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The role of PD-1
signaling in health and
immune-related diseases
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Han-Yun Tang, Ning-Xun Cui, Lu Jiang, Xiao-Mei Dai,
Wei-Qing Chen, Qiang Lin* and Xiao-Zhong Li*

Department of Nephrology and Immunology, Children’s Hospital of Soochow University, Suzhou,
Jiangsu, China
Programmed cell death 1 receptor (PD-1) and its ligands constitute an inhibitory

pathway to mediate the mechanism of immune tolerance and provide immune

homeostasis. Significantly, the binding partners of PD-1 and its associated ligands

are diverse, which facilitates immunosuppression in cooperation with other

immune checkpoint proteins. Accumulating evidence has demonstrated the

important immunosuppressive role of the PD-1 axis in the tumor

microenvironment and in autoimmune diseases. In addition, PD-1 blockades

have been approved to treat various cancers, including solid tumors and

hematological malignancies. Here, we provide a comprehensive review of the

PD-1 pathway, focusing on the structure and expression of PD-1, programmed

cell death 1 ligand 1 (PD-L1), and programmed cell death 1 ligand 2 (PD-L2); the

diverse biological functions of PD-1 signaling in health and immune-related

diseases (including tumor immunity, autoimmunity, infectious immunity,

transplantation immunity, allergy and immune privilege); and immune-related

adverse events related to PD-1 and PD-L1 inhibitors.

KEYWORDS

programmed cell death 1 receptor, immune checkpoint proteins, immune tolerance,
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1 Introduction

Recent years have seen a rapid expansion of our knowledge of immune regulation. T-

cell activation is a key step in the initiation and modulation of the immune response (1).

The activation of T cells relies mainly on a two-signal model. The first signal confers

specific recognition of cognate antigenic peptides presented by major histocompatibility

complex (MHC) molecules, which triggers T cell receptor (TCR) signaling. The second

signal comprises co-stimulatory and co-inhibitory signals, which modulate TCR signaling

positively or negatively to direct T cell function (1–3). A group of inhibitory or stimulatory

molecules expressed on immune cells, antigen-presenting cells (APCs), tumor cells, or

other types of cells are regarded as immune checkpoints, including programmed cell death-
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1 (PD-1), cytotoxic T lymphocyte-associated antigen-4 (CTLA-4),

cluster of differentiation 28 (CD28), cluster of differentiation 80

(CD80), galectin-9 (Gal-9), and T cell immunoglobulin and mucin

domain 3 (TIM-3) (4–7). Immune checkpoint pathways are defined

as receptor-ligand pairs that exert inhibitory or stimulatory effects

on immune responses. It is noteworthy that the binding partners of

the receptor and its associated ligands are diverse, which facilitates

immunosuppression in cooperation with other immune checkpoint

proteins (6–8). To date, increasing numbers of studies have

indicated that PD-1 and its ligands are involved in maintaining

immune-related diseases, particularly tumor-associated biological

features (9–13). This article provides a review of the role of PD-1

signaling in health and immune-related diseases, including tumor

immunity, autoimmunity, infection immunity, transplantation

immunity, allergy, and immune privilege, as well as immune-

related adverse events (irAEs) of anti-PD-1 and anti-PD-L1

drugs (Figure 1).
2 Structure and expression of the
PD-1 pathway

2.1 PD-1

Programmed cell death 1 protein (PD-1, also known as PDCD1

and CD279) is a 50–55-kDa type I transmembrane protein

comprising 288 amino acid residues, which includes an

immunoglobulin (Ig) superfamily domain, a 20 amino acid stalk,

a transmembrane domain, an intracellular domain of

approximately 95 residues containing an immunoreceptor

tyrosine-based inhibitory motif (ITIM), and an immunoreceptor

tyrosine-based switch motif (ITSM) (4, 13, 14). PD-1 belongs to the

CD28 superfamily and is encoded by the PDCD1 gene on human

chromosome 2 (4). PD-1 is 15% similar to the amino acid sequence

of CD28, 20% similar to CTLA-4, and 13% similar to inducible co-
Frontiers in Immunology 02
stimulatory molecule (ICOS) (13, 15). PD-1 is a representative

immunosuppressive checkpoint and is mainly expressed in

activated T lymphocytes, B lymphocytes, natural killer cells,

macrophages, dendritic cells, monocytes, and myeloid cells (11).

PD-1 expression also occurs in immune-privileged sites, such as the

cornea, retina, and iris-ciliary body, and its expression is wider than

the restricted expression of other CD28 family members on T cells,

resulting in a broader spectrum of immune responses (14). PD-1

expression might be triggered by transcription factors, such as

nuclear factor of activated T cells (NFAT), Forkhead box protein

(FOX), and interferon regulatory factor 9 (IRF9) (11, 13).

PD-1 binds to two classical ligands: PD-L1 and PD-L2, leading

to inhibition of T cell proliferation, activation, cytokine production,

altered metabolism, cytotoxic T lymphocytes (CTLs) killer

functions, and eventual death of activated T cells (16–18). The

inhibitory function depends on interaction with phosphatase SHP-2

(19). PD-1 contains inhibitory motifs, including ITIM and ITSM,

and the interaction of the SHP-2 SH2 domains with PD-1 ITSM

induces PD-1 dimerization and SHP-2 activation (19, 20). After

interacting with its ligands, PD-1 is activated and recruits the

pho spha t a s e SHP-2 in p rox im i t y t o TCRs , wh i ch

dephosphorylates critical protein molecules for TCR signaling and

affects downstream signaling pathways, including the

phosphoinositide 3-kinase (PI3K)-phosphoinositide-dependent

kinase 1 (PDK1)-AKT-mammalian target of rapamycin (mTOR)

pathway, RAS-RAF-MEK (mitogen-activated protein kinase kinase

or MAPKK)-extracellular-signal-regulated kinase (ERK) pathway,

and Janus kinases (JAKs)-signal transducers and activators of

transcription (STAT) pathways (17, 18, 20, 21) (Figure 2).

