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Regulation of microglia related
neuroinflammation contributes
to the protective effect of
Gelsevirine on ischemic stroke

Chunlei Xing1†, Juan Lv1†, Zhihui Zhu2†, Wei Cong1,
Huihui Bian1, Chenxi Zhang1, Ruxin Gu3, Dagui Chen1,
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Nanjing Medical University, Nanjing, China, 3Department of Geriatric Neurology, The Affiliated Brain
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Stroke, especially ischemic stroke, is an important cause of neurological

morbidity and mortality worldwide. Growing evidence suggests that the

immune system plays an intricate function in the pathophysiology of stroke.

Gelsevirine (Gs), an alkaloid from Gelsemium elegans, has been proven to

decrease inflammation and neuralgia in osteoarthritis previously, but its role in

stroke is unknown. In this study, the middle cerebral artery occlusion (MCAO)

mice model was used to evaluate the protective effect of Gs on stroke, and the

administration of Gs significantly improved infarct volume, Bederson score,

neurobiological function, apoptosis of neurons, and inflammation state in vivo.

According to the data in vivo and the conditioned medium (CM) stimulated

model in vitro, the beneficial effect of Gs came from the downregulation of the

over-activity of microglia, such as the generation of inflammatory factors,

dysfunction of mitochondria, production of ROS and so on. By RNA-seq

analysis and Western-blot analysis, the JAK-STAT signal pathway plays a critical

role in the anti-inflammatory effect of Gs. According to the results of molecular

docking, inhibition assay, and thermal shift assay, the binding of Gs on JAK2

inhibited the activity of JAK2 which inhibited the over-activity of JAK2 and

downregulated the phosphorylation of STAT3. Over-expression of a gain-of-

function STAT3 mutation (K392R) abolished the beneficial effects of Gs. So, the

downregulation of JAK2-STAT3 signaling pathway by Gs contributed to its anti-

inflammatory effect on microglia in stroke. Our study revealed that Gs was

benefit to stroke treatment by decreasing neuroinflammation in stroke as a

potential drug candidate regulating the JAK2-STAT3 signal pathway.
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1 Introduction

Stroke, a primary cause of severe disability, has become the

second leading cause of death worldwide, and ischemic stroke

constitutes 75–80% of all strokes (1, 2). In the clinic, the therapies

restoring blood flow, such as intravenous thrombolysis and

thrombectomy, benefit patients in acute ischemic stroke (1, 3).

Nevertheless, progressive neuronal degeneration and loss of

function are still challenging to solve because of the lack of

effective drugs (4–6). Therefore, it needs to develop new

approaches and discover new reagents for stroke.

Neuroinflammation, a specific event in stroke, is tightly related

to the pathophysiological process during stroke, enhancing neuron

death and dysfunction (2, 7, 8). Especially in the acute phase,

multiple components are released from the ischemic core, and

they can increase astrocyte and microglial activation as danger

signals (9, 10). In the progress of neuroinflammation in stroke,

microglia, resident immune cells in the brain, plays an essential role

in this pathophysiological process. In the acute phase, microglia are

often over-activated, and they mainly transform into an M1

phenotype which is the pro-inflammatory type and secretes pro-

inflammation factors, such as interleukin-1b (IL-1b), interleukin-6
(IL-6), and tumor necrosis factor (TNF) promoting inflammation.

Over-activated microglia also secrete other neurotoxic substances

aggravating brain damage (11, 12).

Gelsemium elegans is a traditional Chinese medicine widely used

to treat neuralgia, sciatica, rheumatoid arthritis, and acute pain (13,

14). Although multiple compounds are involved in the beneficial

effect of Gelsemium elegans, alkaloidal constituents are found to play

critical pharmaceutical roles in Gelsemium elegans, including

anxiolytic, antitumor, antistress, antipsoriatic, and analgesic

activities (15, 16). In these pharmaceutical roles, anti-inflammatory

is a typical character of alkaloidal constituents of Gelsemium elegans.

Some alkaloidal constituents are reported to alleviate

neuroinflammation, which benefits cognitive function and

neuropathic pain (17–19). Gelsevirine (Gs), an alkaloid from

Gelsemium elegans, has a novel hexacyclic cage structure and a

favorable safety profile. Gs improves age-related and surgically

induced osteoarthritis in mice by reducing local inflammation (20).

