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Although estrogen is predominantly related to the maintenance of reproductive

functioning in females, it mediates various physiological effects in nearly all

tissues, especially the central nervous system. Clinical trials have revealed that

estrogen, especially 17b-estradiol, can attenuate cerebral damage caused by an

ischemic stroke. One mechanism underlying this effect of 17b-estradiol is by

modulating the responses of immune cells, indicating its utility as a novel

therapeutic strategy for ischemic stroke. The present review summarizes the

effect of sex on ischemic stroke progression, the role of estrogen as an

immunomodulator in immune reactions, and the potential clinical value of

estrogen replacement therapy. The data presented here will help better

understand the immunomodulatory function of estrogen and may provide a

basis for its novel therapeutic use in ischemic stroke.

KEYWORDS
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1 Introduction

Stroke is the leading cause of morbidity and mortality after cardiac diseases and

cancers, affecting 15 million individuals worldwide annually (1). As the risk of stroke

increases with age, increasing life expectancy and rising aging population will significantly

burden the economy (2). Reportedly, the economic burden of stroke has been estimated to

reach $184.1 billion by 2030 (3). Moreover, ineffective treatments of stroke along with the

aging of the population will increase the risk of mortality and long-term disability in the

future (4). Currently, the primary barrier to establishing effective therapeutic strategies is

the limited understanding of mechanisms underlying secondary neuronal damage after

stroke-induced central nervous system (CNS) injuries (5). In addition, numerous

preclinical studies have failed to translate into clinical use owing to the enrollment of

only male animals; this emphasized the consideration of sex differences in stroke etiology.

Currently, the Stroke Therapy Academic Industry Roundtable guidelines recommend
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considering age and sex differences when translating preclinical

results in clinical trials (6, 7). Indeed, accumulative evidence has

revealed that sex is an important factor in the etiology of stroke-

induced CNS injuries (8). Therefore, a better understanding of the

potential effect of sex can improve clinical prognosis and help

establish novel therapeutic strategies. This study provides a

comprehensive review of the mechanisms underlying sex-related

differences observed in post-stroke CNS injuries, including genetic

alteration, estrogen-mediated immune regulation, and downstream

signaling pathways. Moreover, the review summarizes the anti-

inflammatory effects of estrogen on the brain and emphasizes the

clinical potential of estrogen-based therapeutic strategy in patients

with stroke.
2 Incidence and severity of ischemic
stroke based on sex

According to epidemiological data, stroke is a sexually

dimorphic disease (9, 10). Although the incidence of stroke is

much higher in men, women have been reported to have severe

CNS injuries, higher morbidity and mortality, and greater post-

stroke neurobehavioral deficits. However, according to the Greater

Cincinnati/Northern Kentucky Stroke Study and data from the

National Institutes of Neurological Disorders and Stroke,

approximately 55,000 more women suffer from stroke annually

than men, owing to the longer life expectancy in women (11).

Although the incidence of stroke is higher for men, women with

stroke have a higher mortality rate (58%), poorer recovery, and

greater long-term disability (12). Currently, the incidence rate of

stroke has decreased from 19.5% to 14.5% in men, but it has only

modestly decreased from 18.0% to 16.1% in women (13). Moreover,

women in the age groups of 19–30 and 45–54 years have a higher

risk of stroke than men in the same age groups. This may be

attributed to the alterations in estrogen status during this age.

Particularly, the rapid decreases and alterations in estrogen levels

lead to several disorders, which eventually increase the risk of

stroke (14).

Although estrogen is a sex hormone in females that regulates

reproductive function, it also plays a role in several pathological

processes, especially in the CNS (14, 15). Accumulative evidence has

demonstrated that estrogen, especially 17b-estradiol, has a

protective role in brain injuries after ischemic stroke (16). This

protective effect of 17b-estradiol is mediated by several

mechanisms, including the regulation of local and systemic

immune responses after stroke onset (17).

3 Effect of sex on
post-stroke outcomes

It has been well documented that the sex chromosome

complement is responsible for sexual dimorphism (XX for

female and XY for male) (18). Accordingly, a previous study has

assessed sex-related differences in the expression of X

chromosome genes in patients with ischemic stroke (19). The
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study found that in females, X chromosome-related genes were

enriched in TNFR1, interleukin (IL) 17, and natural killer cell

signaling pathways, whereas in males, the X chromosome-related

genes were highly expressed in pathways involved in cell

development, cellular migration, and pro-inflammatory

reactions (20, 21). Moreover, it has been demonstrated that

genes associated with the X chromosome are responsible for

cellular processes occurring after a stroke, including the activity

of NF-kB activating protein, tissue inhibitor of metalloproteinase

1, and IL-1R-associated kinase (22). Specifically, the X

chromosome contains several estrogen-response element (ERE)

sequences. A previous study has identified 12,515 ERE sites in the

human genome and 11,810 in the mouse genome. Yang et al.

assessed 300 mice and reported more than 10,000 genes exhibiting

sex-dependent expression in somatic tissues (23). Reportedly,

approximately 13% of genes in the brain contribute to sexual

dimorphism, including 355 in females and 257 in males (24).