Recent evidence has shown that Gal-9 can also interact with

PD-1 on the T cell surface, which contributes to the persistence of

PD-1+TIM-3+ T cells and attenuates Gal-9/TIM-3-induced cell

death (22). Gal-9 is a member of the lectin family of proteins, which

acts through receptors such as TIM-3, V-domain Ig suppressor of T

cell activation (VISTA), and PD-1 in CTLs (23). Gal-9:PD-1
FIGURE 1

Involvement of PD-1 signaling in health and immune-related diseases.
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binding is highly selective and primarily mediated by the C-

terminal carbohydrate-recognition domain (CRD) of Gal-9 and

the N116-linked glycan of PD-1, which does not affect PD-1

binding to its cognate ligand PD-L1 or the PD-1 therapeutic

antibodies pembrolizumab and nivolumab (22) (Figure 3). At

present, the B7 family comprises ten members: B7-1 (CD80), B7-

2 (CD86), B7-H1 (PD-L1), B7-DC (PD-L2), B7-H2, B7-H3, B7-H4,

B7-H5 (VISTA), B7-H6, and B7-H7 (24, 25). VISTA is also known

as PD-1 homolog (PD-1H), and structural analysis showed that the

IgV domain of VISTA shares sequence homology with both CD28

and the B7 family, while the full length VISTA shows the highest

identity with PD-1 (26, 27). Significantly, Gal-9 can induce leakage

of the proteolytic enzyme granzyme B from the intracellular

granules of CTLs, leading to their programmed death via VISTA

and TIM-3, which prevents them from interacting with PD-1 (23).

Furthermore, human VISTA has two confirmed binding partners

with immunosuppressive functions, P-selectin glycoprotein ligand 1

(PSGL-1) and V-set and Ig domain-containing 3 (VSIG3), as well as

a less well confirmed receptor, VSIG8 (28). VISTA activity imposes
Frontiers in Immunology 03
quiescence on mammalian myeloid and naïve T cells, and inhibits T

cell activation and cytokine production, which suggests VISTA as a

promising target for combination cancer immunotherapy (28).
2.2 PD-L1

Programmed cell death 1 ligand 1 (PD-L1, also known as B7-H1

or CD274) consists of 290 amino acid residues, and is a 33-kDa type

I transmembrane protein belonging to the B7 family, which is

encoded by the CD274 gene on human chromosome 9 (4, 13). PD-

L1 is ubiquitously expressed on immune cells, including T

lymphocytes, B lymphocytes, and natural killer cells, as well as

epithelial cells, vascular endothelial cells, APCs, multiple tumor

cells, and tumor-infiltrating cells (4). The overexpression of PD-L1

on tumor cells is induced by genetic alterations (innate expression)

and stimulation by interferon gamma (IFN-g) released from effector

T cells, including CD8+ T cells (acquired expression) (13, 29). PD-

L1 expression also occurs in immune-privileged sites such as the eye
FIGURE 2

Mechanisms of PD-1-mediated inhibition in T cells. After interacting with PD-L1 or PD-L2, PD-1 recruits the phosphatase SHP-2 in proximity to TCR,
which attenuates key TCR proximal signaling, including the PI3K-PDK1-AKT-mTOR pathway and the RAS-RAF-MEK-ERK pathway.
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and placenta, in which PD-L1 is overexpressed from the fourth

month of gestation (14). The interaction of PD-1 and PD-L1

suppresses T cell receptor-mediated cytotoxicity and CD8+ T cell

proliferation, which negatively regulate the adaptive antitumor

immune response, avoid the killing effect on tumor cells, and

evade immune surveillance (11, 16). Significantly, recent work

demonstrated that the PD-L1:B7-1 ligand–ligand cis-interaction

alters trans-interactions with other immune checkpoints,

providing new insights into mechanisms of current pathways and

immunotherapies (30, 31) (Figure 3). B7-1 (also called CD80) is a

type I transmembrane protein that exists as a monomer and

homodimer, and also belongs to the B7 family. B7-1 expressed on

APCs binds to CD28 and CTLA-4 on T cells to provide co-

stimulatory and co-inhibitory signals, respectively (32).