The potential ability to decrease inflammation makes Gs possible to

be used in treating other inflammation-related diseases in the central

nervous system, such as neurodegenerative diseases and stroke.

In the present research, we investigated the protective effects of

Gs on stroke and potential mechanisms. Our study revealed that Gs

decreased neuroinflammation and protected mice from stroke

through the JAK2-STAT3 signal. It provided a potential regent

for the treatment of stroke.
2 Materials and methods

2.1 Animals

Male C57BL/6 mice, about 8-9 weeks of age, were purchased

from Changzhou Cavens Company. The mice were fed standard

pellet diet with sterilized tap water for 12 h in black and white light
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and were free to move around. C57BL/6 mice were maintained

according to the Animals (Scientific Procedures) Act, 1986 of the

UK Parliament, Directive 2010/63/EU of the European Parliament

and the Guide for the Care and Use of Laboratory Animals published

by the US National Institutes of Health (NIH Publication No. 85–23,

revised 1996). Animal studies were approved by Ethics Committee of

Shanghai University (Approval NO. ECSHU2021-167) and reported

in compliance with the ARRIVE guidelines.
2.2 Transmit middle cerebral artery
occlusion (tMCAO)

Model group, low dose group, high dose group of preparation

on the right side of the tMCAO model, mice were anaesthetized

with 2% isoflurane in an air mixture before the MCAO. The

isoflurane concentration was maintained at 1.4% isoflurane in an

air mixture in the progress of MCAO. The supine position is fixed,

the mice carotid midline incision, the separation of the right

common carotid artery, external carotid artery and internal

carotid artery, then in the common carotid artery, distal external

carotid artery ligation, the clamp of artery, internal carotid artery

(21). A small incision was cut in the free segment of the external

carotid artery and the threaded plug was inserted. The thread plug

was inserted into the cranium to the middle cerebral artery through

the internal carotid artery at the branch of the common carotid

artery. The insertion depth of the threaded plug was (18.5 + 0.5)

mm. The model of the sham operation group was prepared until the

right common carotid artery, external carotid artery and internal

carotid artery were exposed and then sutured (22). Following

reperfusion, mice were sacrificed for research at the indicated

time. A homoeothermic heating blanket was used to maintain

core body temperature in the mice at 37°C during ischemia/

reperfusion (tMCAO) operation (21).
2.3 Neurological symptom scoring

After 24 h of cerebral ischemia-reperfusion, mice were scored

for neurobehavioral deficits by an observer unaware of the grouping

according to the Longa method five-point scale (23).

0 points: no signs of neurological deficits.

1 point: inability to fully extend the contralateral forelimb.

2 points: rotation to the contralateral side when walking, “tail-

chasing” phenomenon.

3 points: unstable standing, leaning to the opposite side.

4 points: inability to walk spontaneously and impaired

consciousness. Random evaluation test within the specified time,

a score greater than 1 means that the tMCAO model is

successfully established.
2.4 Rotarod test

The fixed-speed rotarod was used to test neurological deficits in

mice (Dunham and Miya, 1957). In the present test, animals were
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briefly pre-trained at a fixed speed (10 rpm). For the test, mice were

placed on the rod at 40 rpm for a maximum of 300 s. The animals

were tested two times with a rest of 60 min between each test (24).
2.5 Measurement of cerebral
infarct volume

After 24 h of cerebral ischemia-reperfusion, the brains of mice

were removed from the heads, placed in the refrigerator (-20°C) for

several minutes, the olfactory bulb, cerebellum, and low brainstem

were removed, and coronal cuts were made in 4 cuts into 5 slices (2

mm), with the first cut at the midpoint of the line connecting the

anterior pole of the brain and the optic cross, the second at the optic

cross, the third at the funicular stalk, and the fourth between the

funicular stalk and the caudal pole. Brain slices were stained with

red tetrazolium (TTC), and the staining solution consisted of

1.5 mL 1% TTC, 0.1 mL 1 mol/L K2HPO4, 3.4 mL saline, and

stained for 20 min at 37°C protected from light, with normal tissue

being red and infarcted tissue being white. 4% formaldehyde was

fixed for two days, and then the infarcted brain tissue was removed

by absorbing the liquid with filter paper, and the weight of the

infarcted brain tissue as a percentage of the total brain weight was

used as the percentage of infarcted brain tissue to total brain weight

was used as an indicator of brain infarct volume (23).
2.6 Brain slice preparation

