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Background: Myocardial infarction (MI) is a common cardiac condition with a

high incidence of morbidity and mortality. Despite extensive medical treatment

for MI, the development and outcomes of post-MI heart failure (HF) continue to

bemajor factors contributing to poor post-MI prognosis. Currently, there are few

predictors of post-MI heart failure.

Methods: In this study, we re-examined single-cell RNA sequencing and bulk

RNA sequencing datasets derived from the peripheral blood samples of patients

with myocardial infarction, including patients who developed heart failure and

those who did not develop heart failure after myocardial infarction. Using marker

genes of the relevant cell subtypes, a signature was generated and validated

using relevant bulk datasets and human blood samples.

Results: We identified a subtype of immune-activated B cells that distinguished

post-MI HF patients from non-HF patients. Polymerase chain reaction was used

to confirm these findings in independent cohorts. By combining the specific

marker genes of B cell subtypes, we developed a prediction model of 13 markers

that can predict the risk of HF in patients after myocardial infarction, providing

new ideas and tools for clinical diagnosis and treatment.

Conclusion: Sub-cluster B cells may play a significant role in post-MI HF. We

found that the STING1, HSPB1, CCL5, ACTN1, and ITGB2 genes in patients with

post-MI HF showed the same trend of increase as those without post-MI HF.
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1 Introduction

Myocardial infarction (MI), the result of the rupture or erosion

of a vulnerable, lipid-filled, chronic atherosclerotic coronary plaque

leading to the acute disruption of myocardial blood flow and

ischemic myocardial necrosis, remains a common cardiac

emergency with high morbidity and mortality worldwide (1, 2).

Despite significant advances in the treatment of coronary artery

disease and acute MI over the past two decades, heart failure (HF)

due to MI and the development of post-MI HF remain among the

most common causes of cardiovascular death (3, 4). Acute

inflammation caused by plaque rupture in acute coronary

syndrome and MI triggers a subsequent response that may lead to

long-term cardiac injury. There are differences in the degree of

inflammatory recovery after coronary interventions for stenting or

thrombolytic reperfusion, which have prognostic value in the

development of ischemic HF (5).

Numerous studies have analyzed circulating biomarkers in the

blood of post-MI patients, which reflect different inflammatory

traits, coagulation activity, endothelial dysfunction, atherogenesis,

myocardial dysfunction and injury, apoptosis, renal function,

glucose, and lipid metabolism, to explore factors that can predict

poor outcomes after MI (6–8). Although several genes, such as

natriuretic peptides, galactose lectin-3, and soluble tumorigenic

suppressor-2 have been reported as biomarkers for HF, their

reliability remains controversial (9, 10). These studies indicate

that elevated levels of circulating pro-inflammatory biomarkers in

patients with HF correlate with disease severity and prognosis.

Experimental studies have shown that the activation of cardiac

immune response mechanisms triggers adverse cardiac remodeling

and leads to left ventricular dysfunction (11). Therefore, the

development of novel powerful immune-related biomarkers with

predictive potential to screen for the incidence of ischemic

pretreatment and MI and the development of HF after MI

remains a key goal for scientific advances in cardiovascular disease.

Inflammatory cells in the peripheral blood of MI patients may

play a significant role (12). After MI, myeloid cells and T

lymphocytes in the blood display distinct disparities in abundance

(13, 14). Following MI, classical and non-classical blood monocytes

comprise the majority of inflammatory cell types, with NK and B

cells being crucial in the activation of inflammatory cells and the

promotion of chemokine synthesis in plaque rupture (15). Notably,

this distinction between the immune cells of patients who

experienced HF after MI and those who did not was significant

(16). Currently, there are no immune-inflammatory biomarkers

that can be used to clinically predict the risk of post-MI HF.

In recent years, researchers have advanced our understanding of

microenvironmental alterations in tissues with different HF

etiologies through single cell RNA sequencing (scRNA-seq)

analysis and other experimental approaches (17–19). However,

most studies have focused on the analysis of altered cell types and

pathological pathways within cardiac tissues, and few have explored

the prognosis of cardiac disease through alterations in immune cells

in the blood. In this study, we reanalyzed published single-cell and

bulk RNA-seq data from HF patients with post-MI HF to construct

a prediction model. We found that a group of immune-activated B
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cells in blood may play an important role in disease progression.