Intriguingly, when PD-L1 is bound to B7-1 in cis, PD-L1 cannot

engage PD-1 (30, 31). Meanwhile, the PD-L1:B7-1 cis-interaction

disrupts the B7-1 homodimer and decreases its avidity to CTLA-4,

thereby reducing B7-1 transendocytosis (31, 33). B7-1 binding to

PD-L1 does not prevent its interaction with CD28, which

consequently can form a trimeric complex (31). Nevertheless, the

reports concerning the effect of the PD-L1:B7-1 cis-heterodimer on

the B7-1:CD28 interaction are inconsistent (30, 33, 34). Moreover,

the relative levels of PD-L1 and B7-1 will influence the

outcome (31).
2.3 PD-L2

Programmed cell death ligand 2 (PD-L2, also known as B7-DC

or CD273), a member of the B7 family of ligands, is also a type I

transmembrane protein consisting of 270 amino acid residues,

encoded by the PDCD1LG2 gene (35, 36). Studies of PD-L2 as a

therapeutic target and predictive biomarker are relatively few in

comparison with PD-1 and PD-L1. Although PD-L2 and PD-L1
Frontiers in Immunology 04
share the same receptor, PD-1, and have 37% sequence homology,

they have differences in affinity and expression in various tissues

(36). Studies have shown that PD-L2 had a 2 to 6-fold higher

binding affinity to PD-1 than PD-L1 (35, 37, 38). PD-L2 is mainly

present on APCs, such as macrophages and dendritic cells, and its

expression can be induced in other immune and non-immune cells

by various microenvironmental stimuli, especially Th2-associated

cytokines (37), whereas PD-L1 is expressed on both immune cells

and non-immune cells (36). At present, PD-L2 expression has been

detected in patients with various malignancies and might predict

worse prognosis (36–38). PD-L2 expression in human tumor

samples generally correlates with that of PD-L1; however, PD-L2

expression was also present in the absence of PD-L1 in subsets of

patient samples (39). Additionally, the role of PD-L2 is highlighted

in studies of allergy and tolerance, and the second binding partner

of PDL2, repulsive guidance molecule b (RGMb), was discovered

(31, 40, 41). RGMb is a glycosylphosphatidylinositol (GPI)-

anchored protein and is one of three members of the repulsive

guidance molecule family (RGMa/b/c) (31). RGMb also serves as a

co-receptor for bone morphogenetic proteins 2 and 4 (BMP2 and

BMP4) and neogenin, resulting in a supercomplex of BMP-BMPR-

RGMb-neogenin in cis, and PD-L2 may bind in trans with the

RGMb supercomplex to regulate downstream pathways (31, 40, 42)

(Figure 3). The functional role of PD-L2 in this supercomplex

requires further study.
3 Tumor immunity

Tumor cells exert immune escape and subsequently obtain

unlimited proliferation ability because of the abnormal immune

surveillance mediated by immune checkpoints. PD-1 and its ligands

play a vital role in inhibiting immune responses and promoting self-

tolerance by modulating the activity of T-cells, inhibiting cytokine
FIGURE 3

The diverse binding partners of PD-1 and its associated ligands.
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secretion, and inducing apoptosis (11, 43). Inhibitors targeting the PD-

1 pathway can rescue T cells from an exhausted state and revive the

immune response against cancer cells (44, 45). Based on these

observations, the relationship between tumors and PD-1/PD-L1/PD-

L2 has been studied widely, and PD-1/PD-L1-targeted inhibitors, as

cancer immunotherapy, have been developed (11, 13, 17, 29, 44–46).

Various pathways modulate the PD-1/PD-L1 axis in tumorigenesis,

including the PI3K/AKT pathway, theMAPK pathway, the JAK/STAT

pathway, the WNT pathway, the NF-kB pathway, and the Hedgehog

(Hh) pathway (13). To date, several monoclonal antibodies targeting

the PD-1/PD-L1 signaling pathway have obtained first- and later-line

US Food and Drug Administration (FDA) approval in various solid

and hematological malignancies, including non-small cell lung cancer,

melanoma, renal cell carcinoma, urothelial carcinoma, gastric and

gastroesophageal junction adenocarcinoma, head and neck squamous

cell carcinoma, and others, in which response rates range from 15-30%

(in most solid tumors) to 45–60% (in melanoma and microsatellite

instability-high tumors) (44, 47). Nivolumab (a fully human IgG4-

blocking monoclonal antibody (mAb) against PD-1) was applied to the

first-in-human trial of patients with advanced metastatic melanoma,

colorectal cancer, castration-resistant prostate cancer, non-small cell

lung cancer, and renal cell carcinoma in 2010, and first gained approval

from the FDA to treat melanoma in 2014 (48–50). At present,

numerous anti-PD-1 antibodies (nivolumab, pembrolizumab,

cemiplimab, sintilimab, camrelizumab, toripalimab, tislelizumab,

zimberelimab, prolgolimab, and dostarlimab) and anti-PD-L1

antibodies (atezolizumab, durvalumab, and avelumab) have been

approved for various types of cancers (49) (Table 1). Approved anti-

PD-1 and anti-PD-L1 antibodies differ in their molecular targets,
Frontiers in Immunology 05
epitope binding, affinity, structure, and pharmacokinetic

characteristics (51). Based on these differences, it is possible that the

efficacy and safety might vary among different anti-PD-1 and anti-PD-

L1 agents (51). Currently, most immunotherapies targeting the PD-1

axis are antibody-based drugs. Bispecific antibodies, such as those co-

targeting PD-1 and PD-L1 and those co-targeting PD-1 and CTLA-4,

show enhanced treatment effect in anti-PD-1 resistant tumors (52–54).