To date, several studies have focused on the effects of sex

hormones on post-stroke outcomes. Studies have additionally

revealed the role of genetic sex differences in post-stroke

outcomes. Reportedly, the sex hormone estrogen plays a critical

role in sexual dimorphism after vascular attacks; however, this effect

of estrogen is not fully accounted for in post-stroke outcomes

between males and females. Based on experimental studies,

several cell death-associated signaling pathways function

independently of sex hormones but have been found to function

differently in both sexes. In males, ischemia-induced cell death is

predominantly triggered via the activation of poly ADP-ribose

polymerase (PARP-1), an NAD-dependent DNA repair enzyme.

The activation of PARP-1 induces further DNA damage, which

results in the release of mitochondrial apoptosis-inducing factor

and its subsequent translocation into the nucleus (25). Under the

condition of ischemic stroke, PARP-1 activation can be observed in

both sexes; however, the neuroprotective effects of this pathway

were abrogated in males (26). Moreover, the inhibition or genetic

deletion of PARP-1 induced these neuroprotective effects only in

males, suggesting a distinct mechanism of the PARP-1 pathway in

this sex (27). In addition, the caspase-mediated apoptotic pathway

is the predominant mechanism underlying cell death under the

conditions of ischemic stroke-induced brain injury.

Cytosolic cytochrome C (Cyto C) is an essential component of

the intrinsic caspase pathway. After a stroke, neurons exhibit

greater resistance to nitrosative stress and higher Cyto C levels in

females than males (28). The main subjects in the study were

postmenopausal or old women or ovariectomized (OVX) female

models. The lack of estrogen leads to a significant increase in Cyto C

(5). Moreover, neuronal responses differ according to sex. A

previous study has revealed that after stroke, the caspase

expression pattern in females was different from that in males. In

addition, pan-caspase inhibitors preferentially protected females,

but no such significant effect was observed in males. On the

contrary, post-stroke males exposed to oxygen-glucose

deprivation were found to be preferentially protected by neuronal

NOS (nNOS) inhibitors, whereas females were not (29). Of note,

these sexually dimorphic protective effects of caspase inhibitors can

be observed in intact females as well as in ovariectomized (OVX)
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females and females who receive estrogen replacement therapy

(ERT), indicating that these neuroprotective effects are

independent of sex hormones (30).
4 Downstream signaling pathways
of estrogen

Estrogen is a lipophilic steroid hormone that can easily diffuse

across cellular membranes, especially the blood–brain barrier (31).

Naturally, estrogen is synthesized from cholesterol in the ovaries

and occurs in three forms: estrone, estradiol, and estriol (32).

Estrone is also known as E1, estradiol as E2, and estriol as E3.

Particularly, estradiol exists as 17a and 17b-estradiol, of which 17b-
estradiol is the most prevalent and most potent female gonadal

hormone, followed by estrone and estriol (33). Recently, it has been

revealed that the role of estrogen is not limited to reproductive

function. Via the bloodstream, estrogen is distributed to various

tissues, such as the cardiovascular system, immune system, and

CNS, where it exerts distinct effects (34, 35).

Estrogen exerts its functions by binding to estrogen receptors

(ERs), which are present in several tissues, including the brain

parenchyma (36). To date, three types of ERs have been identified:

ERa, ERb, and G-protein coupled receptors (37–39). Reportedly,

estrogen mediates its effects via two signaling pathways (40). The

first is the genomic pathway, which involves ERa and ERb. After
the binding of estrogen to ER, the activated receptor forms a

homodimer and is delivered into the cell nucleus. Here, estrogen

further binds to the ERE in the promoter site of various genes and

serves as a transcription factor (41). The second way by which

estrogen elicits its effects is through a non-genomic mechanism. In

this mechanism, the ligand–ER dimer can locate itself in the

cytoplasm or at the membrane, eventually activating the

downstream protein kinases and phosphatases (42).
5 Regulatory role of 17b-estradiol
in neuroinflammation

Ischemic stroke damages the ischemic core in the brain owing

to the sudden deprivation of blood flow, oxygen, and nutrients (43,

44). A variety of ischemic cascade reactions can be observed within

a few minutes after stroke onset, including increased oxidative stress

and mitochondrial dysfunction, which eventually lead to cell

apoptosis. These cascade reactions also include cell death-

associated damage-associated molecular patterns (DAMP) and

subsequent inflammatory responses (45). DAMPs promote the

local activation of microglia and induce the recruitment of

leukocytes (46). In this microenvironment, immune cells secrete

pro-inflammatory cytokines, such as IL-1b, IL-6, and TNF-a, which
induce local or systemic inflammatory responses (46, 47).