Based on these findings, we developed an effective post-MI HF risk-

prediction signature using 13 genes. Through further analysis, the

five genes with the highest diagnostic value: STING1, HSPB1, CCL5,

ACTN1, and ITGB2 were identified and further validated

by polymerase chain reaction. These findings extend our

understanding of the factors associated with the development of

HF after MI and provide a potentially reliable predictive model for

the development of HF after MI.
2 Materials and methods

2.1 Collection of bulk RNA-seq and
scRNA-seq datasets

To investigate immunocyte subtypes and characteristics that are

highly predictive of HF after MI, we obtained and re-examined a

previously published heart failure after MI scRNA-seq dataset (17),

and validated the results in multiple MI bulk RNA-seq datasets, and

an HF after MI bulk RNA-seq (12, 16). The single-cell dataset (17)

consisted of blood samples from patients with HF after MI and

healthy subjects for single-cell sequencing analysis. The processing,

clustering, and cell-type determination procedures of the scRNA-

seq datasets, as well as the extensive clinicopathological data for

every patient in the dataset, were thoroughly discussed in their

original studies.

We used two bulk MI datasets, one comprising blood from 14

MI patients and 10 normal subjects, and another dataset containing

blood from 17 MI patients and seven normal subjects. Samples

containing post-MI HF and post-MI non-HF in GSE59867 (16)

were then used for further screening, which included eight patients

with post-MI HF and nine post-MI non-HF patients. Blood samples

from each patient in this dataset were selected for analysis at four

time points: admission, discharge, 1 month post-MI and 6 months

post-MI. The Hallmark, Kyoto Encyclopedia of Genes and

Genomes (KEGG), Gene Ontology Biological Process (GOBP),

and Reactome gene sets were retrieved for Gene Set Enrichment

Analysis from the Molecular Signatures Database (MSigDB) (http://

www.gsea-msigdb.org/gsea/index.jsp), which was the database used

in our investigation.
2.2 Study design

We extracted 6 cell types from the GSE145154 (17) scRNA-seq

dataset. Due to the small number of hematopoietic stem cells, we

targeted only the remaining five immune cells in subsequent analyses.

We used the scCODE (20) v1.0.0.0 R package provided by Zou et al. to

determine the differentially expressed (DE) genes between normal and

post-MI HF patients for each of the aforementioned five cell types.

The reliability of the single-cell DE analysis was improved by

scCODE’s ability to examine the chosen DE genes using a range of

testing methods. Therefore, we obtained a list of five DE genes. We

used the Investigate Gene Sets tool (http://www.gsea-msigdb.org/gsea/

msigdb/annotate.jsp) to compute the enriched gene sets between our
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gene lists and the gene sets in MSigDB. For each of the five DE gene

lists identified by scCODE (20), we sorted them according to the

absolute value of the logFC of each DE gene from largest to smallest

and submitted the top 500 genes of each DE gene list to Investigate

Gene Sets tool (all genes were submitted if less than 500). Each DE

gene list can obtain several gene sets enriched in GOBP, Hallmark,

KEGG, and Reactome using the default parameters of the tool (display

the top 10 genes and false discovery rate (FDR) q-value less than 0.05).

Using the Cancerclass (21) v1.34.0 R program, the prediction power of

these enriched gene sets was evaluated. Using the same program, we

evaluated the capacity of the following gene sets to predict post-MI

outcomes of GSE59867 (16) (n.patients: HF = 8, non-HF = 9, total of

32 HF samples and 36 non-HF samples). The prediction sensitivity

and specificity were evaluated in terms of the receiver operating

characteristic (ROC) curve and matching area under the curve

(AUC). The Cancerclass R package was used to create and validate

the high-dimensional molecular data categorization tests. Feature

selection and nearest centroid classification were performed

sequentially. To obtain continuous prediction scores, multiple

random validation methodology was used to verify the

categorization results. The success of the classifier’s classification

results was indicated by the p-value of the ROC curve, which was

obtained using Welch’s t-test included in the Cancerclass R package.