Apart from antibodies, many peptides against PD-1 and PD-1 and

small molecular inhibitors that disrupt the PD-L1/PD-1 interaction

and the PD-1/SHP-2 interaction, degrade PD-L1, or inhibit PD-1/PD-

L1 expression at the mRNA level have been studied (52). Post-

translational modification (PTM), such as phosphorylation,

glycosylation, ubiquitination, and palmitoylation have been reported

to modulate the function or homeostasis of PD-1 or PD-L1, which

broadened the strategies for drug design (52). In addition, PD-1/PD-L1

blockade therapy combined with chemotherapy, radiotherapy,

angiogenesis inhibitors, other immune checkpoint inhibitors, agonists

of co-stimulatory molecules, stimulators of interferon gene agonists,

fecal microbiota transplantation, epigenetic modulators, or metabolic

modulators, have superior antitumor efficacies and higher response

rates than conventional treatment (49).
4 Autoimmunity

In autoimmune diseases, abnormal immune responses to self-

antigens induce damage the body’s own tissues. The PD-1 pathway,

as an inhibitory signal, controls the induction and maintenance of

tolerance to self-antigens in the context of autoimmunity (55–58).
TABLE 1 Anti-PD-1/PD-L1 antibodies and their indications.

Drug Therapeutic
target Indication

Nivolumab PD-1
Non-small cell lung cancer (NSCLC); Squamous cell carcinoma of head and neck; Gastric cancer; Malignant pleural mesothelioma;
Esophageal cancer

Pembrolizumab PD-1
Melanoma; NSCLC; Esophageal cancer; Squamous cell carcinoma of head and neck; Colorectal carcinoma; Hepatocellular
carcinoma; Breast cancer

Toripalimab PD-1 Melanoma; Nasopharyngeal carcinoma; Urothelial carcinoma; Esophageal cancer

Sintilimab PD-1 Lymphoma; NSCLC; Hepatocellular carcinoma; Esophageal squamous cell carcinoma; Gastric cancer

Camrelizumab PD-1 Lymphoma; Hepatocellular carcinoma; Esophageal cancer; NSCLC; Nasopharyngeal carcinoma

Tislelizumab PD-1
Lymphoma; Urothelial carcinoma; NSCLC; Hepatocellular carcinoma; Esophageal cancer; Nasopharyngeal carcinoma;
Microsatellite instability-high (MSI-H) or mismatch-repair deficient (dMMR) solid tumors

Penpulimab PD-1 lymphoma

Zimberelimab PD-1 lymphoma

Serplulimab PD-1 MSI-H or dMMR solid tumors; NSCLC

Pucotenlimab PD-1 MSI-H or dMMR solid tumors; Melanoma

Durvalumab PD-L1 NSCLC; Small cell lung cancer (SCLC)

Atezolizumab PD-L1 NSCLC; SCLC; Hepatocellular carcinoma

Envafolimab PD-L1 MSI-H or dMMR solid tumors

Sugemalimab PD-L1 NSCLC

Cadonilimab PD-1/PD-L1 Cervical carcinoma
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Numerous pieces of evidence show that the PD-1 axis plays an

significant role in autoimmune disorders, including inflammatory

bowel disease (IBD), systemic lupus erythematosus (SLE), Type 1

diabetes (T1D), systemic vasculitis, myositis, autoimmune

encephalomyelitis, autoimmune hepatitis, Behcet’s disease,

myasthenia gravis, autoimmune uveitis, Sjogren’s syndrome, and

ankylosing spondylitis (14, 57–61). Intestinal epithelial cells from

patients with IBD were observed to overexpress PD-L1 and PD-L2,

which might result in the regulation of immune responses against

chronic inflammation and then prevent progressive and acute

inflammation during the disease course (62, 63). The

overexpression of PD-1, PD-L1 and PD-L2 on various immune

cells of patients with SLE has been reported, and PD-1 receptors

and their ligands have been identified to be involved in two key

pathways, the toll-like receptor (TLR) pathway and the type I

interferon (IFN-1) pathway through activation of NF-kB and/or

STAT1 in the pathogenesis and development of SLE (14, 64). A

murine model demonstrated significantly reduced severity of

insulitis and delayed diabetes progression, associated with a

reduction of spontaneous diabetes incidence in transgenic mice

with the upregulation of PD-L1 (65). Restoring the PD-1/PD-L1

function could represent a valid strategy to treat T1D at different

stages, including regulating b cell autoimmunity and preventing

T1D in individuals that are genetically at-risk or are autoantibody

positive; promoting immune tolerance and preserving residual b
cell mass in patients with new onset T1D; and reducing alloreactive

responses and favoring the survival of transplanted islets in patients

with established T1D disease (66). Hakroush et al. observed that

loss of tubulointerstitial PD-1 correlated with active antineutrophil

cytoplasmic antibody (ANCA)-associated renal vasculitis, and PD-1

was associated with decreased local synthesis of complement factor

B (67). Co-culture approaches in vitro showed that monocytes from

patients with ANCA-associated vasculitides displayed low

expression of PD-L1 and a defective PD-L1 presentation upon

activation, thus increasing the expression of PD-L1 might reduce

the level of ANCA and improve disease activity (68). PD-1

expression on CD57+ and CD8+ cells increased early, fluctuated,

and then increased again in later stages in patients with inclusion

body myositis (IBM), and the expression of PD-L1 and PD-L2 were

observed on adjacent cells, including muscle fibers (61). Dalakas

proved that the formation of immunological synapses between

autoinvasive T cells and muscle fibers was strengthened by the

upregulation of PD-L1 in polymyositis (PM) and sporadic IBM

(69). Recently, a homozygous loss-of-function mutation in PDCD1

was identified in a child manifesting with multiorgan autoimmunity

and Mycobacterium tuberculosis infection, which suggested

inherited complete PD-1 deficiency (70). Several different

approaches have been developed to enforce PD-1/PD-L1

stimulation, such as PD-L1–Fc fusion, PD-1 stimulatory agents,

and anti-PD-1 agonist monoclonal antibodies (mAbs) (34, 55, 71–

73). Administration of PD-L1-Fc significantly ameliorated

inflammatory colitis in murine models, which suggested that PD-

1-mediated inhibitory signals might represent a novel target (73). A

previous investigation of lupus-like syndrome in mice showed that

PD-L1 was overexpressed on renal proximal tubular epithelial cells

after Ad-PD-L1 injection, and the frequency of proteinuria was
Frontiers in Immunology 06
lower, serum levels of anti-dsDNA IgG decreased, and renal