Accumulative evidence has revealed that such immune responses

can aggravate cerebral ischemic injuries as well as promote nerve

regeneration, attenuate inflammation, and improve tissue repair
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after stroke (48, 49). In addition, the such inflammatory responses

in brain can be observed in several conditions, such as infection, and

are often associated with an increased risk of ischemic stroke. In line

with this, a study has revealed that approximately 30% patients

developed stroke during infection (50).

While the protective effects of 17b-estradiol after stroke are

partially mediated by the neuroprotective pathways in the brain and

immune regulation, brain injuries and tissue repairs are dependent

on the immune responses after stroke onset. Specifically, the

administration of 17b-estradiol after stroke can protect neural

function and promote recovery through immune regulation (51).

Reportedly, 17b-estradiol regulates inflammation via the activation

of macrophages and release of anti-inflammatory cytokines,

including IL-10 and TGF-b (52) These inflammatory responses

observed in response to 17b-estradiol differ with sex throughout the

lifespan and may contribute to the sexually dimorphic responses

observed after stroke. However, there is still limited understanding

regarding the relationship between sex hormones and

immune regulation.
5.1 Estrogen and innate immunity

Stroke is associated with a significant increase in estrogen levels,

which suggests an immediate physiological reaction following brain

injury. The rapid, local production of estrogen has been reported to

be associated with the activation of innate immunity (53).

Reportedly, 17b-estradiol can inhibit the production and release

of pro-inflammatory cytokines, including IL-1b, IL-6, and TNFa.
This explains the role of 17b-estradiol in modulating immune

responses, implicating its use as a therapeutic strategy (54).
5.1.1 Estrogen and microglia
Microglia are derived from the primary myeloid precursors and

are the resident immune cells in CNS (55). Accordingly, the critical

role of microglia in brain injuries has been extensively explored. It

has been reported that following brain injury, the number of

microglia and the intensity of immune responses differ based on

sex (56). A preclinical study has demonstrated that female mice

have more microglia in the hippocampus than male mice. In

addition, old female mice were found to have more microglia

than younger ones, which accounts for the production and release

of sex hormones (57). Moreover, according to an experimental

study, the administration of estrogen can suppress microglial

proliferation (58). In OVX female mice, ERT was found to reduce

the number of microglial cells in the aged group. Furthermore,

ovariectomy was found to increase the number of microglia and

abrogate the restraining effects on microglial activation (59).

Reportedly, estrogen induces the maintenance of resting

phenotype with ramified morphology and downregulates MHCII

expression (60). Furthermore, the ERs preset on microglia allow for

estrogen to mediate its effects. In mouse models of middle cerebral

artery occlusion, ERa knockout was found to activate the microglia

and further induce larger infarcts. These additionally provide
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evidence for an ADIOL/ERb/CtBP-transcription pathway that

regulates inflammatory responses in microglia and can be

targeted by selective ERb modulators (61). Moreover, estrogen

can inhibit microglial activation and reduce the level of

proinflammatory cytokines, thus mediating neuroprotective effects

through both ERa and ERb activation (62–64).

In animal models of traumatic brain injury, estrogen was found

to inhibit TLR4 and NF-kB protein expression; reduce the

expression of the proinflammatory factors IL-1b, IL-6, and TNF-

a; and decrease the number of complement C3d/GFAP-positive

cells and complement C3d protein expression (65). Similarly, in

animal models of spinal cord injury, microglial and astrocyte

activation were both significantly inhibited, along with

attenuation of the secretion of inflammatory mediators (66).

Specifically, the location of ERb in the microglial cytoplasm

suggests the involvement of the nonclassical effects of estrogen on

microglia (67). To this extent, a study has demonstrated that in

microglial cells, estrogen-mediated anti-inflammatory pathways are

mediated by the activation of the mitogen-activated protein kinase

(MAPK) signaling pathway (68, 69). Notably, ERT has been found

to stimulate early postischemic expression of bcl-2 and bfl-1 and

reduce brain injury (70). In addition, estrogen can significantly

downregulate factors mediating adaptive immunity in microglial

cells; this highlights the multi-faceted regulatory effects of estrogen

on microglial parameters related to antigen presentation and T-cell

interaction (71) (Table 1).
Frontiers in Immunology 04
5.1.2 Estrogen and monocytes
Monocytes and macrophages play an important role in the