Animals were deeply anesthetized with sodium pentobarbital

(50 mg/kg, i.p.) and underwent sternotomy, followed by

intracardiac perfusion with 200 mL saline and 200 mL 4% ice-

cold paraformaldehyde in 0.1 M phosphate-buffered saline. The

brain was removed, post-fixed in 4% paraformaldehyde for 4 h, and

subsequently allowed to equilibrate in 30% sucrose in phosphate-

buffered saline overnight at 4°C.
2.7 Immunofluorescence

Mice were anesthetized with isoflurane and perfused

intracardially with saline followed by paraformaldehyde (PFA,

4%) in phosphate buffer (pH 7.4). The brain was removed, post-

fixed with PFA overnight, cryoprotected in 30% sucrose, frozen, and

14-mm-thick sections were obtained in a cryostat. The sections were

fixed with ethanol, blocked with normal serum and incubated

overnight at 4°C with combinations of primary antibodies. Then,

sections were incubated for 2 h at room temperature with secondary

antibodies (Alexa Fluor-488, -546, -647, LifeTechnologies).

Immunoreaction controls were always carried out by omission of

the primary antibodies. Sections were counterstained with either

4’6-diamidino-2-phenylindole (DAPI) to visualize the cell nuclei

and they were observed under a confocal laser microscope (Leica,

SP5 or TCS SPE) (25).
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2.8 Western blot

After 24 h of cerebral ischemia-reperfusion, mice were

anaesthetized with 2% isoflurane in an air mixture and

sacrificed, and the brains were removed and placed on ice. We

used the scraping method to collect the treated cells, which were

also placed on ice. The cells were fully lysed with a whole protein

extraction kit. After centrifugation and separation, the

supernatant was absorbed and the protein concentration was

determined according to the BCA Protein Concentration Assay

Kit to adjust each sample to equal amounts of protein. The

samples were then denatured by adding the corresponding

reducing loading buffer and cooking for 10 min in an

ALLSHENG dry thermostat. Denatured proteins were separated

by 10% SDS-PAGE gel electrophoresis and then transferred to

PVDF membranes. To prevent non-specific protein binding sites

from binding to antibodies, PVDF membranes were closed in

TBS containing 0.1% Tween20 and 5% BSA for 90 min. PVDF

membranes were cut at the corresponding molecular weights and

incubated with rabbit anti-PARP-1 (1:1000), cleaved-caspase 9

(1:1000), Bcl-2 (1:1000), Bax (1:1000) and cleaved-caspase 3

(1:1000), respectively, overnight at 4°Cin the refrigerator. The

PVDF membranes were incubated with the corresponding

secondary antibodies for 2h at room temperature, then exposed

to ultrasensitive ECL chemiluminescent reagents and visualized

by Bio-Rad automated gel imaging system. Finally, the bands

were analyzed with Image for grayscale values to evaluate the

relative expression levels of the proteins (26).
2.9 Oxygen glucose deprivation (OGD)

Briefly, HT22 cells were inoculated in 6-well plates at a density

of 1x106 per well overnight and the culture medium was changed

into glucose-free DMEM and washed with 1 × PBS three times.

Cultures were then transferred to an incubator containing 5% CO2

and 95% N2 at 37°C for 4 h. Then, the culture medium was changed

into complete medium and cells were cultured at 37°C in a

humidified 5% CO2 incubator for 20 h and the medium were

collected as conditioned medium (CM) for the stimulation of BV2

cells (27).
2.10 The administration of LPS, CM and Gs
on BV2 cells

Briefly, BV2 cells were inoculated in 6-well plates at a

density of 1×106 per well or 96-well plates at a density of

5000 per well overnight. The culture medium was changed

into fresh complete medium with 50 ng/mL LPS or mixed

medium (1:1, fresh complete medium: CM). Meanwhile, Gs

was administrated with different doses. Then, cultures were

then transferred to an incubator containing 5% CO2 and 95%

air at 37°C for 8 h.
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2.11 Quantitative analysis of cytokine
mRNA expression