pathology improved (74). Suzuki et al. identified PD-1 agonists

that inhibit T cells by triggering immunosuppressive signaling in

murine disease models with acute graft versus host disease

(aGVHD) and colitis, and indicated their clinical potential to

treat autoimmune diseases (55). Sugiura et al. demonstrated that

the removal of PD-1 restriction is effective in alleviating

autoimmune disease symptoms in murine models with arthritis,

multiple sclerosis and Sjögren’s syndrome by targeting the cis-PD-

L1–CD80 duplex (34). CD80 binding to PD-L1 inhibits its

interaction with PD-1; therefore, the blockade of CD80–PD-L1

binding attenuates PD-L1–PD-1 binding and abrogates PD-1

function (34).
5 Infection immunity

Studies regarding the PD-1 pathway in the context of viral,

bacterial, and parasitic infections are accumulating (46, 59, 75–78).

During infection, peptide antigens from microbes are presented on

MHC complexes to naive T cells by APCs. CD4+ T cells recognize

MHC class II molecules to modulate the immune response against

extracellular pathogens by coordinating B cells and activating

innate effector cells; CD8+ T cells recognize MHC class I

molecules and function as cytotoxic cells (9). The PD-1 pathway

serves as a coinhibitory signaling pathway to regulate the activation

and function of T cells at numerous points, and PD-1 blockade

might have a potential therapeutic effect on infectious diseases,

especially chronic viral infection (10, 75–78). During the course of a

chronic viral infection, the continuous burden of viral antigens

leads to persistent stimulation of antigen-specific T cells, which

causes T cell exhaustion (9, 46). PD-1 expression on virus-specific T

cells has been documented in infections with lymphocyte

choriomeningitis virus (LCMV), human immunodeficiency virus

(HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), and

coronavirus disease 2019 (COVID-19) (10, 78). In chronic

infection with HBV, PD-1 expression on HBV-specific T cells is

increased and might serve as a biomarker for liver damage (9, 79).

Upregulation of PD-1 in regulatory T cells (Tregs) was also found in

patients with chronic HCV infection, and the observation that

blockade of PD-1 improved Treg function suggested that PD1

acts as negative regulator of Tregs in this setting (80). As

previously reported, the PD-1 antibody nivolumab helped to treat

seven patients with relapsed/refractory Epstein-Barr virus (EBV)-

associated hemophagocytic lymphohistocytosis and 71.4% of them

reached a clinical complete response without relapse (81). You et al.

reported a patient with adult-onset chronic active Epstein-Barr

virus infection (CAEBV) after allogeneic hematopoietic stem cell

transplantation (allo-HSCT) who was treated with salvage PD-1

antibody sintilimab, in whom EBV-DNA was ultimately

undetectable (82). PD-1 signaling has also been examined in the

context of numerous bacterial infections, such as Mycobacterium

tuberculosis (Mbt) and Helicobacter pylori. In Mbt infection, the

enhanced expression of PD-1 and PD-L1 was observed in patients

with tubercle bacillus and in Mbt-treated mice (10, 83). However,

there are reports of Mbt reactivation among patients with cancer
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being treated with PD-1 blockade (84). PD-1 and PD-L1 expression

levels were also found to be higher in patients infected with

Helicobacter pylori, which might be associated with the increased

frequency of gastric cancer (9). Parasitic infections are associated

with immune evasion by increasing anti-inflammatory molecules

and the expression of coinhibitory receptors and their ligands,

which often present as chronic infections (9). The PD-1 pathway

has been described during infection with a number of parasitic

protozoans, including Toxoplasma gondii, Leishmania major,

Plasmodium falciparum, Plasmodium berghei, and Babesia microti

(9, 85, 86). Blocking the PD-1 pathway in mice infected with

Plasmodium berghei ANKA induced strong natural and acquired

immune responses, and enhanced immune memory against the

parasite (86). In addition, the administration of PDL1-IgG1Fc in a

mouse model of experimental cerebral malaria showed a protective

effect based on the maintenance of immune microenvironment

homeostasis in the brain via repressing over-reactive CD8+ T cell

responses (85). PD-1 might have contributed to the establishment

of the mutual existence of the host and the pathogens. While

PD-1 blockade might enhance pathogenic microbe clearance in

patients with acute and chronic infections, there is a risk that

reactivation of subsets of exhausted T cells might increase tissue

immunopathology, leading to immune-related adverse events.