Each gene set was evaluated independently using a classifier.
2.3 Single-cell RNA sequencing
data processing

We extracted and defined cell types from the post-MI HF

single-cell dataset GSE145154 (17). We used the Seurat v4.0.4 R

package (22) to identify cell types and subtypes. The extracted dataset

was first combined across the samples. Prior to this, the expression of

each gene was scaled to a scale factor of 10,000, converted

logarithmically (Seurat’s default method), and normalized to the

total expression in the associated cell. FindVariableFeatures was

used to identify the top 2000 variable features, which were then

used in further studies. The mutual nearest-neighbor approach was

then used to correct for batch effects (23), and the percentage of

mitochondrial transcripts was regressed using ScaleData. The

integrated assay was only used for dimension reduction and

clustering, and raw log-normalized expression data were used for

all DE and gene-level analyses. Principal component analysis was

performed on the integrated assay using RunPCA. Cell clustering was

performed using the first 20 main components, with a resolution

parameter of 0.5. Finally, visualization was performed in two-

dimensional space through unified manifold approximation and

projection (Dims = 1:20).
2.4 Marker gene analysis

Marker gene analysis was performed for all clusters using

FindAllMarkers included in the Seurat package (22), with the

parameters min.pct = 0.1 and logfc.threshold = 0.25. Genes with

p.adjust < 0.05 were selected as cluster-specific marker genes.
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2.5 Gene enrichment and gene set
variation analysis

We used the GSVA method with default settings to assign specific

gene signature activity scores to individual cells or samples using the

GSVA (v1.38.2) R package (24). Using FindMarkers built into the

Seurat package (22), we compared all gene expression fold changes in

disease and normal C4 subclusters of B cells to obtain a list of DE genes

for gene enrichment analysis by setting the parameter logfc.threshold =

-Inf, min.pct = -Inf, min.diff.pct = -Inf. Gene enrichment was

performed on DE gene lists based on pre-downloaded Hallmark,

KEGG, GOBP, and Reactome gene sets using the default parameters

of the clusterProfiler v3.18.1 R package. This R package can also be

used to examine whether a particular gene set is enriched at the top or

bottom of a preordered gene list. The Benjamini-Hochberg method

was used to compare two sets, and gene sets with FDR-adjusted p-

values < 0.05 were deemed significantly enriched in one set.
2.6 Development of a gene signature
associated with HF after MI

Using the Cancerclass v1.34.0 R package, we created gene

signatures based on the cluster-specific genes of the C4 of B cell

subtype. Specifically, using Cancerclass, the p-values of the ROC

curves for the enriched GOBP gene sets in B cells were generated.

They were adjusted for FDR using the Benjamini-Hochberg method.

We combined all gene sets with p.adjust < 0.05, to create a total of 115

genes (the selected gene signature is referred to as HF.Sig in this

study). The cyclic algorithm is shown in Supplementary Figure 2. In

each cycle, 114 gene combinations were selected randomly from the

signature. Cancerclass was then used to estimate the AUC in the

GSE59867 (16) cohort and examine the prediction accuracy of each

of these combinations. Of these 115 combinations, gene

combinations with the highest AUC (genelistmaxAUC) were retained

and applied to the following cycle. This cycle was repeated until no

more than three distinct gene combinations remained. Finally, the

highest AUC values for gene panels in all loops were selected. A

combination of appropriate gene numbers was selected as the new

HF.Sig for subsequent analyses.
2.7 Heatmap of DE genes and protein-
protein interactions

Generalized linear model approach of Limma v3.46.0 (25).

package was used to calculate the fold-changes in gene expression

between post-MI HF and non-HF patients. To plot the protein

interaction nodes in accordance with the protein-protein

interaction network map, we first took the overlapping genes

from MI-related cell cluster markers from a single-cell dataset

and differential genes from the GSE59867 (16) bulk dataset,

uploaded them to the STRING database website (https://

cn.string-db.org), set a medium confidence interval (CI) (medium

confidence = 0.4), exported the tab-separated values files, and then

used the circlize package for drawing.
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2.8 Real-time polymerase chain
reaction analysis