mRNA transcription of cytokines was analyzed by quantitative

reverse-transcription polymerase chain reaction (qRT-PCR). Using

the Hybrid-R™ (GeneAll, Seoul, Korea), we extracted total RNA

from the BV2 microglial cells, and measured the concentration

using a NanoDrop ND-2000 spectrophotometer (Thermo Fisher

Scientific Inc., Waltham, MA, USA). Next, 3 mg RNA samples were

converted to cDNA using TOPscript™ RT DryMIX. The cDNA

was analyzed by qRT-PCR using TOPreal™ qPCR 2× PreMIX

(SYBR Green; Enzynomics) and the CFX Connect Real-Time PCR

System (Bio-Rad Laboratories, CA, USA). Primers, synthesized at

COSMO Genetech (Seoul, Korea), were as follows; iNOS: forward,

5’-GTGTTC TTTGCTTCCATG CT-3’, reverse, 5’-AGTTGC

TCCTCTTCCAAG GT-3’; TNF-a: forward, 5’- GAGTGACA

AGCCTGTAGCCCA-3’, reverse, 5’- AGCTCCACGCCATTGGC-

3’; IL-1b: forward, 5’-CCCAAGCAATACCCA AAG AA-3’,

reverse, 5’-GCT TGTGCTCTGCTTGTGAG-3’; IL-10: forward,

5’-CTAGAGCTGCGGACTGCCTTC-3’, reverse, 5’-TTGATT

TCTGGGCCATGC-3’; COX2: forward, 5’-TCATTG GTGGA

GAGGTGTAT-3’, reverse, 5’-ACCCCACTCAGGATGCTCCT-3’;

GAPDH: forward, 5’-TGA ATACGGCTACAGCAACA-3’, reverse,

5’- AGGCCCCTCCTGTTATTATG-3’.IL-6: forward, 5’-TAGTC

CTTCCTACCCCAATTTCC-3 ’ , r e v e r s e , 5 ’ - TTGGT

CCTTAGCCACTCCTTC-3’; IFN-g: forward, 5’- TGTTACTG

CCACGGCACAGT-3’, reverse, 5’- CTGGCTCTGCAGGATT

tpTTCAT -3’.
2.12 Recombinant JAK2 inhibition assay

50 ng of recombinant JAK2 protein was incubated with 100

mM of the substrate (poly Glu : Tyr) in the presence of increasing

amounts of Gs. After a 30 minutes incubation at 37°C, ATP levels

were measured with ATP assay kit (Nanjing Jiancheng

Bioengineering Institute, A095-1-1). The samples treated with

vehicle were defined as having 0% inhibition, while the samples

without substrate were defined as having 100% inhibition. CEP-

33779 was used as a positive inhibitor of JAK2. Each point was

assayed in duplicate (N = 2) and is expressed as the mean ±

SD (28).
2.13 Statistical analysis

Results are presented as mean ± SD. Comparison among

groups was analyzed using a two-way ANOVA followed by

Bonferroni t-test or one-way ANOVA followed by Tukey’s post

hoc analysis. Statistical analyses were done using statistical

software of GraphPad Prism (version 7.0, GraphPad Software,

San Diego, CA, USA), and a P value < 0.05 was considered

significant statistically.
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3 Results

3.1 Gelsevirine has an anti-inflammatory
effect on microglia in vitro models

To evaluate the protective effect of Gelsevirine (Gs) on stroke, the

toxicity of Gs on brain cells was first evaluated. By CCK8 assay, Gs

showed no significant influence on cell viability of primary neurons,

astrocytes and BV2 as high as 100 mM in vitro (Figure 1A), which

indicated the administration of Gs had no toxicity on major types of

brain cells. Microglia, the major resident immune cells in the brain,

are critical participants in the acute phase of stroke and brain injuries.

As our previous report, Gs inhibited the inflammatory response of

osteoclasts and injury, both of which are related to the

downregulation of the activity of macrophage or macrophage-like

cells just like microglia (20). Gs significantly decreased the

proliferation of BV2 after the administration of LPS (100ng/mL) or

OGD neuron-conditioned medium (named CM) which contributes

to the inhibition of inflammation (Figures 1B, C). Gs also

downregulated the production of pro-inflammatory cytokines in

BV2 stimulated by the LPS or CM in vitro (Figures 1D, E).