Numerous studies have linked PD-1 and its ligands to altered

immune cell activity in sepsis (87–89). Ruan et al. found that

sepsis might induce an immunosuppressive state, resulting in

myeloid derived suppressor cell (MDSC) expansion, and

upregulation of PD-L1 on MDSCs is linked to increasing PD-1

on T cells and the induction of T cell apoptosis (88). Patients with

sepsis, especially severe sepsis and septic shock, had obviously

higher expression levels of PD-1 on CD4+ or CD8+ T cells, PD-

L1 on monocytes, sPD-1, and sPD-L1 compared with patients with

non-septic infections, non-infectious inflammation, and a healthy

control group (89). Currently, studies regarding anti-PD-1/PD-L1

antibodies for the treatment of sepsis in animal models or in

patients with sepsis have been reported (51, 90).
6 Transplantation immunity

In allogenic transplantation, the transplant expresses foreign

antigens, increasing the risk of rejection. T cell activation by

immune allorecognition is a major contributing factor towards

triggering organ rejection (91). Immune checkpoints are crucial

regulators of the immune system for self-tolerance and the

prevention of rejection in the context of transplantation. To date,

PD-1 and its ligands have been reported to play a significant role in

the balance between reactive T cells targeting the organ and

tolerogenic Tregs (59, 91–93). Upregulation of PD-1, PD-L1, and

PD-L2 in a murine model of cardiac transplantation during the

process of allogeneic rejection was observed compared with that in

syngeneic transplants and normal tissues (94). The application of

PD-L1.Ig markedly enhanced allograft tolerance and prolonged

transplant acceptance in mice, which in some cases led to

permanent engraftment and accompanied reduced intragraft

expression of IFN-g and IFN-g-induced chemokines (94). In
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demonstrated to be associated with decreased PD-L1 expression in

the lymphocyte cell population compared with PD-1 expression

(95). The upregulation of PD-L1 expression in both dendritic cells

and allografts via FK506-binding protein (FKBP) 51 in FK506-

mediated immunosuppression was observed in a murine heart

transplantation model (96). The PD-1 pathway has been reported

to modulate rejection of renal transplants in animal experiments

and clinical studies. Most T cells expressed PD-1 (over 90% of CD8

+ T cells and about 75% of CD4+ T cells) during the initial response

to murine kidney transplants. Administration of a blocking

antibody to PD-L1 increased T cell infiltrates and urinary

Lipocalin 2 (LCN2), causing terminal acute rejection (97). The

expression of PD-L1, PD-L2, and PD-1 mRNA and protein was

upregulated in biopsies of patients with renal allograft rejection

compared with the respective levels found in the pretransplant

biopsies (98). High PD-1 expression in several T cell subsets

predicts a higher rate of rejection in the clinic (99). The

upregulation of PD-L1 on proximal tubular epithelial cells in

patients with acute allograft rejection might reduce T-cell-

mediated injury by inhibiting the proliferation of CD4+ T cells

and cytokine production by CD8+ T cells (98). Luo et al. developed

a membrane-anchored-protein PD-L1 (map-PD-L1), which was

effectively anchored onto the surface of rat glomerular endothelial

cells and binds PD-1 (93). They found that map-PD-L1 could

reduce T cell graft infiltration and increase intragraft Treg

infiltration, suggesting a long-term effect in allograft protection in

kidney transplantation models (93). In addition, several studies

regarding the PD-1 pathway in other transplantations, including

skin, liver, islet, and allogeneic hematopoietic stem cells, have also

been reported (91, 100–102). Mechanistically, PD-1 and its ligands,

PD-L1 and PD-L2, constitute an inhibitory regulatory pathway with

potential therapeutic use in transplanted organs undergoing

allograft rejection (92).
7 Allergy

Allergic diseases, such as asthma, rhinoconjunctivitis, atopic

dermatitis, food and drug allergy, are characterized by pathological

and overactive immune responses against harmless antigens,

especially type 2 immune responses. The allergic inflammatory

process involves different cell types that release a range of

inflammatory mediators and cytokines, including IgE-dependent

activation and increased CD4+ T helper type 2 (Th2) lymphocytes

(103). PD-1 and its ligands play an essential role in regulating T cell

activation and function. These immune checkpoint molecules

balance the immune response, preventing the accumulation of

self-reactive T cells. Consequently, PD-1/PD-L1 or PD-L2

signaling in allergy has been studied (12, 103, 104). Interestingly,

PD-L1 and PD-L2 might have opposing roles in the pathogenesis of

asthma (12, 105). PD-L2 downregulates IL-4 and upregulates IFN-g
to decrease airway hyperreactivity (AHR), whereas PD-L1

upregulates IL-4 and downregulates IFN-g (103). Mouse

experiments demonstrated that PD-L2 deficiency results in

increased AHR and lung inflammation (105). However, a lack of
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1163633
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1163633
PD-L1 leads to reduced levels of AHR, and minimal inflammation