Quantitative real-time polymerase chain reaction was used to

analyze the relative expression of target genes. Following the

manufacturer’s instructions, RNA was isolated from human blood

mononuclear cells using the RNeasy Fibrous Tissue Mini Kit

(QIAGEN, Hilden, Germany), and complementary DNA was

synthesized using the High-Capacity complementary DNA

Reverse Transcription Kit (Thermo Fisher Scientific, Waltham,

MA). One microliter of complementary DNA, two microliters of

forward and reverse primers, ten microliters of Fast SYBR Green

Master Mix (Thermo Fisher Scientific), and eight microliters of

nuclease-free water were added to a 20-microliter reaction mixture,

which was then run through a real-time polymerase chain reaction

system (Applied Biosystems, Foster City, CA) to quantify target

genes by fluorescence. The primers used in quantitative real-time

polymerase chain reaction were as follows: ITGB2, F 5’-

ATGCTGGGCCTGCGCCC-3’, R 5’-GATGGTGTCACACTC

GCAGTA-3’. STING1, F:5’- ATGCCCCACTCCAGCCTG -3’,

R:5’- TCAAGCTGCCCACAGTAACCT -3’. ACTN1, F:5’-

ATGGACCATTATGATTCTCAGCAAA-3’, R:5’-TTAGAGGTC

ACTCTCGCCGTA -3’. CCL5, F:5’-ATGAAGGTCTCCGCGGCA

G-3’, R:5’-TCAAGGAGCGGGTGGGGTA-3’. HSPB1, F:5’-

AGGAGTGGTCGCAGTGGTTAGG-3’, R:5’- CAGGGGACAGG

GAGGAGGAAAC-3 ’ . GAPDH, F:5 ’-ATCCCATCACCAT

CTTCC-3’ and R:5’-GAGTCCTTCCACGATACCA-3’.
2.9 Statistical analysis

We assessed the performance of each classifier in predicting

post-MI HF outcomes by plotting their ROC curves, calculating

their AUCs, and estimating their sensitivity and specificity using the

Cancerclass framework. The p-value from the ROC curve was used

to rank the classifiers in terms of reliability. We calculated 95% CIs

for sensitivity and specificity using Wilson’s method implemented

in Cancerclass and used Welch’s t-test to determine significance.

Except where otherwise stated, all p-values were adjusted using the

Benjamini-Hochberg procedure, and a corrected p-value of less

than 0.05 was considered statistically significant. Wilcoxon’s test

was used to determine how the variables were grouped. Binomial

95% CIs were used for all reported CIs. R v3.5.3 was used for all

statistical analyses that were performed using this study.
3 Results

3.1 B cells, NK cells and monocytes are
associated with the myocardial infarction

We re-analyzed publicly available heart failure scRNA-seq

datasets from the blood of post-MI HF patients and healthy

human controls. Multiple sets of MI bulk RNA-seq datasets and

one set of post-MI HF bulk RNA-seq datasets were used for the
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validation. The workflow of this study is summarized in Figure 1.

We carefully reprocessed the single-cell data based on the grouping

of different individuals and whether it was a disease group and

divided the cells into 27 sub-clusters (Supplementary Figure 1).

There were 6 cell types in the scRNA-seq dataset: CD4+ T cells,

CD8+ T cells, NK cells, B cells, hematopoietic stem cells, and

monocytes. Supplementary Figure 2 shows the results of the

visualization of the 6 immune cell types in two dimensions using

uniform flow form approximation and projection. The locations of

the characteristic genes for each cell type are shown in

Supplementary Figure 3.

According to the workflow in Figure 1, we used scCODE on

each individual cell type to identify the DE genes by comparing the

post-MI HF and normal groups and obtained a total of 5 DE gene

lists (due to the low number of hematopoietic stem cells, this group

of cells was excluded from subsequent analyses). Only the DE genes

that were upregulated in the disease group were used. From

MSigDB, 5 DE genes from the disease group were found to be

enriched in 200 gene sets. The calculation of these 200 gene sets is

described in detail in the study design section.

In comparison to Hallmark, KEGG, and Reactome, we

discovered that the GOBP gene collection had a greater overall

predict ion capabi l i ty (Supplementary Figures 4A–D,

Supplementary Figures 5A–D). We explored the enriched GOBP

gene sets (gene enrichment) with ROC p-values < 0.05 in each DE

gene list to identify cell types with strong prediction potential. A DE

gene list was considered significant if not less than half of the

enriched gene sets had a ROC FDR < 0.05. We screened four

relevant cells in the GSE60993 (12) bulk dataset: NK cells, CD8T

cells, monocytes, and B cells. We screened three relevant cell types

in the GSE61144 (12) bulk dataset: NK cells, monocytes, and B cells.

