findings support a role for MSCs in

haematopoietic abnormalities resulting from HIV-associated bone

marrow niche dysregulation.

Osteoclasts are large, multinucleated monocyte/macrophage-

derived cells responsible for resorption of the bone matrix

produced by osteoblasts in the continuous, dynamic process of

bone remodelling (167, 168). Osteoblasts are smaller osteolineage

cells derived from MSCs and produce macrophage colony-

stimulating factor (M-CSF) for osteoclastogenesis, osteopontin for

continuous formation of bone matrix, as well as a variety of bone

marrow niche regulatory cytokines (169). These include IL-6, MIP-

1a, SCF, CXCL12, granulocyte colony-stimulating factor (G-CSF),

TPO, angiotensin-1, and annexin 2 (169). The bone matrix

maintained by osteoclasts and osteoblasts results in a protected

environment for long-term HSPCs. Bone remodelling results in the

release and activation of TGF-b stored in the bonematrix (168), and a

calcium gradient (170), both of which contribute to the quiescence of

HSPCs in the endosteal niche. Immature osteoblasts release CXCL12,

a potent chemoattractant for cells such as HSPCs which express

CXCR4 (169), drawing them towards the endosteumwhere they bind

to SCF onmature osteoblast cell surfaces through the CD117 receptor

(169). Angiotensin-1 (171) and TPO (172) produced by osteoblasts

also assist in maintaining HSPC quiescence in the endosteal niche.

In HIV infection, bone resorption is increased due to the

stimulation of osteoclastogenesis by HIV proteins and direct
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infection of osteoclasts (173–175). This increased osteoclast activity

has been associated with reduced HSPC numbers in the bone

marrow (176). In addition to propagating virus through

replication, osteoclasts have been implicated in cell-to-cell

transmission of HIV-1 between cells of the bone marrow niche

(177). Osteoblasts are reportedly not susceptible to HIV infection in

vitro (178), but respond deleteriously to the presence of HIV

proteins. Alkaline phosphatase activity, receptor activator of

nuclear factor kappa-B ligand (RANKL) secretion, and calcium

(Ca2+) deposition by osteoblasts have been reported to be impaired

in the presence of HIV p55-gag and gp120 proteins (179). Studies on

osteoclasts have produced conflicting findings regarding the

induction of apoptosis versus proliferation following exposure to

HIV-1 gp120 (180, 181). Degradation of the bone matrix during

bone resorption releases and activates an excess of TGF-b in the

endosteal niche (182). In addition to stimulating and recruiting

MSCs from the perivascular niche to the endosteal niche, high levels

of active TGF-b induce quiescence in primitive HSPCs (91), promote

proliferation and differentiation of myeloid-primed HSPCs, and

hinder lymphoid-primed HSPCs (183). Bone resorption, reduced

osteoblast activity in the presence of HIV proteins, and impaired

differentiation of MSCs into osteoblasts all contribute to loss of bone

density and overall osteopenia observed in HIV patients (184, 185).

Consequently, reductions in IL-6, MIP-1a, SCF, CXCL12, G-CSF,
and TPO usually produced by osteoblasts are expected in HIV

patients. Bone disease in HIV-infected individuals suggests that

some of the in vitro findings may be transferable (186), although

anti-retroviral therapy (ART) has also been implicated (185–187).

Productive infection of bone marrow niche cells would result in

the release of HIV proteins which consequently would have an

adverse effect on the infected cell and surrounding cells which in

turn would negatively affect HSPCs.
Infiltrating/circulating cells

The bone marrow is highly vascularised, allowing the trafficking

of cells and chemical signals to and from the bone marrow through

the circulation. In addition to localised effects of HIV on bone

marrow cells, altered cytokine profiles produced by trafficked cells

affect the niche microenvironment. Monocytes originating from

the bone marrow enter the circulation and differentiate into

macrophages or dendritic cells in tissues, where they may become

infected with HIV (188). Upon infection and pathogen-associated

molecular pattern (PAMP)/toll-like receptor (TLR)-initiated

migration to secondary lymphoid tissues, dendritic cells are

involved in cell-to-cell transfer of HIV to T-cells (189–191). In

addition to perpetuating viral transmission, activation of PAMP

triggers type I IFN production by dendritic cells (192–195) and the

cascade towards chronic immune activation observed in HIV

patients (196, 197). Acute type I IFN exposure has been shown to

induce proliferation of c-Kit+ HSPCs in mice, whereas chronic

type I IFN treatment led to HSPC apoptosis due to proapoptotic

induction by IFN exposure irrespective of duration (198). The

presence of HIV-infected dendritic cells in the bone marrow
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therefore contributes to haematopoietic dysfunction by directly

affecting HSPCs (199).