resolution of inflammation by scavenging apoptotic neutrophils. In

response to inflammatory signals from injury sites, monocytes are

rapidly mobilized. Although it has been reported that monocyte

infiltration in the injured brain mediates both beneficial and

detrimental effects on immune regulation after stroke, the

number of monocytes is positively associated with the risk of

post-stroke infection (72). Reportedly, estrogen affects the

functioning of monocytes by significantly altering myelopoiesis

and monocyte migration. Specifically, during ovulation and

gestation in females, the count of circulating monocytes is much

higher than during other stages of the reproductive cycle. Estrogen

also affects monocyte adhesion (73) by reducing the migratory and

adhesive capacity of monocytes. This way estrogen limits stroke-

induced inflammatory reactions, further alleviating the cerebral

ischemia-reperfusion injury and selectively suppressing the

activation of the neuroinflammatory cascade (74). In addition,

several studies have demonstrated the anti-inflammatory effects of

estrogen on monocytes. It has been reported that 17b-estradiol can
induce the formation of vascular endothelial growth factor, while

dihydrotestosterone can antagonize the effect of 17b-estradiol by
regulating adenylate cyclase in THP-1 cells, which is mediated by

GPR130 (75, 76). Another study demonstrated that a physiological

dose of estrogen acutely stimulates nitric oxide release from human

monocytes by activating estrogen surface receptors that are coupled
TABLE 1 Anti-inflammatory effects of estrogen on microglia.

Year Species Treatment Effects on inflammation Reference

2000 Rat,
mouse

17b-estradiol +
LPS

Estrogen receptor-dependent activation of MAP kinase-mediated anti-inflammatory pathways in microglial
cells.

(68)

2001 Rat,
mouse

17b-estradiol +
LPS

Pre-treatment of microglial cells with physiological concentrations of 17b-estradiol suppressed TAT-
mediated microglial activation by interfering with TAT-induced MAPK activation.

(69)

2001 Rat 17b-estradiol +
LPS

Inhibited the expression of iNOS, PGE2, and MMP-9. (62)

2004 Rat 17b-estradiol +
hypercholesteremia

Estrogen replacement stimulated early post-ischemic expression of bcl-2 and bfl-1 and reduced stroke-
related damages.

(70)

2005 Rat 17b-estradiol +
LPS

Estrogen inhibits microglial activation and thus exerts neuroprotective effects through both ERa and ERb
activation.

(67)

2005 Mouse 17b-estradiol +
LPS

Estrogen can significantly decrease adaptive immunity in microglial cells, highlighting its multi-faceted
regulatory effects ranging from microglial activation to antigen presentation and T-cell interaction.

(71)

2006 Mouse 17b-estradiol +
LPS

Inhibited the expression of CCL2, MIP-2, and TNF-a. (63)

2011 Mouse,
human

5-androsten-3b,
17b-diol + LPS

Suppressed inflammatory responses and the microglial expression of IL-1b, IL-6, IL-23, and iNOS. (61)

2016 Mouse 17b-estradiol Reduced the level of proinflammatory cytokines, including IL-1b and TNF-a. (64)

2018 Mouse 17b-estradiol Significantly inhibited both microglial and astrocyte activation and attenuated the activity of inflammatory
mediators.

(66)

2021 Mouse 17b-estradiol Inhibited the protein level of TLR4 and NF-kB, reduced the expression of IL-1b, IL-6, and TNF-a, and
decreased the number of complement C3d/GFAP-positive cells and the protein level of complement C3d.

(65)
f

LPS, Lipopolysaccharid; MAPK, Mitogen-activated protein kinase; TAT, Transactivator of transcription; iNOS, Inducible nitric oxide synthase; PGE2, Prostaglandin E2; MMP-9, Matrix
metalloproteinase-9; BCL-2, B-cell lymphoma-2; ER, Estrogen receptor; CCL2, Chemokine ligand 2; MIP-2, Macrophage inflammatory protein 2; TNF-a, Tumor necrosis factor alpha; IL-1b,
Interleukin 1 beta; NF-kB, Nuclear transcription factor kappa B.
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to increases in intracellular calcium (77). Moreover, estrogen was

found to inhibit proinflammatory cytokine release from activated

monocytes partly by modulating CD16 expression (78, 79). In

addition, at physiological concentrations, estradiol mediates

monocyte adhesion as well as basal and hypercholesterolemia-

induced increases in CXCR2 and MCP-1 expression (80–82)

(Table 2). These data highlight that estrogen plays a role in post-

stroke brain injury by significantly affecting monocytes and

their functioning.