These results confirmed that Gs has an anti-inflammatory effect

on microglia with less cytotoxicity.
3.2 Gelsevirine decreased infarct volumes
and improved neurological functions in
ischemia/reperfusion mice (tMCAO mice)

Because of the anti-inflammatory effect of Gs on microglia, it

should decrease the inflammation in stroke which might protect the

brain from injuries. The ischemia/reperfusion mice (tMCAO)

model was used to induce ischemia/reperfusion insult, and the

administrate protocol is shown in Figure 2A. Briefly, 8 weeks old

male C57BL/6 mice were administrated with Gs or vehicle 1 hour

before the tMCAO, and mice received another treatment with the

same protocol at reperfusion onset 24 hours after tMCAO.

Functional scores were also applied to evaluate the neurological

outcome 24 h post-tMCAO. Compared with the vehicle group, Gs

significantly rescued neurological deficits in the Bederson score for

the vehicle vs the high-dose Gs group (p < 0.05, N = 12 per group;

Figure 2B). In the rotarod test, high dose of Gs significantly

increased the dropping time of tMCAO mice, which indicated

that Gs rescued the motor and balance ability in tMCAO model

mice (p < 0.05, n = 12 per group; Figure 2C). After the functional

evaluations of different administrations of Gs, infarct volume was

assessed by TTC staining, which was significantly smaller in high-

dose Gs-treated mice than in vehicle-treated mice (Figure 2D). By

HE staining, high-dose Gs decreased the tissue edema and the loss

of neuron of hippocampus in the ischemic-reperfusion side

compared with model mice (Figure 2E).

These data proved that Gs could decrease brain damage and

rescue neurobiological function after a stroke.
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3.3 Gelsevirine reduced over-activity of
microglia in tMCAO mice and in vitro

Over-activated inflammatory status is vital to start and/or

enhance the damage to the brain in stroke, and the regulation of

inflammation is an important treatment strategy. As our previous

report, Gs decreased the inflammation in peripheral tissue, so we

evaluated the influence of Gs on neuroinflammation in stroke. The

activation of microglia, a primary resident immune cell, was

evaluated by their morphologic characteristics (Figure 3A), and

the administration of Gs in ischemia penumbra significantly
Frontiers in Immunology 05
decreased over-activated microglia. The pro-inflammatory type of

microglia near the ischemia penumbra was marked by the stain of

Iba1 and iNOS, and the administration of Gs significantly reduced

the ratio of iNOS-positive microglia near the ischemia penumbra

(Figure 3B). To further certify the anti-inflammatory effect of Gs, an

array of inflammatory cytokines, including IL-1b, TNF-a, IL-6,
cyclooxygenase (COX)-2 and IFN-g, were analyzed by qPCR. These
cytokines were quickly increased after stroke (Figure 3C), whereas

the administration of Gs significantly rescued the over-production

of pro-inflammatory cytokines. The downregulation of NFkB
signaling pathway and NLRP3 by the administration of Gs in a
A B

D E

C

FIGURE 1

Gelsevirine decreased inflammatory activities of microglia with limited toxicity to major types of cells from brain in vitro. (A) Gelsevirine did not
decrease the viability of primary neuron, astrocyte and BV2 in vitro. (B, C) Gelsevirine downregulated cell proliferation of BV2 cells induced by LPS or
OGD neuron-conditioned medium (named CM). (D, E) Gelsevirine decreased the level of inflammatory facts upregulated by LPS or CM. (****,
compared with untreated group, P < 0.0001; ####, compared with LPS or CM treated group, P < 0.0001; ###, compared with LPS or CM treated
group, P < 0.001; ##, compared with LPS or CM treated group; #, compared with LPS or CM treated group, P < 0.05; ns, compared with CM or LPS
treated group, P > 0.05; n = 3).
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microglia model indicated that the beneficial effects of Gs should

come from the regulation of microglia (Figure 3D).

These results indicated that the administration of Gs decreased

neuroinflammation by the down-regulation of inflammatory

cytokines in vitro and in vivo.
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3.4 Gelsevirine reduced the oxide stress in
tMCAO mice and microglia in vitro