By combining the results of the analysis of the two aforementioned

datasets, we screened three cell types that may be associated with

MI. These were NK cells, monocytes, and B cells (Figure 2).
3.2 B cells are associated with post-MI HF

We performed a subcluster analysis of the three cells mentioned

above. First, B cells were divided into 5 subclusters using Seurat (22)

(Figure 3A), and Figure 3B showed a scatter plot of the distribution

of cells between the HF and normal groups. Following the discovery

of cluster-specific marker genes using FindAllMarkers (Seurat) (22),

Figure 3C presents an expression heatmap of the top 10 marker

genes. Classical marker genes of B cells were highly expressed in all

subclusters (Supplementary Figure 6A).

Seven gene sets of the DE genes of B cells with ROC p.adjust <

0.05. We used GSVA (24) to evaluate the expression of these gene

sets in different B cell subclusters and discovered that they were

substantially expressed in subcluster 4 (Figure 3D, Supplementary

Figure 6B). Gene enrichment analysis of marker genes suggested

that B cell-associated markers were enriched in graft rejection,

immune interactions between lymphocytes and non-lymphoid cells,

and NK cell cycle (Figure 3E). The violin plot lists the genes

specifically expressed in the C4 cluster for further investigation of

the B cell sub-cluster (Figure 3F, Supplementary Figure 6C). These
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genes, which are specifically expressed in the C4 sub-cluster of B

cells, are associated with immune cell activation and development.

First, we performed gene enrichment analysis of marker genes

in the C4 cluster of B cells and found that these marker genes in the

C4 cluster were significantly predictive of the development of HF

after MI (p < 0.05) (Supplementary Figure 6D). We also

demonstrated that this gene signature (HF.Sig) is a good

predictor of MI (Supplementary Figure 6E, Supplementary

Figure 6F). The GSVA scores of HF.Sig were significantly higher

than those of other subclusters of B cells (Figure 4A). Figure 4B

shows the GSVA scores of HF.Sig in different B cell C4 subclusters

in the disease and normal groups in different cells. These genes were

enriched in patients (Figure 4C) and had significantly higher GSVA

scores (Figure 4D). The gene sets were composed of B cell C4 cluster

markers, and 115 genes were obtained from these gene sets. ROC

curves for the 115 genes demonstrated a significant predictive

power of the gene signature for the development of HF after MI,

AUC = 0.9 (95% CI: 0.86–0.94. p = 0.0034) (Figure 5A).
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3.3 Post-MI HF prediction model
construction and validation

To construct a more effective predictive model for post-MI HF,

we used a loop algorithm (Supplementary Figure S7) and calculated

the AUCs for different numbers of genes. An AUC peak appeared for

a combination of 13 genes (CCL5, B2M, CD3D, CD6, CD79B, DGKZ,

STING1, LYAR, KLRG1, PRKCA, HSPB1, ACTN1, and MYL12A)

(Figure 5B). HF.Sig consisting of 13 new genes could accurately

distinguish between HF and non-HF in the GSE59867 (16) cohort,

with an AUC of 1 (p = 7.2e-07, 95% CI:1-1) (Figure 5C).

Gene enrichment analysis was performed using the HFSig.

Gene enrichment analysis showed that the first 20 pathways were

mainly related to immune responses such as immune cell activation

(26, 27) (Supplement Figure 8A). We performed ROC curve

validation for the first 10 pathways and demonstrated good

predictive performance for these pathways, with AUCs between

0.89 and 0.78 (Supplementary Figure 8B).

GSVA scoring of the above 13 gene signatures in GSE59867 (16)

(n.patients: HF = 8, non-HF = 9, total of 32 HF samples, 36 non-HF

samples) showed that eight of these genes were upregulated in HF

relative to the non-HF sample for expression and found that four

genes: HSPB1, ACTN1, STING1, and CCL5, were significant

(Figure 5D, Supplementary Figure 8C). Supplementary Figure 8D

shows the GSVA scores of four genes (KLRG1, LYAR, CD6, and

DGKZ) in GSE59867 (16), which exhibited a similar trend. In

addition, we considered the overlap between all DE genes from

the dataset GSE59867 (16) and 115 genes from the B_C4 marker

genes for the analysis. We obtained a total of 84 genes. We used

these 84 genes for protein interaction network analysis using the

STRING online tool. Among them, the upregulated gene with p <

0.05 and multiple linker proteins greater than 10 was ITGB2, which

may play an important role in HF patients after MI (Figure 6).
FIGURE 2

Genes from genomes enriched in nine significant differentially
expressed genes using GSE60993, GSE61144 and their adjusted p-
values for receiver operating characteristic curves. The Benjamini-
Hochberg method was used to correct the p-values for the false
discovery rate.
FIGURE 1