5.1.3 Estrogen and macrophages
Hematopoietic stem cell-derived macrophages are another type

of resident immune cells, apart from microglia, in CNS (83). These

resident macrophages and microglia share overlapping features and

have similar biomarkers, which complicate the assessment of their

unique roles in estrogen-mediated neuroprotective effects. In

addition, resident macrophages can continually renew from the

bone marrow, unlike microglia (84, 85). So far, the potential role of

resident macrophages is limited and based on the study of

peripheral macrophages and cell lines. Therefore, accurate

discrimination between the roles of microglia and macrophages

after stroke requires further study. Reportedly, the proliferation and

function of resident macrophages are associated with sex. A recent

study focused on the changes in cell composition and immune

function with sex and revealed higher resident leukocytes in the

pleural and peritoneal cavities in females (86). In addition, resident

macrophages had higher Toll-like receptor (TLR) expression and

greater phagocytic and NADPH oxidase activities in females than in

males (87). Reportedly, OVX can abrogate such effects caused by sex

differences as well as regulate chemokine function, and macrophage

count in females to the level observed in males. Interestingly, it has

been revealed that OVX does not significantly alter T lymphocyte

counts, suggesting no association of these lymphocytes with

gonadal steroids (88). So far, although the role of sex differences

in T lymphocyte populations has been explored in several

autoimmune diseases, their effects in patients with stroke have
Frontiers in Immunology 05
not been fully investigated. Moreover, 17b-estradiol has been shown
to inhibit the expression of inflammatory genes (TNF-a, IL-1b,
MIP-2, and MCP-1) by controlling NF-kB or MAPK signaling

pathway and attenuating H3 and H4 histone acetylation as well as

cAMP response element binding protein-binding protein in

macrophages (89–95) (Table 3). The above mentioned results of

studies demonstrated the pivotal role of macrophages in

inflammatory response post-ischemic stroke.

5.1.4 Estrogen and neutrophils
Stroke is associated with the disruption of blood–brain barrier,

following which neutrophils immediately migrate into the injured

sites (96). At the early stage, neutrophil infiltration can activate

monocyte-derived macrophages to scavenge debris. Moreover, at

sites of inflammation, neutrophils release pro-inflammatory

cytokines that recruit more leukocytes. However, excessive

neutrophil infiltration exacerbates brain injury (97). According to

clinical studies, neutrophil accumulation is related to poor

prognosis in patients with brain injuries (98). Several studies have

revealed a positive correlation between estrogen levels and

neutrophil counts (95, 99). To this extent, a study has reported

that in females, myeloperoxidase activity in neutrophils is higher

than that in males. Moreover, estrogen has been reported to

promote the degranulation and release of myeloperoxidase,

elastase, cytokine-induced neutrophil chemo-attractant-1 (CINC)-

1, CINC-3, and intercellular adhesion molecule-1 as well as increase

nNOS expression and superoxide levels in neutrophils (100–103).

The dynamics of neutrophil infiltration after stroke into the brain

parenchyma and subsequent neutrophil-mediated responses have

yet to be completely determined (104). Available studies suggest

that 17b-estradiol can inhibit the synthesis of neutrophil

chemoattractants at ischemic sites and regulate excessive

neutrophil infiltration. Moreover, 17b-estradiol can inhibit

neutrophil adhesion to endothelial cells; mediate the clearance of

neutrophils; and inhibit the expression of chemotaxis, IL-1, IL-6,

and CINC-2a to neutrophils by binding to Era. It can additionally
TABLE 2 Anti-inflammatory effects of estrogen on monocytes.

Year Species Treatment Effects on inflammation Reference

1998 Rabbit 17b-estradiol +
hypercholesteremia

Basal and hypercholesterolemia-induced increases in MCP-1 protein are decreased by physiological
concentrations of estradiol.

(80)

1999 Human 17b-estradiol A physiological dose of estrogen acutely stimulated NO release from monocytes by activating an
estrogen surface receptor.

(76)

1999 Rabbit 17b-estradiol Inhibited monocyte adhesion by inhibiting VCAM-1 expression. (81)

2002 Human 17b-estradiol Increased NGF and vascular endothelial growth factor levels in THP1 cells (75)

2003 Human 17b-estradiol Increased NGF levels in THP1 cells (76)

2003 Rat 17b-estradiol +
hypercholesteremia

Physiological concentrations of estradiol modulated basal and hypercholesterolemia-induced
increases in chemokine receptor CXCR2.

(82)

2004 Human 17b-estradiol Decreased levels of TNFa, IL-1b, and IL-6 via the modulation of CD16 expression. (78)

2007 Human 17b-estradiol + LPS Decreased CXCL8 expression and inhibited LPS-activated monocytes. (79)

2020 Rat 17b-estradiol Alleviated cerebral ischemia-reperfusion injury and selectively suppressed the activation of the
neuroinflammatory cascade.

(74)
f

MCP-1, Monocyte chemoattratctant protein-1; NO, Nitric oxide; VCAM-1, Vascular cell adhesion molecule 1; NGF, Nerve growth factor; CXCL, C-X-C motif chemokine ligand.
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inhibit IFN-g-induced Stat1 phosphorylation as well as

downregulate CD40 and CD40L protein expression (105–

107) (Table 4).

