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Immune cells and other cells respond to nutrient deprivation by the classic

catabolic pathway of AMPK (Adenosine monophosphate kinase). This kinase is a

pivotal regulator of glucose and fatty acids metabolism, although current

evidence highlights its role in immune regulation. Indeed AMPK, through

activation of Foxo1 (Forkhead box O1) and Foxo3 (Forkhead box O3), can

regulate FOXP3, the key gene for differentiation and homeostasis of Tregs (T

regulators lymphocytes). The relevance of Tregs in the onset of T1D (Type 1

diabetes) is well-known, while their role in the pathogenesis of T2D (Type 2

diabetes) is not fully understood yet. However, several studies seem to indicate

that Tregs may oppose the progression of diabetic complications by mitigating

insulin resistance, atherosclerosis, and damage to target organs (as in kidney

disease). Hence, AMPK and AMPK-activating agents may play a role in the

regulation of the immune system. The connection between metformin and

AMPK is historically known; however, this link and the possible related immune

effects are less studied about SGLT2i (Sodium-glucose co-transport 2 inhibitors)

and GLP1-RAs (Glucagon-like peptide-1 receptor agonists). Actual evidence

shows that the negative caloric balance, induced by SGLT2i, can activate

AMPK. Conversely and surprisingly, an anabolizing agent like GLP-1RAs can

also upregulate this kinase through cAMP (Cyclic adenosine monophosphate)

accumulation. Therefore, both these drugs can likely lead to the activation of the

AMPK pathway and consequential proliferation of Tregs. These observations

seem to confirm not only themetabolic but also the immunoregulatory effects of

these new antidiabetic agents.
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1 Introduction

In the context of T regulatory lymphocytes, innate Treg (nTreg,

or natural Treg, which leaves the thymus in the form of mature

cells) and acquired Treg (iTreg, induced Treg, generated by naive

CD4+ T response to antigenic stimulation) have been characterized

(1). These cell types may exert their immunoregulatory activity

directly by cell-to-cell contact, releasing immunosuppressive

cytokines, or induction of apoptosis (1). Specifically, the

suppression mechanisms of Tregs consist of:
Fron
1) Modulation of APC (Antigen-presenting cell). The

interaction between CTLA-4 (Cytotoxic T-Lymphocyte

Antigen 4) on Tregs and its ligand CD80/86 on APCs

provides a negative signal for T cell activation (2).

2) Production of immunoregulatory molecules. The ecto-

enzymes CD39 and CD73, expressed on Tregs, catalyze

the metabolism of ATP (Adenosine triphosphate) into

AMP (Adenosine monophosphate) and in turn, produce

the immunoregulatory purine, adenosine (3). Furthermore,

the anti-inflammatory cytokines produced by Tregs, such

as IL-10 (Interleukin-10), IL-35 (Interluekin-35), and TGF-

b (Transforming growth factor-beta), have been linked to

the inhibition of T cell activation in vivo (1).

3) Induction of apoptosis. Tregs transfer cAMP to effector T

cells with subsequent inhibition of NFAT (Nuclear factor of

activated T-cells) and IL-2 (Interleukin-2) transcription

and with subsequent cellular apoptosis (3). Moreover,

Tregs may directly induce apoptosis via perforin,

granzyme A/B, and the FasL/Fas pathway (4).
The pivotal action of Tregs in autoimmune diseases, such as

T1D (Type 1 diabetes), is well established; whereas, their role in

T2D (Type 2 diabetes), historically considered to not be an

immune-mediated condition, has not been clarified yet (5).

However, a persistent and dysregulated inflammatory state

contributes to the development of systemic complications in T2D

patients, such as atherosclerosis (6) and recent studies suggest that

Tregs activity can control the progression of this vascular disorder

(5). Moreover, Tregs have been found in both VAT (Visceral

adipose tissue) and SAT (Subcutaneous adipose tissue). Their

presence could be necessary for both suppression of adipose

tissue-related inflammation, and helping maintenance of its

homeostasis with clear benefits in terms of contrast to insulin

resistance (5). Further evidence seems to suggest a role for Tregs

in improving immunopathologic damage of target organs in

diabetic complications: for example, a study of diabetic

nephropathy in db/db mice (Leptin-Receptor deficient mice)

showed that Tregs could attenuate T2D-related kidney

morphologic and functional lesions (5). Possibly, Tregs may help

suppress inflammation at multiple levels, with regard to T2D

pathogenic pathways (5, 7).