While monocyte-derived tissue-resident macrophages do not

return to the bone marrow, macrophages support viral replication

and are important members of the viral reservoir (200) in

combination with circulating CD4+ T-cells (201). Circulating CD4

+ T-cells are present at higher rates in the bone marrow of HIV

positive individuals compared to HIV negative individuals (202),

exacerbating the effects of aberrant T-cell cytokine production on the

bone marrow. During HIV infection, increased production of IL-4 by

T-helper 2 (Th2) CD4+ T-cells was observed (203), which was

reported to impair megakaryocyte production in leukaemia (204)

and could reasonably be expected to contribute to thrombocytopenia.

It has been suggested that a population of resident memory

T-cells in the bone marrow niche may play a role in long-lived

immunity against systemic pathogens (205–208), although this is

not yet fully understood (209, 210). Resting CD4+ memory and T-

cells are well-described as an important latent reservoir for HIV,

extensively reviewed elsewhere (206, 211). Bone marrow CD4+

memory T-cells were found to harbour similar levels of virus to

circulating CD4+ T-cells in simian immunodeficiency virus (SIV)-

infected rhesus macaques (212) and HIV-infected individuals (211).

The susceptibility of these cells to HIV infection and their resident

status in the bone marrow presents a source of HIV and HIV

proteins in the bone marrow outside of circulating infected cells.

Activation of this latent reservoir in the bone marrow could result in

an increase in HIV load in the bone marrow, which may infect

surrounding cells and cause dysregulation of bone marrow niche

cells as a consequence of the presence of HIV proteins.

Interactions between cells in the bone marrow are critical for

normal haematopoiesis as well as HSPC maintenance and

regulation. Bone marrow homeostasis is disrupted during HIV

infection as a consequence of direct infection of niche cells and/or

the effects of HIV proteins. As a consequence of HIV infection or

the effects of HIV proteins on perivascular niche cells, perivascular

niche HSPCs are driven towards quiescence and mobilisation,

thereby impairing haematopoiesis. Endosteal niche HSPCs are

driven to mobilisation due to the breakdown of normal bone

remodelling and MSC senescence resulting from HIV infection.

The consequences of the indirect effects of HIV infection on HSPCs

are therefore deleterious, ultimately reducing the number of HSPCs

in the bone marrow and the creation of a quiescence-supporting

environment for the remaining HSPCs.
Direct effects of HIV on HSPCs

The indirect effects of HIV infection on HSPCs are complex and

cumulative, contributing to the impairment of HSPC function. The

direct effects of HIV on HSPCs encompass both direct infection and

the effect of HIV proteins on HSPC function. However, the literature

presents opposing conclusions regarding the susceptibility of HSPCs

to HIV infection.

HSPCs in the bone marrow are directed to remain quiescent or

divide and differentiate, forming blood and immune cells in

response to the cytokine milieu. At key points, differentiating
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HSPCs will become lineage restricted and only form the cell types

dictated by the cytokine milieu. This means that one infected HSPC

would produce a limited number of haematopoietic cell types

harbouring HIV. Nixon et al., 2013 demonstrated that HSPC

progeny generated through colony-forming assays of CD34+ cells

from HIV-infected humanised mice, harboured HIV. Clonally

infected cells resulting from HSPC division and differentiation

would therefore be restricted to a single or limited number of

haematopoietic cell types, depending on the differentiation

potential of the infected HSPC and on external stimulus directing

haematopoiesis. Transcriptional activation during differentiation

could activate HIV replication from integrated or episomal

provirus, possibly resulting in cell death due to the lytic nature of

HIV replication. Carter et al., 2010 (213) showed that CD34+ cells

expressing HIV gene products were markedly depleted in culture

compared to a transduced control, which could indicate some other

mechanism of cell death in infected HSPCs. In vivo, host cell lysis or

death might contribute to the absence of terminally differentiated

HIV-infected cells of all haematopoietic lineages harbouring clonal

virus initially of HSPC-origin. HIV infection may skew

haematopoiesis towards or away from certain lineages (214, 215),

which may contribute to cytopenia and the lack of clonal infection

of certain haematopoietic cell types. This is not well described in

literature as bone marrow research is limited to static snapshots of a

highly dynamic environment.

The controversy in literature dates back to the early 1990s with

Stanley and colleagues detecting HIV in CD34+ HSPCs from

seropositive patients (216) and Neal and colleagues presenting

alternate data showing that CD34+ HSPCs were rarely infected

with HIV in asymptomatic patients (217). This was followed by a

number of studies with different conclusions and one paper

suggesting that HIV-1 subtypes may differ in their ability to infect

HSPCs (218). Several studies found HSPC subsets to be resistant to

HIV infection (217–230), the suggested mechanism being through a

p21-mediated pre-integration block (231). Given the inducible

expression of HIV proteins in the presence of a pre-integration

block, the findings may suggest transient transcription from

episomal proviral DNA in HSPCs (213). In contrast, a number of

studies have detected HIV in HSPCs (213, 214, 216, 218, 222, 226,

229, 230, 232–236). Carter and colleagues showed latent infection of

Lin-CD34+CD133+CD38- primitive HSPC subsets in vitro and

corroborated these findings with bone marrow CD34+ HSPCs

from HIV infected individuals with high viral load (213).