5.1.5 Estrogen and dendritic cells
DCs are considered the only antigen-presenting cells that are

involved in post-stroke injury and have a remarkable ability to

activate memory and naïve T lymphocytes (108). DCs are a member

of innate immunity and play a critical role in the phagocytosis and

release of inflammatory factors. They additionally play a unique role

in bridging innate and adaptive immunity (109), owing to which

these cells have been correlated in a wide range of diseases,

including atherosclerosis, various cancers, and more recently,

stroke (110). Accumulative evidence has revealed increased

recruitment of DCs and their potential role in brain injury

following stroke onset. Moreover, an animal study has revealed

the presence of DCs with high MHCII and CD80 expression at 72

hours after reperfusion and has demonstrated their association with

lymphocyte migration in a time-dependent manner (111). In
Frontiers in Immunology 06
general, increased DC infiltration in the brain parenchyma after

stroke may be positively correlated to the degree of injury. Estrogen

administration in experimental autoimmune encephalomyelitis

(EAE) mice has demonstrated significant improvement in their

neurobehavior and outcomes as well as a marked reduction in the

DC count. In addition, 17b-estradiol was found to upregulate the

expression of MHCII, IL-10, CD40, CD83, CD54, IL-6, IL-8, MCP-

1, and osteoprotegerin; upregulate stimulative capacity, migratory

activity, and antigen-presenting capacity; and inhibit cell apoptosis

(112–115). DCs are considered the link between innate and

adaptive immunity. Moreover, DCs harbor antigens specific to T

lymphocytes, which on activation initiate adaptive immune

responses. Correspondingly, estrogen can induce DC

differentiation and MHC expression, which facilitate T

lymphocyte-mediated immune responses in the brain. Specifically,

17b-estradiol treatment is of great clinical value in regulating DCs.

A study has reported that 17b-estradiol administration induces

both the TLRs for IL-23 production in OX62+ DCs, thus

stimulating IL-6 and IL-1b production (116). In addition, 17b-
TABLE 3 Anti-inflammatory effects of estrogen on macrophages.

Year Species Treatment Effects on inflammation Reference

2004 Mouse 17b-estradiol +
IFNg

Attenuated H3 and H4 histone acetylation and cAMP response element binding protein to inhibit class II
MHC expression.

(90)

2005 Mouse 17b-estradiol +
LPS

Inhibited inflammatory gene expression by controlling NF-kB intracellular localization. (89)

2006 Mouse 17b-estradiol Elevated MyD88 and Src expression. (94)

2007 Mouse,
Rat

17b-estradiol Mediated salutary effects on macrophage cytokine production via the normalization of MAPK signaling
pathway.

(93)

2008 Mouse 17b-estradiol +
H2O2

Inhibited cytokine production mediated via TNF-a, IL-1b, MIP-2, and MCP-1. (91)

2010 Human 17b-estradiol +
LPS

Repressed NF-kB activation through the induction of kappaB-Ras2. (92)

2011 Mouse Physiological
estrogen

Increased the expression of TLR2/3/4, Myd88, CCL2, CX3CR1, CXCL1, CXCL12, CCR1, CCR2, CXCR4,
and NAPDH oxidase.

(86)

2022 Mouse 17b-estradiol Suppressed neutrophil- and macrophage-mediated production of IL-1b. (95)
f

MHC, Major histocompatibility complex; cAMP, Cyclic adenosine monophosphate; TLR, Toll-like receptors; NADPH, Nicotinamide adenine dinucleotide phosphate oxidase.
TABLE 4 Anti-inflammatory effects of estrogen on neutrophils.

Year Species Treatment Effects on inflammation Reference

1999 Human 17b-estradiol Increased nNOS and decreased CD18 expression. (102)

1999 Human Physiological
estrogen

Promoted MPO activity (103)

2004 Human 17b-estradiol
+ fMLP

Promoted MPO activity, elastase levels, superoxide levels, and LDL oxidation. (100)

2004 Rat 17b-estradiol Decreased chemotaxis and levels of IL-1, IL-6, and CINC-2a in neutrophils. (106)

2006 Rat 17b-estradiol Promoted MPO activity and CINC-1, CINC-3, and ICAM-1 expression. (101)

2006 Pig 17b-estradiol
+ IFNg

17b-estradiol binding to ERa blocked IFN-g-induced Stat1 phosphorylation, inhibited CD40 and CD40L
protein expression, and prevented neutrophil adhesion onto ECs.