FOXP3 (Forkhead box P3) is implicated in the role and the

function of Tregs. This gene has provided relevant information with

respect to the generation and maintenance of Tregs. Upon its
tiers in Immunology 02
expression, a self-regulating transcriptional loop stabilizes the

expression of FOXP3 to strengthen Tregs differentiation and

activate their suppressive function. However, these molecular

mechanisms need to be further elucidated (8). Treg cell fate may

be influenced by FOXP3 interaction with intermediates for

activation of TCR (T cell receptor), such as IL-2 and TGF-b
signaling pathways (9). Among the various regulatory forms of

FOXP3, the Foxo (Forkhead box O) transcription factors (Foxo1

and Foxo3) play a key role (10). Ouyang et al. also reported that

mice with T cell-specific deletion of both Foxo1 and Foxo3

developed fatal systemic inflammatory disease, due in part to

functional defects in Foxp3+ Treg cells. They showed that Foxo1

and Foxo3 directly bind to the FOXP3 promoter region and

transactivate its promoter activity, in a Foxo1-binding sequence-

specific manner. All these reports indicate that Foxo family

transcription factors are required for appropriate control of the

expression of FOXP3. Indeed, the impairment in this Foxo-

dependent gene expression in Tregs hampers their function,

which may result in autoimmunity and systemic inflammation

(11). Foxo transcriptional factors can act as either transcriptional

activators or repressors by forming different molecular complexes

with various transcriptional modulators including b-catenin,

STAT3 (Signal transducer and activator of transcription 3),

Runx3 (Runt-related transcription factor 3), and Smad3 (Mothers

against decapentaplegic homolog 3). Additionally, their function is

tightly regulated by the upstream PI3K-Akt (Phosphoinositide 3-

kinase-Protein kinase B) pathway, which phosphorylates Foxo

molecules and facilitates their nuclear export into the cytoplasm.

In immune cells, the PI3K/Akt pathway is activated by several

stimuli via specific receptors, including the BCR (B cell receptor),

TCR, and cytokine and chemokine receptors. Upon antigen or

cytokine stimulation, Foxo transcriptional factors are rapidly

phosphorylated and deactivated in a PI3K-dependent manner,

whereas cytokine withdrawal elicits their de-phosphorylation,

activation, and consequential expression of FOXP3 (10).

Moreover, the presence of AMPK (Adenosine monophosphate

kinase) also seems to activate the Foxo transcriptional factors by

direct phosphorylation. Indeed, this kinase, well-known for its

metabolic pathways, could play a role in the control of

inflammation; consequently, the AMPK-activating antidiabetic

agents may likely affect the regulation of the immune system (12).
2 The AMPK pathway

AMPK is a serine/threonine kinase comprised of a catalytic

alpha subunit and two subunits of beta and gamma regulators (13).

This enzyme regulates the intracellular AMP/ATP ratio. If this ratio

is too high, the amino acid threonine 172 available in its alpha chain

is functionalized by the phosphorylated liver kinase B1 (LKB1),

leading to AMPK activation (14, 15). At the cellular level as well as

whole-body energy homeostasis, AMPK acts as an intracellular

energy sensor and influences the regulation of glucose and fatty acid

metabolism (13, 16, 17). Concentrations of AMPK usually rise

when the consumption of energy exceeds its production. When
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glucose or ATP levels decline, AMPK is activated to phosphorylate

various molecules. Particularly, this kinase can activate the Foxo

transcription factors by phosphorylation (10). In mammals, the

Foxo subfamily is comprised of four members: Foxo1, Foxo3,

Foxo4, and Foxo6. They are important regulators of cell cycle

progression, apoptosis, glucose metabolism, and stress resistance

via integrating information associated with the presence of

nutrients, growth factors, and other signals. Foxo1 and Foxo3,

mainly expressed in immune cells, are essential for the

transcription of FOXP3, and hence the homeostasis of Tregs

(10). Under this perspective, AMPK plays a role in the immune

system, although the link between AMPK and Tregs needs

more clarification.
3 The relationship between AMPK and
antidiabetic drugs

Metformin, the most widely used oral agent for the treatment of

T2D, is historically known as an AMPK activator (18). Through this

pathway, metformin can suppress gluconeogenesis and reduce
Frontiers in Immunology 03
blood sugar levels (19). Moreover, the AMPK pathway might be