However, their findings also suggest that HIV-infected cells

actively expressing HIV proteins were short-lived compared to

their latently-infected counterparts (213). Several follow-up

studies reported similar findings (214, 230, 235, 236), which are

presented in Table 1. A recent study reported that a small subset of

the heterogenous CD34+ HSPC population expresses low levels of

CD4, and that this subset was found to harbour HIV genomes in

vivo (237). While detection of HIV in this subset is not necessarily

surprising, the fact that both R5- and X4-tropic HIV genomes were

detected was notable as CXCR4 is usually expressed in a greater

fraction of CD34+ HSPCs than is CCR5 (213). While HSPC

susceptibility to HIV infection hinges largely on the expression of

CD4, CXCR4, and CCR5, CD4-independent infection mechanisms
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1163012
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Herd et al. 10.3389/fimmu.2023.1163012
TABLE 1 Comparison of literature on the susceptibility of HSPCs to HIV infection.

HIV DETECTED

Cells Infection HIV detection

Reference
Source Phenotype Activation

method HIV
In

vitro/
vivo

Method Target

BM CD34+ NA
Uncharacterised HIV+ donors (Zaire

and North America)
In
vivo

PCR env, gag
Stanley et al.,
1992 (216)

PB
CD34+/-

(BFU-E and CFU-GM
colonies)

Overnight pre-
stimulation in
SCF, IL-3, GM-

CSF, Epo

X4-tropic HIV-1B molecular clone
In
vitro

RT-PCR,
ELISA

tat, gag
p24

† Chelucci
et al., 1995

(226)

BM
CD34+, CD34+CD38+,

CD34+CD38-,
NA

R5- and X4-tropic HIV-1 molecular
clones. Uncharacterised patient virus

(USA)

In
vitro;
in vivo

PCR,
ELISA

gag, LTR
p24

Shen et al.,
1999 (229)

PB, UCB CD34+, MNCs
Pre-cultured

with SCF, GM-
CSF, IL-3, Epo

R5-tropic HIV-1C molecular clones
and primary HIV+ patients (Botswana)

In
vitro,
in vivo

RT-PCR,
ELISA

gag
p24

† Redd et al.,
2007 (218)

BM,
UCB

CD34+, CD133+ NA
Uncharacterised patient virus; R5X4-
tropic HIV-1B molecular clones and

pseudovirus

In
vitro,
in vivo

Flow cytometry,
qPCR

Gag
(KC57
and

anti-p24
mAB),
LTR

‡ † Carter
et al., 2010

(213)

BM,
UCB

CD34+, CD133+

Pre-stimulation
in SCF, TPO,

FLT3-L, IGFBP-
2

X4- and R5X4-tropic HIV-1B
molecular clones and pseudotyped

viruses

In
vitro,
in vivo

Flow cytometry
GFP, IC
Gag

‡ Carter
et al., 2011

(230)

BM
CD133+, CD34+CD45RA-

CD38-

Pre-stimulation
in SCF, TPO,

FLT3-L, IGFBP-
2

Pseudotyped virus
In
vitro

Flow cytometry
GFP,
PLAP,
p24

‡ McNamara
et al., 2012

(235)

BM CD133+ NA
Uncharacterised HIV+ donors on ART
with plasma viral loads of <48 copies/

mL.

In
vivo

qPCR
Gag,
LTR

* McNamara
et al., 2013

(236)

UCB,
fetal
liver

CD34+CD38+CD123+
(CMP), CD34+CD38

+CD45RA+ (GMP) and
CD34+CD38+CD110+

(MEP)

NA
Wild-type viruses were created from

proviral plasmids p89.6, pYJRCSF, and
pNL4-3.

In
vitro

qRT-PCR
Gag,
LTR

‡ Nixon
et al., 2013

(214)

PB, BM Lin-CD34+ NA
Uncharacterised HIV+ donors (naïve

and on ART)
In
vivo

qPCR LTR
* Bordoni
et al., 2015

(232)

BM Lin-CD34+ NA
HIV-infected humanized mice (5 – 14

weeks post-infection)
In
vivo

qPCR,
Immunofluorescence

Gag
Araıńga

et al., 2016
(233)

BM CD34+, CD133+
UCB-derived

cells pre-cultured
for 4 days

X4- and R5-tropic HIV-1B molecular
clones. Uncharacterised HIV+ donors

In
vitro,
in vivo

Flow cytometry,
PCR

Gag, env
* Sebastian
et al., 2017

(237)

BM CD133+, CD34+CD133- NA Uncharacterised HIV+ donors
In
vivo

PCR Gag, env
* Zaikos

et al., 2018
(234)