The framework of this research. Bulk RNA sequencing data can be found in GSE60993, GSE61144, and GSE59867, while single cell RNA sequencing
data can be found in GSE145154. Myocardial infarction (MI), protein-protein interaction, differentially expressed genes, and heart failure all refer to
gene sets that have been enriched in a specific way.
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Using the above algorithm, we demonstrated that the C4

subcluster of B cells could be used as a cell subcluster to predict

the occurrence of HF after MI. However, monocyte and NK cell

counts failed to accurately predict that HF will occur after MI.

Monocytes were divided into five sub-clusters (Supplementary

Figure 9A). However, monocytes were not able to localize to an

exact sub-cluster, which can accurately predict MI (Supplementary

Figure 9D). NK cells were divided into three sub-clusters

(Supplementary Figure 10A). Supplementary Figure 10B shows a
Frontiers in Immunology 06
scatter plot of the distribution of cells between the disease and

normal groups. Supplementary Figure 10C presents an expression

heatmap of the top ten marker genes. We analyzed the expression of

NK gene sets in the MI dataset using GSVA and found that they

were highly expressed in NK C1 (Supplementary Figure 10D). The

performance of five DE gene list-enriched gene sets was assessed for

predicting post-MI HF in MI-related cell types. The C1 cell

subclusters showed good predictive performance (Supplementary

Figure 11A). However, these gene sets failed to accurately reflect
A B

D

E

F

C

FIGURE 3

Examination of B cells in the MI dataset (A) Uniform Manifold Approximation and Projection plot of B cells in the dataset of GSE145154, with the
sample divided into five subgroups. (B) Two subgroups were divided according to disease status. The bars show the proportion of cells grouped by
cluster (left) and disease status (right). (C) Heatmap of scale-normalized expression of the top 10 specific marker genes for the B cell subclusters in
GSE145154, identified by a two-sided Wilcoxon rank sum test with false discovery rate correction (p < 0.05). (D) MI prediction-related B subtype was
identified by locating the effective predictive gene set expression via gene set variation analysis (GSVA). (E) Identification of MI prediction-associated
B cell subclusters by GSVA to locate validly (receiver operating characteristic p.adjust < 0.05) predicted gene set expression. (F) violin plot of
expression levels of marker genes specifically expressed in the B cell subclusters of GSE145154. A two-sided Wilcoxon test was used to determine
the significance between the subclusters of interest and other subclusters. p < 0.0001.
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enrichment in post-MI HF (p = 0.2933, p.adjust = 0.2933)

(Supplementary Figure 11B). The feature plot of the HF.Sig

GSVA score showed that it could not specifically describe the

NK.Sig (Supplementary Figure 11C). We performed GSVA of the

gene sets in C1 NK cells (Supplementary Figure 11D) (Wilcoxon

rank-sum test p = 0.92707). The GSVA scores for these gene sets

failed to meet the requirement for distinguishing between the two

groups of samples.
3.4 Expression of CCL5, STING, HSPB1,
ACTN1 and ITGB2 genes in blood samples
from post-MI HF patients and post-MI
non-HF patients

We compared the mRNA expression of CCL5, STING, HSPB1,

ACTN1, and ITGB2 in post-MI HF patients with that in post-MI
Frontiers in Immunology 07
non-HF patients using quantitative real-time polymerase chain

reaction. CCL5, ACTN1, and ITGB2 expression increased sharply

in post-MI HF and non-HF blood samples, as predicted (P < 0.05)