one of the related mechanisms to the known Tregs proliferation

(20) induced by metformin. This immunoregulatory effect could be

found also in the new antidiabetic agents but presently, their

connection with AMPK is less known as compared to metformin.
3.1 SGLT2i and AMPK

The SGLT2i (Sodium-glucose co-transport 2 inhibitors) are a

class of antidiabetic agents, targeting the major glucose transporter

SGLT2 in the kidney. SGLT2 inhibition reduces glucose

reabsorption at the level of the proximal renal tubule, promotes

urinary glucose excretion independent of insulin action, and causes

a negative caloric balance (21, 22). Due to the induction of a

nutrient deprivation state, SGLT2 inhibitors upregulate the energy

deprivation sensor AMPK (23) and its immunoregulatory effects

(Figure 1). A 6-month Empagliflozin treatment increased FOXP3

expression (compared to baseline) and then improved the

protective function of Tregs; this effect may counteract the

cardiovascular complications by the reduction of the systemic
FIGURE 1

Signaling of AMPK/FOXO/FOXP3 Both anabolic (blue zone) and catabolic (red zone) signals converge on AMPK. This kinase activates the Foxo
transcriptional factors by direct phosphorylation. Specifically, Foxo1 and Foxo3 are essential for the transcription of FOXP3 and the consequential
proliferation of Tregs, which are necessary to suppress the damage of chronic inflammation in T2D. BioRender.com.
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inflammation (24). In this regard, empagliflozin treatment has also

been capable of reducing IL-1b (Interleukin-1 beta) secretion (25).

Another study with canagliflozin showed the reduction of IL-1b, IL-
6 (Interleukin-6), and MCP-1 (Monocyte chemoattractant protein-

1); also in this case, these AMPK-mediated effects led to

cardiovascular benefits through a reduction of chronic

inflammation (26, 27). Moreover, dapagliflozin attenuated

myocardial inflammation, fibrosis, apoptosis, and diabetic

remodeling, likely by virtue of AMPK activation and its immune

regulation effects (28, 29). However, current knowledge on immune

modulation and proliferation of Tregs through AMPK by SGLT2i

requires further study.
3.2 GLP1-RAs and AMPK

GLP-1 (Glucagon-like peptide 1) is an incretin hormone,

secreted from L-cells of the small intestine in a glucose-dependent

manner, that enables stimulation of insulin secretion, increases

pancreatic b-cell mass, and inhibits glucagon secretion and gastric

emptying, thereby reducing postprandial glycemia. Due to rapid

degradation by DPP-4 (Dipeptidyl peptidase 4), the half-life of

endogenous GLP-1 is very short; therefore, longer half-life synthetic

analogs have been developed for clinical use, as a new class of

antidiabetic agents (30).

The anti-inflammatory potential of GLP1-RAs (Glucagon-like

peptide-1 receptor agonists) could depend on their direct effect on

immune cells, an indirect effect caused by weight loss, or a

combination of the two. A direct effect of GLP1-RA on immune

cells would obviously require that they express the GLP1-R

(Glucagon-like peptide-1 receptor) (31).

Several reports have suggested that GLP1-R signaling may

regulate T cell subsets. Hadjyanni et al. demonstrated that GLP1-

R activation leads to a modest but statistically significant increase in

cAMP concentration in mixed leucocyte populations, including

Tregs (32). Because increasing evidence suggests a link between

cAMP and AMPK pathways (33), it is possible to speculate,

following the activation of GLP1-R, on the onset of a cAMP/

AMPK-dependent signaling (Figure 1). The relationship between

AMPK and GLP1-RA is well-known with special regard to

cardiovascular benefits (34). For instance, liraglutide increased

AMPK phosphorylation in the heart of diabetic mice (35),

inducing effects similar to those of metformin (36, 37). In another

study, a short-term treatment with a weight-neutral dose of

liraglutide could reverse the molecular pathophysiology of

obesity-induced heart disease in mice through various

mechanisms, among which a pivotal role is played by AMPK

(38). Within the same context of cardiovascular complications,

Guo’s study also showed that exenatide treatment increased the

cAMP accumulation and the level of phosphorylation of AMPK in

the hearts of diabetic rats (39). All GLP-1RAs significantly reduce

myocardial tissue T cell accumulation, an effect that resembles one

observed in the kidney; indeed, GLP-1 and its cleavage products

have been shown to be renoprotective in murine diabetic

nephropathy through the reduction of renal infiltration of

inflammatory cells (40).
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Moreover, the link between GLP1-R and cAMP generation has

also been investigated with regard to the preservation of function in

diabetic kidney disease. In the proximal tubule, the activation of

GLP1-R leads to the onset of the cAMP signaling cascade with

phosphorylation of NHE3 (Na+/H+ exchanger isotope 3) and

reduction of its function; hence GLP1-R signaling can contribute

to the regulation of sodium balance and maintain blood pressure in

the normal range (41).