(105)

2011 Human 17b-estradiol Increased nNOS annexin A1 expression and inhibited neutrophil adhesion onto ECs. (107)
MPO, Myeloperoxidase; CINC, Cytokine-induced neutrophil chemoattractant; EC, Endothelial cell; nNOS, Nerve nitric oxide synthetase; IFN-g, Interferon gamma.
rontiersin.org

https://doi.org/10.3389/fimmu.2023.1164258
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2023.1164258
estradiol induces CD86 expression in CD103+ DCs after allergen-

mediated upregulation of IL-5 in CD4+ T cells (117) (Table 5).
5.2 Estrogen and adaptive immunity

Evidence shows that 17b-estradiol can modulate the immune

microenvironment and control the infiltration of T lymphocytes in

the brain. The infiltration of cytotoxic T lymphocytes (CD8+)

exacerbates brain injury, while T regulatory cells (Tregs) mediate

anti-inflammatory effects and are responsible for reducing lesion

volume and improving prognosis after stroke (120). 17b-estradiol
administration can promote Treg responses through the inhibition

of Th1- and Th17-derived cytokines or by directly promoting the

proliferation of Tregs, upregulating PD-1 expression, and

downregulating T lymphocyte proliferation (118, 121).

Additionally, 17b-estradiol can promote Th2 response, thus

upregulating the expression of CD80, CD86, PD-L1/2, B7-H3/4,

IL-10, and TGF-b (119). Estrogen also plays a critical role in the

regulation of B lymphocytes. Previous studies have shown that

estradiol treatment protected purified B cells from apoptosis.

Similarly, estradiol was shown to protect mice splenic B cells of

from serum-deficiency-induced apoptosis; however, no effect was

observed on the proliferation of B cells (122).
6 ERT: estrogen and
immune regulation

It is well known that ERa is widely localized in the brain,

including the forebrain, hypothalamus, and hippocampus (123).

The binding of estrogen to ERa in the brain is responsible for

several effects in both the physiological and pathological states.

Reportedly, several genes are associated with neuronal survival

and are regulated by an ERE-containing promoter. In particular,

17b-estradiol can promote the transcription of such genes and

exert neuroprotective roles. This has been demonstrated in a study

that found that 17b-estradiol could promote the transcription of a
Frontiers in Immunology 07
wide range of genes (124). After brain injury, 17b-estradiol
administration can promote the upregulation of cell survival

proteins, including phosphoinositide 3-kinase, cyclic-AMP

response element-binding protein (CREB), Bcl-2, Bcl-x, c-fos,

and c-jun. Moreover, 17b-estradiol inhibits the expression of

apoptosis-related proteins, including Fas, FADD, and Bax, thus

subsequently downregulating Cyto C release (125). Accumulative

evidence has revealed the effects of downstream signaling of 17b-
estradiol. Administration of 17b-estradiol can activate the MAPK

pathway and promote the phosphorylation of CREB (126). In

addition, it can inhibit the activation of caspase-3/8 and thus

suppress ischemia-induced acetylation of p53 (127).

In the context of stroke, the neuroprotective effects of 17b-
estradiol have been demonstrated in OVX animal models of

ischemic stroke. OVX animals are the widely accepted model for

post-menopausal women, as the removal of ovaries in female

animals effectively mimics the diminished estrogen levels

observed in post-menopausal women (128). Based on an

extensive review of experimental studies, estrogen was found to

reduce lesion volume after transient or permanent cerebral ischemic

stroke in a dose-dependent manner. Therefore, pre-treatment with

estrogen is considered as a prevention strategy for stroke onset,

while post-treatment with estrogen is a potential therapeutic

strategy (129).

Currently, the positive effects of estrogen in patients with stroke

have been well investigated. However, according to the results of the

Women’s Estrogen for Stroke Trial and the Women’s Health

Initiative trial, estrogen may increase the incident risk of stroke,

which limits the establishment of a therapeutic strategy for stroke

based on estrogen (130). Of note, the therapeutic time window and

dose are the critical factors in the treatment of patients with stroke.

A previous clinical trial has reported that early administration of

ERT was associated with a lower risk of stroke onset than later

administration in the post-menopause phase (131). Moreover,

lower doses of estrogen exert stronger neuroprotective effects

against stroke.

Long-term administration of high-dose, micronized estradiol in

healthy women remarkedly increases the level of C-reactive protein
TABLE 5 Anti-inflammatory effects of estrogen on dendritic cells and adaptive immunity.

Year Species Treatment Effects on inflammation Reference

2004 Human 17b-estradiol Increased IL-6, IL-8, MCP-1, and osteoprotegerin levels as well as promoted stimulative capacity and migratory
activity.

(112)

2005 Mouse 17b-estradiol Increased MHCII, IL-6, IL-10, CD40, and CD54 levels; viability; and stimulative capacity. (113)

2006 Mouse 17b-estradiol Increased MHCII, IL-6, IL-10, CD40, and CD54 levels; viability; and stimulative capacity. (114)

2006 Mouse 17b-estradiol
+ LPS

Upregulated PD-1 expression and Treg activity and inhibited T lymphocyte proliferation. (118)

2008 Mouse 17b-estradiol
+ LPS

Increased MHCII, CD83, CD40, TNF, IL-6, and IL-12p40 expression; promoted antigen-presenting capacity; and
inhibited cell apoptosis.