(Figure 7). When comparing patients with post-MI HF and patients

without HF, both STING and HSPB1 showed a significantly higher

trend in the HF group than in the non-HF group, despite having p-

values greater than 0.05 after the Wilcoxon rank-sum

test (Figure 7).
4 Discussion

We reanalyzed a publicly available HF scRNA-seq dataset to

explore the subtypes and characteristics of immune cells in the

blood after MI to predict the risk of HF. We found that B cell

subtype B_C4 is important for predicting whether HF will occur

after MI. We used genetic markers associated with B_C4 to develop
B

C D

A

FIGURE 4

GSVA analysis of B cells and examination of HF.Sig (A) Feature map of the HF.Sig GSVA score showing that it can specifically characterize B cell C4
subcluster. (B) Boxplot found and validated significantly higher heart failure (HF) scores than normal scores in HF.Sig GSVA scores. Cohorts of B cells
and (C) Gene set enrichment analysis found that HF.Sig was enriched in B_C4 was enriched in HF and normal. The p-value was false discovery rate-
adjusted by the Benjamini-Hochberg method. (D) GSE59867 were verified by GSVA analysis to have significantly higher GSVA scores for HF than
non-HF, center line, median, box limits, upper and lower quartiles. whiskers, 1.5 interquartile range. points beyond whiskers, outliers. A two-sided
Wilcoxon test was used to determine significance.
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B

C D

A

FIGURE 5

HF signatures are effective in predicting clinical outcomes in patients with MI. The bulk RNA-seq dataset GSE59867 was analyzed. (A) Univariate
logistic regression model of HF.Sig in predicting MI outcomes. (B) Bar graph showing the area under the curve of gene combinations, maximum area
under the curve per cycle (different gene-number combinations). Dashed line: 13-gene combination (C) The 13-gene combination had a
significantly high predictive value for the outcome of whether HF occurred after MI in the GSE59867 cohort. (D) Evaluation of the above 13 genes
using the GSVA score identified four genes that were found to be genes with increased expression for heart failure occurring after MI compared to
HF not occurring after MI.
FIGURE 6

Heatmap made using the original HF.Sig of genes differentially expressed in cohort GSE59867, protein-protein interaction analysis and performance
of the corresponding enriched Top10 pathway.
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a signature, HF.Sig, consisting of 13 genes. Through gene

enrichment analysis, we found that B_C4 was mainly associated

with the activation of NK immune cells and the interaction between

immune cells. The predictive ability of HF.Sig was systematically

evaluated. A post-MI HF prediction model was developed using

HF.Sig. By analyzing GSVA and differential gene expression, we

further screened five genes (STING1, HSPB1, CCL5, ACTN1, and

ITGB2) that were highly expressed in patients with post-MI HF.

Through the verification of blood samples from clinical patients, the

validity (significant differences in the identified genes between the

HF and non-HF groups) of the genes we found was examined. We

developed a predictive model for the prognosis of post-MI patients

by combining scRNA-seq and bulk RNA-seq analyses. Given the

ease of blood testing in the clinic, our HF signature is a powerful

diagnostic tool for practical clinical applications to determine

whether HF will occur after MI.

Our predictive model can predict the onset of post-MI HF and

has important clinical implications for its prevention and treatment.

For patients who are at risk of HF after MI, early diagnosis and

treatment and early intervention in HF can greatly reduce mortality

in patients who develop HF after MI. Strong evidence and practice

guidelines suggest that interventional and pharmacological

treatments primarily benefit high-risk patients (28, 29). Despite

this guidance, identifying patients at high risk of cardiac ischemic

events remains challenging (30, 31). Therefore, the prediction of

post-infarction HF at the molecular level is particularly important.

The data in the scRNA dataset are from patients with post-MI

HF compared to normal samples. The genes we get from the single

cells may be related to MI and/or HF, so we use the MI data to verify

the MI-related genes first, and then further identify the post-MI

HF-related genes to establish a model gene for the diagnosis of post-

MI HF. In summary, two-steps strategy guarantees the

identification of post-MI HF-associated genes.

Immunoinflammatory pathways have a significant impact on the

recovery of patients with HF and MI (32). B lymphocytes infiltrate

the infarcted myocardium starting on day 1 and continue to do so

until the healing period, according to earlier research using animal

models of MI (day 7) (33). Reduced post-MI inflammation and

improved functional cardiac outcomes in mice have been linked to B

cell depletion using CD20-specific antibodies (34). The production of
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chemokines by B cells to draw in monocytes and create pathogenic

antibodies has been demonstrated to aggravate the unfavorable

remodeling of the myocardium; however, the exact processes by

which B cells alter myocardial function are still poorly understood

(34). In a model of chronic HF, transgenic mice unable to secrete

immunoglobulin B cells displayed less cardiac remodeling and

diminished cardiac function than normal mice (35, 36).