Further experiments are still required to elucidate the potential

mechanisms by which GLP1-R activation increases Treg functions

(31). Certainly, GLP1-R activation leads to cAMP accumulation,

and GLP1-R signaling contributes to the proliferation of both

thymocytes and peripheral Tregs (32).

However, the effects of GLP1-RAs on immune regulation still

remain uncertain. Indeed, these drugs, as other anabolic factors, can

activate PI3/Akt, which leads Tregs into Foxo and FOXP3

suppression (10). This evidence may appear unexpected;

nonetheless, due to the proliferation of Tregs during treatment

with GLP1-RAs, the activation of AMPK seems to be the prevailing

pathway. With regard to pending doubts, some authors are in

support of a possible downstream regulation of AMPK on PI3K/Akt

(42) or alternatively believe that GLP1-RAs may exert negative

effects on PI3K/Akt (43). Certainly, to investigate these open issues,

further studies are warranted.
4 Discussion and conclusions

Cells respond to nutrient fluctuations by adjusting anabolic

versus catabolic processes. When glucose or ATP levels decline, the

AMPK becomes activated and promotes catabolic processes to

restore energy homeostasis and attenuate cellular senescence (44,

45). Moreover, AMPK can activate the Foxo transcription factors,

important regulators of cell cycle progression and resistance to

stress by phosphorylation (12). In particular, the regulation of

Foxo1 and Foxo3, expressed in immune cells, is essential for

transcription of FOXP3, thereby for Treg homeostasis (10). Tregs

are necessary to suppress the chronic inflammation in T2D and to

fight insulin resistance, atherosclerosis, and damage to target

organs, as in kidney disease (5, 7) (Figure 1). For this purpose,

Tregs expansion could change the fate of diabetic patients.

Consequently, the immunological impact of the new antidiabetic

drugs (SGLT2i and GLP1-RAs) looks very relevant. Nevertheless,

the link between their immunoregulatory effects and AMPK still

remains obscure. The aforementioned evidence shows that a

negative caloric balance, as induced by SGLT2i, activates AMPK

(23). Modulation of these pathways by the SGLT2 inhibitors has

been shown to alleviate metabolic diseases, attenuate vascular

inflammation and arterial stiffness, improve mitochondrial

function, and reduce oxidative stress-induced tissue damage (23)

(Figure 1). However, an anabolizing agent such as GLP1-RAs can

also upregulate the AMPK-pathway, due to cAMP accumulation

(33) by GLP-1R stimulation. These findings help our understanding

of the role of the GLP-1R in the Treg pool development/expansion,

maintenance, and function (32) (Figure 1). Finally, both anabolic

and catabolic signals seem to converge on AMPK and its
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immunoregulatory effects on Tregs. These cells are made to protect,

and they are capable of carrying out their work under both anabolic

and catabolic signaling. This may appear to be paradoxical;

however, catabolic processes, after all, result in starving cells to

spare nutrients, hence sustaining cellular processes, and

maintaining survival. Probably, in light of the postulated role of

AMPK in promoting cell survival, and its emerging role in re-

establishing metabolic homeostasis of Tregs, it is conceivable that

AMPK may be directly modulated by apparently contrasting

signals. Due to the fact that AMPK promotes glucose and lipid

homeostasis, the current findings suggest that AMPK-activating

agents (metformin, SGLT2i, GLP1-RAs) may certainly help patients

with type 2 diabetes. However, these benefits must be extended to

the AMPK-related immunological effects. In this sense, the chance

to employ a combination therapy could envision a new avenue with

respect to the immunoregulatory effects of these agents. A major

study of the precise mechanisms of action of these drugs could

better explain their regulatory effect on chronic inflammation in

type 2 diabetes.
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