BM, CB

Lin-, CD34+CD38-
CD45RA-Lin-, Lin-CD34
+CD38-CD45RA-CD90-,
CD34+CD38-CD45RA-
CD90+, CD34+CD38+

NA

X4-tropic pseudotyped GFP reporter
viruses, X4- and R5-tropic HIV-1B

molecular clones. Uncharacterised HIV
+ donors, one donor with confirmed

HIV-1B infection

In
vitro;
in vivo

Flow cytometry,
qPCR

GFP,
p24,
HIV-1
R-U5/
gag

* Renelt
et al., 2022

(222)

(Continued)
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TABLE 1 Continued

HIV NOT DETECTED

Cells Infection HIV detection Reference

Source Phenotype Activation
method Virus

In
vitro/
vivo

Method Target

BM
Colony-forming cells from
T-cell and adherent BM
cell-depleted BM fractions

NA
Uncharacterised HIV+ donors (North
America); HIV-1B and HIV-2A (isolate

ROD)

In
vivo;
in

vitro

PCR Gag
Molina et al.,
1990 (223)

BM CD34+ NA
Uncharacterised HIV+ donors (North

America)
In
vivo

PCR Env, gag
Davis et al.,
1991 (224)

BM CD34+ NA Uncharacterised HIV+ donors (France)
In
vivo

PCR,
Flow cytometry

gag
p24,
gp120

Louache
et al., 1992

(225)

PB
CD34+/-

(CFU-GEMM)

Overnight pre-
stimulation in
SCF, IL-3, GM-

CSF, Epo

X4-tropic HIV-1B molecular clone
In
vitro

RT-PCR,
ELISA

Tat, gag
p24

Chelucci
et al., 1995

(226)

BM CD34+, CD34-, MNCs NA
Uncharacterised HIV-1+ donors (USA)
on ART with no AIDS-defining illness

In
vivo

PCR Gag, pol
Neal et al.,
1995 (217)

BM
CD34+CD38-;
CD34+CD4+

NA Uncharacterised HIV+ donors (France)
In
vivo

PCR gag
Marandin
et al., 1996

(227)

BM
CD34+CD38-;
CD34+CD38+

NA
R5 and R5X4-tropic HIV-1 and R5X4

HIV-2 molecular clones
In
vitro

PCR,
ELISA

gag
p24

Weichold
et al., 1998

(228)

BM G0 CD34+ 7-day pre-culture
R5- and X4-tropic HIV-1 molecular
clones. Uncharacterised patient virus

(USA)

In
vitro;
in vivo

PCR,
ELISA

gag, LTR
p24

Shen et al.,
1999 (229)

PB, UCB CD34+, MNCs
Pre-cultured

with SCF, GM-
CSF, IL-3, Epo

R5-tropic HIV- 1B molecular clones
and primary HIV (USA)

In
vitro;
in vivo

RT-PCR,
p24 ELISA

gag
Redd et al.,
2007 (218)

BM,
UCB

CD34+, CD133+

Pre-stimulation
in SCF, TPO,

FLT3-L, IGFBP-
2

R5- tropic HIV-1B molecular clones;
pseudotyped viruses; HIV+ donors

In
vitro,
in vivo

Flow cytometry
GFP, IC
Gag

Carter et al.,
2011 (230)

BM CD34+

Pre-cultured
with SCF, TPO,
FLT3-L and
GM-CSF and

TNF-a, or PMA

HIV+ donors (Patients on ART and VL
<50 copies/mL)

In
vivo

PCR gag
Durand

et al., 2012
(219)

BM
Lin-CD34+,
Lin-CD34-

NA
HIV-1B+ donors (Patients on ART and

VL <45-70 copies/mL)
In
vivo

PCR
Target
not

specified

Josefsson
et al., 2012

(220)

UCB CD34+

24 hr pre-
stimulation with
TPO, SCF, and

FLT3-L

VSV-G-pseudotyped virus with a
modified pNL4.3 HIV-1-based core

including an mCherry ORF

In
vitro

Flow cytometry,
qPCR

mCherry
Griffin &
Goff, 2015

(221)

BM
Lin-CD34+CD38-CD45RA-

CD90-, CD34+CD38-
CD45RA-CD90+

NA
R5-tropic pseudotyped GFP reporter

viruses
In
vitro

Flow cytometry GFP
Renelt et al.,
2022 (222)
F
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BM, bone marrow; PB, peripheral blood; UCB, umbilical cord blood; BFU-E, burst-forming unit erythroid; CFU-GM, colony-forming unit granulocyte-macrophage; CMP, common myeloid
progenitor; GMP, granulocyte-macrophage progenitor; MEP, megakaryocyte-erythroid progenitor; CFU-GEMM, colony-forming unit granulocyte-erythroid-macrophage-megakaryocyte; SCF, stem
cell factor; IL-3, interleukin-3; GM-CSF, granulocyte-macrophage colony-stimulating factor; Epo, erythropoietin; IGFBP-2, insulin-like growth factor binding protein-2; TNF-a, tumour necrosis
factor alpha; PMA, phorbol myristate acetate; FLT3-L, fms-like tyrosine kinase receptor 3 ligand; TPO, thrombopoietin; R5, C-C-motif chemokine receptor type 5; X4, C-X-C,motif chemokine
receptor type 4; PCR, polymerase chain reaction; qPCR, quantitative PCR; RT-qPCR, real-time qPCR; ELISA, enzyme-linked immunosorbent assay; IC, intracellular; GFP, green fluorescent protein.
*T-cell contamination was robustly excluded from analysis (<1% T-cells).
‡T-cell contamination unlikely due to single-cell HIV-detection by flow cytometry.
†T-cell contamination unlikely due to culture conditions (CFU assays).
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have been described (238–241) and should not be discounted for