ROS and NO from neuroinflammation induce cell damage

in the ischemic penumbra. As shown in Figure 4A, the levels of
A B

D

E

C

FIGURE 2

Gelsevirine deceased brain damage and improved neurological functions in tMCAO model mice. (A) Molecular structure of Gelsevirine and the
design of animal experiment. (B) Functional scores were used to evaluate the benefit effect of Gelsevirine on the treatment of stroke, and (C) the
ability of motor and balance was found significantly rescued by the administration of Gelsevirine in rotarod test. (D) Analysis of the infarct volume by
TTC staining also proved the protective effect of Gelsevirine on neuron in tMCAO model mice. (E) Gelsevirine decreased neuron loss in ischemia
penumbra zone (in immunofluorescence n=9-10; in function test and TTC n=12; ****, compared with sham group, P < 0.0001; ## compared with
Vehicle, P<0.01; # compared with Vehicle, P<0.05).
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SOD and MDA, which reflect the level of ROS in the ischemic

penumbra, were rescued by the administration of Gs. In vitro,

OGD neuron-conditioned medium can significantly induce the

production of ROS in microglia. This effect was inhibited by the

administration of Gs, which should also contribute to its

protective effect on stroke (Figure 4B). The production of
Frontiers in Immunology 07
ROS was related to the dysfunction of mitochondria and the

stimulation of OGD neuron-conditioned medium significantly

increased the rate of abnormal mitochondria which was rescued

by the administration of Gs (Figure 4C). Besides ROS

production, Gs also rescued the expression of Nrf2, an

e s s en t i a l f a c to r ac t i va t ing endogenous an t iox idan t
A

B

D

C

FIGURE 3

Gelsevirine deceased activity of microglia in tMCAO mice and NFkB pathway, autophagy pathway and ROS-related signal pathway in CM treated BV2
cells. (A) In the ischemia penumbra zone of tMCAO mice, microglia were significantly activated by sholl analysis on morphologic characteristics and
the activity of microglia could be decreased by Gs. (B) In the ischemia penumbra zone of tMCAO mice, increased expression of iNOS in microglia
was significantly downregulated by Gs. (C, D) In vitro, Gs decreased the expression of inflammatory cytokines and inflammatory related signaling
pathways in CM stimulated microglia model (****, compared with sham group or untreated group, P < 0.0001; ***, compared with sham group
or untreated group, P < 0.001; *, compared with sham group or untreated group, P < 0.05; ####, compared with vehicle group or CM group,
P < 0.0001; ###, compared with CM or Vehicle group, P<0.001; ##, compared with CM or Vehicle group, P<0.01; #compared with CM or Vehicle
group, P<0.05; ns, compared with CM or Vehicle group, P > 0.05; n=3.
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mechanisms. They decreased the expression of iNOS which

positively regulates ROS (Figure 4D). LC3I/II and pmTOR

which regulates autophagy and metabolic process are also

regulated by the administration of Gs (Figure 4D).
Frontiers in Immunology 08
These results show that Gs downregulated the oxide stress in

stroke by normalizing mitochondria, upregulation of endogenous

antioxidant mechanisms and downregulation of stress-

related factors.
A B

D

C

FIGURE 4

Gelsevirine rescued the level of mitochondria-related damage and ROS. (A) Gs rescued levels of MDA and SOD in MCAO mice. (B) The administration of
Gs significantly decreased ROS by the stimulation of CM. (C) Accumulation of autophagy-related protein to mitochondria was attenuated by
administering Gs in CM treated BV2 cells. (D) Gs increased the expression of Nrf2, an antioxidant gene and downregulated the expressions of iNOS,
p-mTOR and LC3 which are tightly related to the ROS and autophagy. (****, compared with sham group or untreated group, P < 0.0001; **, compared
with untreated group, P < 0.01; *, compared with untreated group, P < 0.05; ####, compared with CM group, P < 0.0001; ###, compared with sham
group or CM group, P < 0.001; ##, compared with sham group or CM group, P < 0.01; #, compared with CM group, P < 0.05; ns compared with CM
group, P > 0.05; n = 3).
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3.5 RNAseq analysis indicates JAK-STAT
signaling pathway is the key pathway
rescued in MCAO mice by the
administration of Gelsevirine

Although previous results proved the regulation of Gs on the

NFkB pathway, autophagy pathway, and ROS-related signal

pathway to decrease the inflammation, the mechanism of Gs in

anti-inflammation in stroke is still unclear. To further explore the

critical pathway of Gs decreasing neuroinflammation in the stroke,

RNAseq was used to explore the effect of Gs in ischemia penumbra.