The activation of autophagy by STING has been demonstrated

to occur through a mechanism involving TBK1 activation and

interferon induction (37), which serves as a steward for specific

cytoplasmic protein breakdown and organelle recycling, both of

which are essential for harmful cardiac remodeling (37). After MI,

inhibition of the specific small molecule STING1may enhance the

wound healing response and pathological remodeling, thereby

lowering the occurrence of ischemic HF (38). Rech et al.

demonstrated that inhibition of the specific small molecule

STING1 after MI may enhance the wound healing response and

pathological remodeling, thereby lowering the occurrence of

ischemic HF (38). HSPB1 is a negative regulator of the

cardiomyocyte inflammatory response and is essential for

repairing injured heart tissue following myocardial infarction.

The action of HSPB1 is partially attributed to nuclear factor NF-

kB-dependent regulation of leukocyte recruitment and

subsequent inflammation (39). Another indicator of poor

prognosis in patients with chronic HF is HSPB1 upregulation

(40). CCL5 has been shown to be highly expressed in the

peripheral circulation after MI, and blocking CCL5 lowers

serum levels of neutrophil and monocyte chemo-attractants

during chronic myocardial ischemia while anti-CCL5

monoclonal antibody therapy improves post-MI “clinical”

outcomes, such as survival and cardiac function (41). ITGB2 is a

transmembrane adhesion and signaling receptor expressed only in

leukocytes and extracellular vesicles. It promotes an inflammatory

reaction and assists leukocytes in adhering to tissues and to move

around (42, 43). Liu et al. demonstrated that suppressing the

expression of ITGB2 in macrophages in a mouse model of HF

decreased the infiltration of myocardial immune inflammatory

cells and cardiac hypertrophy (44). The inflammatory response

after cardiac injury on the one hand provides protection against

short-term adaptation of the heart . Nonetheless, this

inflammatory response can also lead to left ventricular

dysfunction and myocardial remodeling (45). Although Jia et al.

identified multiple genes linked to myocardial contraction, cardiac

hypertrophy, cardiac fibrosis, and myocardial damage, including

ACTN1, the function of ACTN1 in the pathogenesis of HF after MI

has not yet been established (46). Several studies have used

ACTN1 as a marker of cardiogenesis (47, 48).

In conclusion, our study provides a valid predictive model

for prognosis after MI using blood markers and explores the link

between immune cells in the blood and outcomes. Given the ease

with which blood specimens can be used in clinical practice, this

study offers a powerful tool for the clinical use of MI. However,

this study has some limitations. First, we only had one set of

single-cell RNA-seq data and one set of bulk RNA-seq data

related to HF after MI for analysis. Second, there were no clinical

features other than disease information in the dataset used. We
FIGURE 7

Validation of CCL5, STING1, HSPB1, ACTN1 and ITGB2 in human
blood samples (non-HF: n = 7 biologically independent samples,
HF: n = 7 biologically independent samples). Expression status
of CCL5, ACTN1 and ITGB2 in the blood of post-MI patients.
Expression status of STING1 and HSPB1 in the blood of post-MI
patients. Wilcoxon rank-sum test, **p < 0.01, ***p < 0.001. ns, not
statistically significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1163350
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2023.1163350
described the relationship between B cells in the blood and the

presence of HF after MI but did not clarify the mechanism of

their association. Future experiments with larger sample sizes

and more rigorous designs are needed to explore the

mechanisms between disease and cells to consolidate the

findings of this study.

By analyzing both the single-cell and bulk datasets, we

determined that B cells are reliable predictors of post-MI HF

and identified their enrichment in several immune-related

pathways. In this study, we established a diagnostic model for

post-MI HF risk prediction consisting of 13 genes, of which, five

genes were confirmed to be differentially expressed in the HF

cohort using multiple methods. We proposed a highly effective

method for predicting recovery after MI. We were only able to use

one single-cell sequencing dataset and three infarct-related

datasets. Therefore, this study has the limitation that there were

fewer sequencing data that met our study’s requirements.

However, by validating the polymerase chain reaction in clinical

specimens, we identified multiple genes that are important to this

model. In conclusion, we present a highly effective clinical

diagnostic model that may offer a new perspective for the

clinical diagnosis and treatment of MI.
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