infection of HSPCs. Most recently, Renelt and colleagues made a

strong argument for HIV infection of CD133+ and CD34+CD133-

HSPC subpopulations in some donors, and their contribution to

viremia using proviral sequence tracing (222).

A closer inspection of studies exploring the susceptibility of

HSPCs to HIV infection outlined in Table 1 reveals that different

experimental approaches may in part explain the lack of consensus

between studies to some degree. Variations in culturing, the use of

growth factors, HIV moieties, infection strategy, and HIV detection

method could contribute to variation between results. These factors

and how each could affect the outcome of the study are discussed in

more detail below.

HSPCs are rare cells that often require in vitro expansion so that

enough cells are obtained to optimally perform experiments.

Numerous studies have cultured or expanded HSPCs for several

days before in vitro infection with HIV. Expression of CXCR4 is

upregulated on murine HSPCs after overnight incubation (242),

which may artefactually increase susceptibility to CXCR4-tropic

HIV. Similarly, HIV integration and replication is dependent on the

activation state of target cells (243) with dividing cells being more

susceptible to productive HIV infection. The majority of HSPCs

(>90%) are in a quiescent state in vivo (244) in the bone marrow

niche; expansion prior to infection would therefore create an ex vivo

artefactual state. Expansion and culturing of HSPCs in vitro is often

performed in the presence of haematopoietic cytokines which

promote expansion and HSPC survival in culture. However,

there is not currently a standardised cytokine cocktail for HSPC

expansion and maintenance. Studies investigating the susceptibility

of HSPCs to HIV infection have been performed with (218, 226,

230, 235) and without (229, 231, 245) cytokines. The duration of

culture and the supplementation of medium with cytokines could

therefore result in increased susceptibility of HSPCs to HIV

infection that is not inherent but rather an artefact of culturing.

The use of HIV propagated in vitro in the form of laboratory-

generated HIV molecular clones, pseudo- or pseudo-typed virus, or

cultured primary virus has several aspects where outcome-critical

variation between studies could occur. The most glaring differences

between studies are (i) multiplicity of infection (MOI), (ii) infection

strategy, and (iii) nature of virus used. Unrealistic bombardment of

target cells with extremely high MOIs, referring to the number of

infectious units per target cell, could result in artefactual infection in

vitro, which is unlikely in vivo. The infection strategy is similarly

crucial to a translatable experimental outcome. Infection in small

volumes or using centrifugal force (termed “spinoculation”) to create

close contact between cells are two methods commonly used to

increase the potential for infection. Spinoculation is not a

physiological condition and could therefore also result in artefactual

infection. The nature of the virus used in experiments is constrained

by several factors including but not limited to biosafety, availability of

comparable research tools, and the effect of HIV proteins on target

cells which can affect results. As previously mentioned, HIV-1B (being

the most-studied subtype) epitomises what is known about HIV

infection. However, distinct characteristics including coreceptor

usage during early and late infection (246) and reduced cytopathic

effects (58) have been documented for HIV-1C, which could affect
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research outcomes in terms of latency and host cell susceptibility.

Variation from HIV-1B has been reported for non-B subtypes in

several aspects related to viral fitness and disease progression (45–48,

50, 51, 55, 58, 59, 61, 218, 247–250) which are outside the scope of this

review but are important when comparing research findings.

The method used to detect HIV is another critical factor to be

considered when comparing studies. In addition to the increased

sensitivity that comes with improvements in detection technologies

over time, studies have varied with the technology used to detect the

presence of HIV in target cells. Proviral DNA, viral transcripts, or

viral proteins can be targeted, and each detection method comes

with a limit of detection and considerations for use. This is

particularly important where, as with HSPCs, it is reasonable to

expect low to very low proportions of infected cells. This is

illustrated in a study by Izopet et al. (251) who were able to

detect four proviral genomes per million cells and found that the

frequency of infection of highly susceptible CD4+ T-cells in vivo

can be lower than 1%, as reported in other studies (252–254). The

sensitivity of the HIV detection method is often not reported, and

the improvements of technologies over time are difficult to

categorise, but these are equally important to consider when

comparing older and more recent studies.

Disruption of HSPC function can also be caused by the presence

of HIV proteins. The HIV receptor protein gp120 has been shown

to impair the clonogenic potential of HSPCs and induce apoptosis

through Fas-dependent endogenous TGF-b upregulation (255).