and pulmonary mucous secretion in asthma pathogenesis (12). A

mouse model of allergic asthma displayed that PD-1/PD-L1

blockade enhanced AHR by developing a concomitant Th17

immune response (106). Recent research showed that normal

resting lung interstitial macrophages and alveolar epithelial cells

express high levels of RGMB mRNA, whereas lung dendritic cells

express PD-L2 (42). The RGMb : PD-L2 interaction has been

demonstrated to promote the development of respiratory

tolerance (42). Evidence suggested that the expression levels of

PD-1 and its ligands on the surface of immune cells in the nasal

mucosa are higher in patients with allergic rhinitis than in non-

allergic patients (103). Moreover, increased soluble PD-L1 has been

detected in the serum of patients with allergic rhinitis, and soluble

PD-L1 showed a significant negative association with disease

severity, symptom intensity, and eosinophil counts (107). In a

murine model of active cutaneous anaphylaxis, anti-PD-L1

blockade during the sensitization phase led to a reduction in

specific IgE and IgG1 levels, decreased allergic reaction intensity

at the active cutaneous anaphylaxis site, and less mast cell

degranulation in the tissue; however, this did not occur during

the challenge phase (108). PD-L1-deficient mice had more severe

changes in ear thickness in Th1-and Th17-type immunity models

than PD-L2-deficient mice; For the Th2 type model, PD-L2-

deficient mice had more severe changes in ear thickness, which

suggested that PD-L1 has lesser role in Th1 and Th17 type

immunity, whereas PD-L2 is predominant in Th2 type immunity

(109). Lama et al. reported that anti-PD-1 treatment or genetic

deficiency of PD-1 in CD4+ T cells inhibited the production of

peanut-specific IgE and increased the levels of IgG in mice, which

demonstrated that blockade of the pathway between PD-1 and its

ligand is protective against allergic immune responses (104).
8 Immune privilege

The immune-privileged microenvironment represents a special

immunological condition, where foreign antigens can be tolerated

without inducing excessive immune responses. The anterior

chamber of the eyes, testis, and the pregnant uterus are all

regarded as physiological immune-privileged sites in humans. As

previously mentioned, PD-1 signaling plays an important role in

controlling autoimmunity and inducing immune tolerance (46, 59).

Consequently, this inhibitory pathway has been studied in the

maintenance of immune privilege (110, 111). Yang et al. (112)

found that PD-L1 was expressed constitutively in human ocular cell

lines and was significantly upregulated in inflamed ocular tissues

compared with that in normal eyes. Moreover, IFN-g, TNF-a, and
IL-5 production by activated T cells cocultured with ocular cells was

significantly enhanced in the presence of an anti-PD-L1 blocking

antibody (112). Animal experiments demonstrated that PD-1 and

PD-L1 were present in the testicular tissue of adult mice (113). PD-1

was mainly localized to the germ cells and was dependent on the

developmental stage of the mouse, suggesting that it might play a

role in spermiogenesis (113). PD-L1 was constitutively expressed in

Sertoli cells, which could secrete soluble PD-L1 into the testicular
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privilege (113). Recent data have shown that PD-L1 is

overexpressed in testicular germ cell tumors, but is not expressed

in normal human testicular tissue, suggesting the potential for PD-

1/PD-L1 as therapeutic targets in testicular germ cell tumors (114).

The PD-1/PD-L1 pathway plays a vital role in the process of

allowing pregnancy by suppressing the maternal immune

response to paternally inherited alloantigens (110). PD-L1

expression increases during the progression of pregnancy (59,

110). Decreased mRNA and protein levels of PD-L1 in placental

villi were observed in women with recurrent miscarriage in

comparison with early normal pregnancy (115). Blockade of PD-

L1 signaling during murine pregnancy resulted in higher rates of

premature terminated pregnancies and decreased litter sizes (116).

Trophoblastic cells create a tolerogenic fetal-maternal interface by

upregulating PD-L1 in syncytiotrophoblasts and intermediate

trophoblasts, and trophoblastic tumors might also use PD-L1

expression to evade the host immune response, thereby

promoting their survival (117). B7-H3 and VISTA are also

observed to be highly expressed in gestational trophoblastic

neoplasia (GTN), and might be potential immunotherapeutic

targets for GTN treatment (118).
9 Immune-related adverse
events related to anti-PD-1
and anti-PD-L1 drugs

With the increasing therapeutic use of anti-PD-1/PD-L1

immune-checkpoint antibodies in the clinic, more immune-

related adverse events (irAEs) involving the skin, endocrine

glands, gastrointestinal tract, lungs, liver, heart, and blood have

been reported (119–123). The application of immune checkpoint

inhibitors (ICIs) destroys the protection of the autoimmune

response, enhances the activity of T cells against antigens

presented in tumors and healthy tissues, and increases the level of

pre-existing autoantibodies and inflammatory cytokines, leading to

a series of irAEs, which are discrete and nonspecific (124). Patients

responding to ICIs are thought to have a greater likelihood of

autoimmune toxicities and a higher risk of irAEs because of their

more treatment-responsive immune system and cross-reactivity

between the tumor and host tissue (47). Differences regarding the

risk of irAEs might exist between the different types of anti-PD-1

and anti-PD-L1 antibodies (125, 126). Anti-PD-1 antibodies might

induce more irAEs than anti-PD-L1 antibodies because inhibitors

targeting PD-1 also block the binding of PD-L2, which might

generate inhibitory signals affecting the immune response (125).

A trial-level meta-analysis showed a lower risk of overall grade ≥ 3

irAEs with anti-PD-L1 antibodies compared with that from anti-

PD-1 antibodies (126). Furthermore, lower risks of overall any-

grade irAEs and grade ≥ 3 irAEs were observed for atezolizumab

and avelumab versus pembrolizumab, respectively (126). In

addition, different tumor types might drive different irAEs.

Dermatitis and arthritis were more common in patients with

melanoma than in those with renal cell carcinoma, while
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pneumonia and dyspnea were less common in patients with

melanoma (124).