(115)

2011 Mouse 17b-estradiol Promoted Th2 response and increased CD80, CD86, PD-L1/2, B7-H3/4, IL-10, and TGF-b expression. (119)

2016 Rat 17b-estradiol Promoted the stimulatory action of both TLRs for IL-23 production in OX62+ DCs as well as augmented their
stimulatory effects on IL-6 and IL-1b production.

(116)

2018 Mouse 17b-estradiol Enhanced CD86 expression in CD103+ DCs and upregulated IL-5 production in CD4+ T cells. (117)
f
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(CRP), a bio-marker used to assess vascular risk (132). Similarly, the

levels of endogenous estradiol are negatively associated with CRP

levels in young women, suggesting the anti-inflammatory effects of

estrogen (133). It has been suggested that ERT should be started

immediately at menopause to achieve maximal beneficial effect.
7 Potential therapeutic effects of
estrogen in patients with stroke

According to previous studies, 17b-estradiol can effectively

attenuate brain injuries, reduce infarct area, and promote

recovery in animal stroke models. However, these positive effects

have not been well supported by clinical data (134). Furthermore, a

variety of clinical trials have reported that ERT does not induce

protective effects against primary or secondary brain injuries and

instead increases the risk of stroke onset (130, 135).

The difference in the effectiveness of estrogen observed in

experimental and clinical studies may be attributable to

differences in conditions being treated. Experimental studies

assessed the treatment of ischemic cerebral injury, whereas the

clinical trials focused on the prevention of stroke, which has not

been thoroughly explored in experimental studies. In clinical trials,

time, duration, and dosage are the important factors that mediate

the negative effects of ERT (136). Based on clinical data, ERT can

increase the risk of venous thrombosis, whereas a percutaneous

approach to estrogen administration can reduce this risk (137, 138).

Therefore, low dosage, short-term treatment, and a percutaneous

approach will avoid increasing the risk of stroke onset and may

formulate a safe alternative for the prevention and treatment of

stroke. In a nested case-control study, short-term percutaneous

treatment with estrogen was considered the safest choice against

ischemic stroke (139). Compared with the oral approach, the

percutaneous approach avoids the first-pass metabolism of

estrogen in the liver. This prevents interaction with coagulation

factors, inflammatory cytokines, and sex hormone binding protein,

which reduces the risk of venous thromboembolism, which is often

observed with oral estrogen. According to a clinical study, estrogen

levels increase after stroke. Moreover, inflammatory control and the

addition of exogenous hormones are likely to improve neural

function in elderly male patients with stroke (140).
8 Conclusion

Generally, the host response to sterile inflammation is considered

as a beneficial reaction; however, a hyper-immune response or altered

signaling can lead to homeostatic imbalance and induce further

chronic inflammation. Evidence has revealed that prolonged

neuroinflammation is detrimental to clinical prognosis of stroke.

Moreover, stroke-induced immunosuppression can increase

susceptibility to infections, which complicates treatment. Because of

the delayed diagnosis and subsequent delay in treatment, it is

essential to establish new treatments with wider treatment
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windows. Neuro-inflammation is an attractive target for treatment

of stroke owing to its wide therapeutic window. Therefore, several

studies have attempted to identify novel neuroprotective strategies to

target immune reactions in patients with stroke.

Previous experimental studies have demonstrated that estrogen

is a potent immunomodulator and is considered a neuro-protective

molecule in ischemic stroke (34, 35). Specifically, after stroke onset,

the release of pro-inflammatory cytokines can aggravate brain

damage. Although the use of estrogen or its analogs to regulate

immune responses requires further exploration, ERT could be a

potential treatment that targets immune responses in patients with

stroke. Irrespective, experimental and clinical studies have not

reached a consensus regarding the role of estrogen in alleviating

post-stroke brain injury. This may be attributed to the conditions

being targeted, as experimental research is mainly aimed at the

treatment of acute ischemic stroke, while clinical trials are aimed at

the prevention of primary or secondary stroke (141, 142).

Furthermore, 17b-estradiol can regulate the immune system by

inhibiting the release of pro-inflammatory cytokines and

attenuating inflammatory reactions (143, 144). Despite the limited

pre-clinical data regarding the effects of 17b-estradiol on immune

regulation, the positive effects of 17b-estradiol on attenuating

inflammatory reactions have been proven. Understanding the

effects of 17b-estradiol provides the opportunity to explore novel

therapeutic strategies while avoiding the controversial off-target

effects of estrogen. Irrespective, it is necessary to establish more

animal models to replicate the clinical conditions to provide a basis

for future clinical trials.
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