Suppression of HSPC colony formation is caused by HIV-1 p24

(256). Exposure to HIV Tat protein stimulates TGF-b production in

macrophages resulting in myelosuppression in vitro (255), and viral

protein R (Vpr) has been shown to induce phagocytosis of bone

marrow cells by mononuclear phagocytes (257). Blocking TGF-b in

purified CD34+ HSPCs exposed to HIV reportedly improved

growth and survival (255), and this is supported by the

simultaneous downregulation of a proliferation-inducing ligand

(APRIL) with TGF-b upregulation induced by exposure to gp120

(258). Furthermore, Nef has been shown to act as a PPARg agonist
with deleterious effects on early haematopoiesis in macaques (259).

Cumulatively, the effects of HIV proteins in the bone marrow are

deleterious to HSPC and niche cell function and survival, and

ultimately contribute to haematological abnormalities present in

HIV patients independently of direct HSPC infection.

The conditions under which HSPCs may become susceptible to

HIV infection in the bone marrow are not clear based on current

information from the literature; what is clear however is that HIV

proteins have a direct suppressive effect on HSPC function.
Concluding remarks

Haematopoietic dysfunction in HIV patients is well-

documented and results from the combined direct and indirect

effects of HIV on HSPCs. The bone marrow niche is a uniquely

complex environment which is yet to be fully understood. Healthy

human bone marrow is therefore not completely represented in

literature, which makes it difficult to fully model the marrow under

conditions of HIV infection. The limited understanding of in vivo
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1163012
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Herd et al. 10.3389/fimmu.2023.1163012
susceptibility of bone marrow cells to HIV and the fact that bone

marrow cell types have largely been studied in vitro or in animal

models contribute to the paucity of literature on the HIV-infected

marrow. Moreover, the evolution of HIV detection methods over

time, and the understanding that detection of HIV proteins or

partial DNA does not necessarily indicate productive infection,

compound this challenge. Although it is undeniable that HIV affects

haematopoiesis, the susceptibility of HSPCs to HIV has long been

debated. Studies investigating HIV infection in HSPCs differ

critically in methodology and HSPC subpopulations used. This

review has aimed to highlight what is currently known about the

consequences of HIV infection on the bone marrow niche, and to

summarise the studies to date which have attempted to determine

the susceptibility of HSPCs to HIV infection. This is particularly

relevant to the fields of stem cell transplantation and HIV

pathogenesis, and potentially to the treatment of HIV-associated

haematological malignancies.
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233. Araıńga M, Su H, Poluektova LY, Gorantla S, Gendelman HE. HIV-1 cellular
and tissue replication patterns in infected humanized mice. Sci Rep (2016) 6:23513. doi:
10.1038/srep23513

234. Zaikos TD, Terry VH, Sebastian Kettinger NT, Lubow J, Painter MM, Virgilio
MC, et al. Hematopoietic stem and progenitor cells are a distinct HIV reservoir that
contributes to persistent viremia in suppressed patients. Cell Rep (2018) 25(13):3759–
3773.e9. doi: 10.1016/j.celrep.2018.11.104

235. McNamara LA, Ganesh JA, Collins KL. Latent HIV-1 infection occurs in
multiple subsets of hematopoietic progenitor cells and is reversed by NF-kappaB
activation. J Virol (2012) 86(17):9337–50. doi: 10.1128/JVI.00895-12

236. McNamara LA, Onafuwa-Nuga A, Sebastian NT, Riddell J4, Bixby D, Collins
KL. CD133+ hematopoietic progenitor cells harbor HIV genomes in a subset of
Frontiers in Immunology 16
optimally treated people with long-term viral suppression. J Infect Dis (2013) 207
(12):1807–16. doi: 10.1093/infdis/jit118

237. Sebastian NT, Zaikos TD, Terry V, Taschuk F, McNamara LA, Onafuwa-Nuga
A, et al. CD4 is expressed on a heterogeneous subset of hematopoietic progenitors,
which persistently harbor CXCR4 and CCR5-tropic HIV proviral genomes in vivo. PloS
Pathog (2017) 13(7):e1006509. doi: 10.1371/journal.ppat.1006509

238. Liu Y, Liu H, Kim BO, Gattone VH, Li J, Nath A, et al. CD4-independent
infection of astrocytes by human immunodeficiency virus type 1: requirement for the
human mannose receptor. J Virol (2004) 78(8):4120–33. doi: 10.1128/JVI.78.8.4120-
4133.2004

239. Saha K, Zhang J, Gupta A, Dave R, Yimen M, Zerhouni B. Isolation of primary
HIV-1 that target CD8+ T lymphocytes using CD8 as a receptor. Nat Med (2001) 7
(1):65–72. doi: 10.1038/83365

240. Xiao P, Usami O, Suzuki Y, Ling H, Shimizu N, Hoshino H, et al.
Characterization of a CD4-independent clinical HIV-1 that can efficiently infect
human hepatocytes through chemokine (C-X-C motif) receptor 4. Aids. (2008) 22
(14):1749–57. doi: 10.1097/QAD.0b013e328308937c