A broad spectrum of irAEs affects almost all tissues and organs,

with a variety of clinical presentations and diagnostic

considerations (119). The incidence and mortality of irAEs have

been reported as 15–90% and 0.3–1.3%, respectively, in clinical

studies (127). Adverse cutaneous toxicities are the most prevalent

irAEs and mainly manifest in the form of maculopapular rash and

pruritus (119). Dermatological toxicities are usually mild and rarely

life-threatening, including Steven-Johnson syndrome and toxic

epidermal necrolysis (128). Immune-related endocrine events are

very common, such as hyperthyroidism, hypothyroidism, diabetes

mellitus, and hypophysitis, which can be treated by exogenous

administration of the missing hormone (129). ICI-induced

gastrointestinal toxicities are one of the most common irAEs

affecting patients, involving the oral mucosa to the rectum, with

mild to life-threatening symptoms. The main clinical

manifestations are diarrhea, colitis, and inflammatory bowel

disease, and most occur after 2–3 cycles of ICI treatment (124).

In patients treated with anti-PD-1 antibodies, 6.0–16.0% of them

reported gastrointestinal irAEs (130). Pulmonary toxicities

described in irAEs include pneumonitis, sarcoidosis, pleural

effusions, and reactive airway disease. The incidence of

checkpoint-inhibitor pneumonitis in patients with melanoma

receiving anti-PD-1 monotherapy and combination therapy was

3.8% and 9.6%, respectively (129). Hepatitis is a relatively common

irAE and presents as an asymptomatic increase of aspartate

transaminase, alanine transaminase, and total bilirubin (130).

Cardiovascular irAEs are relatively uncommon, but are very

dangerous, with considerable mortality. Myocarditis is the most

commonly documented cardiovascular complication of ICIs and

might manifested as fatigue, chest pain, acute heart failure,

cardiogenic shock, arrhythmias, or sudden death (127). The

hematological adverse events affected by ICIs have reported

frequencies of 3.6% for all grades and 0.7% for grades III–IV, and

included immune thrombocytopenia, pancytopenia, aplastic

anemia, neutropenia, hemolytic anemia, bicytopenia, pure red cell

aplasia, and cytokine release syndrome with hemophagocytic

syndrome, in which their frequency was higher under anti-PD-1

and anti-PD-L1 therapy than under anti-CTLA-4 therapy (131).

Prompt recognition and intervention for immune-related toxicities

are required to optimize clinical outcomes.
10 Conclusion

Significant advances have been made in immunotherapy in the last

decade because of our increased understanding of the biological

consequences of immune checkpoint molecules. Immune checkpoint

blockade can recover T cell activation and might provide novel

therapeutic approaches for immune-associated disorders. In this

review, we focused on the role of PD-1 signaling in health and

immune-related diseases. Fundamental research concerning the PD-1
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pathway in tumor immunity, autoimmunity, infection immunity,

transplantation immunity, allergy, and immune privilege, has

expanded our knowledge of immune regulation and supports the

development of drugs that modulate immunity. In addition, irAEs

are important in the successful application of the immune checkpoint

blockers targeting PD-1 receptor and its ligands.
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PD-1 programmed cell death 1

PD-L1 programmed cell death 1 ligand 1

PD-L2 programmed cell death 1 ligand 2

MHC major histocompatibility complex

TCR T cell receptor

APCs antigen-presenting cells

CTLA-4 cytotoxic T lymphocyte-associated antigen-4

CD28 cluster of differentiation 28

CD80 cluster of differentiation 80

Gal-9 galectin-9

TIM-3 T cell immunoglobulin and mucin domain 3

irAEs immune-related adverse events

Ig immunoglobulin

ITIM immunoreceptor tyrosine-based inhibitory motif

ITSM immunoreceptor tyrosine-based switch motif

ICOS inducible co-stimulatory molecule

NFAT nuclear factor of activated T cells

FOX Forkhead box protein

IRF9 interferon regulatory factor 9

CTLs cytotoxic T lymphocytes

PI3K phosphoinositide 3-kinase

PDK1 phosphoinositide-dependent kinase 1

mTOR mammalian target of rapamycin

MAPKK mitogen-activated protein kinase kinase

ERK extracellular-signal-regulated kinase

JAKs Janus kinases

STAT signal transducers and activators of transcription

VISTA V-domain Ig suppressor of T cell activation

CRD carbohydrate-recognition domain

PD-1H programmed cell death 1 homolog

PSGL-1 P-selectin glycoprotein ligand 1

VSIG3 V-set and Ig domain-containing 3

IFN-g interferon gamma

RGMb repulsive guidance molecule b

GPI glycosylphosphatidylinositol

BMP bone morphogenetic proteins

Hh Hedgehog

FDA Food and Drug Administration
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PTM Post-transcription modification

IBD inflammatory bowel disease

SLE systemic lupus erythematosus

T1D Type 1 diabetes

TLR toll-like receptor

IFN-1 type I interferon

ANCA antineutrophil cytoplasmic antibody

IBM inclusion body myositis

PM polymyositis

mAbs monoclonal antibodies

aGVHD acute graft versus host disease

LCMV lymphocyte choriomeningitis virus

HIV human immunodeficiency virus

HBV hepatitis B virus

HCV hepatitis C virus

COVID-19 coronavirus disease 2019

Tregs regulatory T cells

EBV Epstein-Barr virus

CAEBV chronic active Epstein-Barr virus infection

allo-HSCT allogeneic hematopoietic stem cell transplantation

Mbt Mycobacterium tuberculosis

MDSCs myeloid derived suppressor cells

FKBP FK506-binding protein

LCN2 Lipocalin 2

map-PD-L1 membrane-anchored-protein PD-L1

Th2 T helper type 2

AHR airway hyperreactivity

GTN gestational trophoblastic neoplasia

ICIs immune checkpoint inhibitors.
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