241. Yoshii H, Kamiyama H, Goto K, Oishi K, Katunuma N, Tanaka Y, et al. CD4-
independent human immunodeficiency virus infection involves participation of
endocytosis and cathepsin b. PloS One (2011) 6(4):e19352. doi: 10.1371/journal.
pone.0019352

242. Skinner AM, O’Neill SL, Grompe M, Kurre P. CXCR4 induction in
hematopoietic progenitor cells from fanca–/–, -c–/–, and -d2–/– mice. Exp Hematol
(2008) 36(3):273–82. doi: 10.1016/j.exphem.2007.11.006

243. Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA. HIV-1 replication is
controlled at the level of T cell activation and proviral integration. EMBO J (1990) 9
(5):1551–60. doi: 10.1002/j.1460-2075.1990.tb08274.x

244. Sumide K, Matsuoka Y, Kawamura H, Nakatsuka R, Fujioka T, Asano H, et al.
A revised road map for the commitment of human cord blood CD34-negative
hematopoietic stem cells. Nat Commun (2018) 9(1):2202. doi: 10.1038/s41467-018-
04441-z

245. Griffin DO, Goff SP. Restriction of HIV-1-based lentiviral vectors in adult
primary marrow-derived and peripheral mobilized human CD34+ hematopoietic stem
and progenitor cells occurs prior to viral DNA integration. Retrovirology. (2016) 13
(1):14. doi: 10.1186/s12977-016-0246-0

246. Cilliers T, Nhlapo J, Coetzer M, Orlovic D, Ketas T, OlsonWC, et al. The CCR5
and CXCR4 coreceptors are both used by human immunodeficiency virus type 1
primary isolates from subtype c. J Virol (2003) 77(7):4449–56. doi: 10.1128/
JVI.77.7.4449-4456.2003

247. Baeten JM, Chohan B, Lavreys L, Chohan V, McClelland RS, Certain L, et al.
HIV-1 subtype d infection is associated with faster disease progression than subtype a
in spite of similar plasma HIV-1 loads. J Infect Dis (2007) 195(8):1177–80. doi: 10.1086/
512682

248. Desfosses Y, Solis M, Sun Q, Grandvaux N, Van Lint C, Burny A, et al.
Regulation of human immunodeficiency virus type 1 gene expression by clade-specific
tat proteins. J Virol (2005) 79(14):9180–91. doi: 10.1128/JVI.79.14.9180-9191.2005

249. Rogers L, Obasa AE, Jacobs GB, Sarafianos SG, Sönnerborg A, Neogi U, et al.
Structural implications of genotypic variations in HIV-1 integrase from diverse
subtypes. Front Microbiol (2018) 9:1754. doi: 10.3389/fmicb.2018.01754

250. Roof P, Ricci M, Genin P, Montano MA, Essex M, Wainberg MA, et al.
Differential regulation of HIV-1 clade-specific b, c, and e long terminal repeats by NF-
kappaB and the tat transactivator. Virology. (2002) 296(1):77–83. doi: 10.1006/
viro.2001.1397

251. Izopet J, Tamalet C, Pasquier C, Sandres K, Marchou B, Massip P, et al.
Quantification of HIV-1 proviral DNA by a standardized colorimetric PCR-based
assay. J Med Virol (1998) 54(1):54–9. doi: 10.1002/(SICI)1096-9071(199801)54:1<54::
AID-JMV8>3.0.CO;2-O

252. Brinchmann JE, Albert J, Vartdal F. Few infected CD4+ T cells but a high
proportion of replication-competent provirus copies in asymptomatic human
immunodeficiency virus type 1 infection. J Virol (1991) 65(4):2019–23. doi: 10.1128/
jvi.65.4.2019-2023.1991

253. Josefsson L, King MS, Makitalo B, Brännström J, Shao W, Maldarelli F, et al.
Majority of CD4 + T cells from peripheral blood of HIV-1-infected individuals contain
only one HIV DNAmolecule. Proc Natl Acad Sci U S A. (2011) 108(27):11199–204. doi:
10.1073/pnas.1107729108

254. Psallidopoulos MC, Schnittman SM, Thompson 3LM, Baseler M, Fauci AS, HC
L, et al. Integrated proviral human immunodeficiency virus type 1 is present in CD4+
peripheral blood lymphocytes in healthy seropositive individuals. J Virol (1989) 63
(11):4626–31. doi: 10.1128/jvi.63.11.4626-4631.1989

255. Zauli G, Vitale M, Gibellini D, Capitani S. Inhibition of purified CD34+
hematopoietic progenitor cells by human immunodeficiency virus 1 or gp120 mediated
by endogenous transforming growth factor beta 1. J Exp Med (1996) 183(1):99–108.
doi: 10.1084/jem.183.1.99

256. Rameshwar P, Denny TN, Gascón P. Enhanced HIV-1 activity in bone marrow
can lead to myelopoietic suppression partially contributed by gag p24. J Immunol
(1996) 157(9):4244–50. doi: 10.4049/jimmunol.157.9.4244

257. Kulkosky J, Laptev A, Shetty S, Srinivasan A, BouHamdanM, Prockop DJ, et al.
Human immunodeficiency virus type 1 vpr alters bone marrow cell function. Blood.
(1999) 93(6):1906–15. doi: 10.1182/blood.V93.6.1906.406k11_1906_1915
frontiersin.org

https://doi.org/10.1097/QAD.0000000000002837
https://doi.org/10.4049/jimmunol.149.2.689
https://doi.org/10.4049/jimmunol.149.2.689
https://doi.org/10.1182/blood.V86.5.1749.bloodjournal8651749
https://doi.org/10.1182/blood.V86.5.1749.bloodjournal8651749
https://doi.org/10.1182/blood-2007-04-086314
https://doi.org/10.1093/infdis/jir884
https://doi.org/10.1093/infdis/jis301
https://doi.org/10.1093/infdis/jis301
https://doi.org/10.1128/JVI.01044-15
https://doi.org/10.3390/cells11192968
https://doi.org/10.1182/blood.V76.12.2476.2476
https://doi.org/10.1128/jvi.65.4.1985-1990.1991
https://doi.org/10.1128/jvi.65.4.1985-1990.1991
https://doi.org/10.1182/blood.V80.12.2991.2991
https://doi.org/10.1182/blood.V80.12.2991.2991
https://doi.org/10.1182/blood.V85.5.1181.bloodjournal8551181
https://doi.org/10.1182/blood.V85.5.1181.bloodjournal8551181
https://doi.org/10.1182/blood.V88.12.4568.bloodjournal88124568
https://doi.org/10.1182/blood.V88.12.4568.bloodjournal88124568
https://doi.org/10.1182/blood.V91.3.907
https://doi.org/10.1128/JVI.73.1.728-737.1999
https://doi.org/10.1128/JVI.73.1.728-737.1999
https://doi.org/10.1016/j.chom.2011.02.005
https://doi.org/10.1172/JCI28971
https://doi.org/10.1016/j.cmi.2014.11.003
https://doi.org/10.1016/j.cmi.2014.11.003
https://doi.org/10.1038/srep23513
https://doi.org/10.1016/j.celrep.2018.11.104
https://doi.org/10.1128/JVI.00895-12
https://doi.org/10.1093/infdis/jit118
https://doi.org/10.1371/journal.ppat.1006509
https://doi.org/10.1128/JVI.78.8.4120-4133.2004
https://doi.org/10.1128/JVI.78.8.4120-4133.2004
https://doi.org/10.1038/83365
https://doi.org/10.1097/QAD.0b013e328308937c
https://doi.org/10.1371/journal.pone.0019352
https://doi.org/10.1371/journal.pone.0019352
https://doi.org/10.1016/j.exphem.2007.11.006
https://doi.org/10.1002/j.1460-2075.1990.tb08274.x
https://doi.org/10.1038/s41467-018-04441-z
https://doi.org/10.1038/s41467-018-04441-z
https://doi.org/10.1186/s12977-016-0246-0
https://doi.org/10.1128/JVI.77.7.4449-4456.2003
https://doi.org/10.1128/JVI.77.7.4449-4456.2003
https://doi.org/10.1086/512682
https://doi.org/10.1086/512682
https://doi.org/10.1128/JVI.79.14.9180-9191.2005
https://doi.org/10.3389/fmicb.2018.01754
https://doi.org/10.1006/viro.2001.1397
https://doi.org/10.1006/viro.2001.1397
https://doi.org/10.1002/(SICI)1096-9071(199801)54:1%3C54::AID-JMV8%3E3.0.CO;2-O
https://doi.org/10.1002/(SICI)1096-9071(199801)54:1%3C54::AID-JMV8%3E3.0.CO;2-O
https://doi.org/10.1128/jvi.65.4.2019-2023.1991
https://doi.org/10.1128/jvi.65.4.2019-2023.1991
https://doi.org/10.1073/pnas.1107729108
https://doi.org/10.1128/jvi.63.11.4626-4631.1989
https://doi.org/10.1084/jem.183.1.99
https://doi.org/10.4049/jimmunol.157.9.4244
https://doi.org/10.1182/blood.V93.6.1906.406k11_1906_1915
https://doi.org/10.3389/fimmu.2023.1163012
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Herd et al. 10.3389/fimmu.2023.1163012
258. Gibellini D, Vitone F, Buzzi M, Schiavone P, De Crignis E, Cicola R, et al. HIV-
1 negatively affects the survival/maturation of cord blood CD34+ hematopoietic
progenitor cells differentiated towards megakaryocytic lineage by HIV-1 gp120/CD4
membrane interaction. J Cell Physiol (2007) 210(2):315–24. doi: 10.1002/jcp.20815
Frontiers in Immunology 17
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