Differential expression genes (DEGs) were evaluated and

significantly changed genes were clustering analyzed and shown

by volcano plot and heatmap (Figures 5A, B). According to Gene

Ontology (GO) enrichment analysis, many significant functional

sets were influenced by the administration of Gs, such as DNA

repair, inner organelle membrane, transcription coregulator activity

and so on (Figure 5C). Many signal pathways, such as

neurodegenerative diseases, endocytosis and so on, were enriched

by KEGG analysis in the Gs treated group (Figure 5D). Because of

the limited number of different genes, the responses to Gs were

thought to distribute across the whole network of genes, and

individual genes might be subtle. So, a GSEA method was used to

evaluate the influence of Gs. As shown in Figure 5E, the

administration of Gs significantly influenced mangy bioprocesses

by GSEA analysis, such as oxidative phosphorylation pathway,

proteasome pathway, ribosome pathway, mitochondrial electron

transport NADH to ubiquinone, ATP synthesis coupled electron

transport establishment of protein localization to the endoplasmic

reticulum, and so on. Gs also significantly suppressed many KEGG

pathways by GSEA analysis, such as the JAK-STAT signaling

pathway, focal adhesion pathway, and phosphatidylinositol

signaling system (Figure 5F). Signal pathways significantly related

to the inflammation, such as IL-6, TGF-b and JAK-STAT, were

significantly related to the protective effect (Figure 5G).

Based on results from RNAseq and the cross-talk of these signal

pathways, it is suggested that the JAK-STAT pathway plays an

essential role in attenuating MCAO-induced inflammation

dysfunction in ischemia penumbra by Gs.
3.6 Direct inhibition of JAK2 by Gelsevirine
contributed to the anti-inflammatory effect
on microglia activation in vitro

To certify the critical role of the JAK-STAT pathway, the

influences of Gs on JAK and STAT were evaluated in an in vitro

model. As shown in Figure 6A, phosphorylated STAT3 was

significantly increased in CM-treated microglia and down-

regulated by Gs. Phosphorylated JAK2 but not phosphorylated

JAK3, both of which are upstream factors of STAT3, was down-

regulated by Gs in the CM treated model (Figure 6A). Interestingly,

phosphorylated STAT3 was downregulated by low-dose Gs

treatment, but the phosphorylated JAK2 was still at a relatively

high level (Figure 6A). It indicated that Gs could down-regulate the

phosphorylation of STAT3 independent on the downregulation of
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phosphorylation of its upstream signals, such as the direct

inhibition of the enzymatic activity of JAK2, which also

contributes to inhibition of the JAK2-STAT3 signal pathway. By

molecular docking, Gs was consistent with the positive drug (CEP-

33779) and embedded in the active binding pocket of the JAK2

protein (PDB:4AQC), where the benzene ring on the Gs structure

forms a p-p bond interaction with ARG938 on the JAK2 protein. In

addition, the oxygen atom on the side chain in the Gs structure can

form a crucial hydrogen bond interaction with the Arg 980 residue

of the protein (Figure 6B). Then, the inhibiting effect of Gs on JAK2

was compared with CEP-33779, a JAK2 inhibitor used in

PDB:4AQC, and the result proved that Gs inhibited the kinase

activity of JAK2 in vitro (Figure 6C). By thermal shift assay, Gs

significantly increased the thermal stabilization of JAK2, indicating

Gs binds to JAK2 directly (Figure 6D). Immunofluorescent staining

was conducted to analyze the distribution of STAT3. In quiescent

BV2 cells, STAT3 was mainly distributed in the cytoplasm

(Figure 6E). After the stimulation of CM, STAT3 rapidly

translocated to nuclei, and the nuclear distribution of STAT3 can

be blocked by Gs (Figure 6E).

To further prove the critical role of JAK2-STAT3 on the anti-

inflammatory effect of Gs, a gain-of-function STAT3 mutation

(K392R) (29) was used to evaluate the role of STAT3 on Gs

treatment in microglia. After the over-expression of STAT3

(K392R) (Figure 7A), inflammatory factors associated with

STAT3 were upregulated under basal conditions, and the over-

expressions significantly enhanced expressions of ROS-related

factors and inflammatory factors on the stimulation of CM

(Figures 7B, C). The over-expression of STAT3(K392R) also

abolished the anti-inflammatory effect of Gs in microglia

(Figures 7B, C). The level of ROS was also increased by the over-

expression of STAT3 mutation (K392R) in basal conditions, and

STAT3 mutation (K392R) made microglia more sensitive to the

stimulation of CM, which were not rescued by the administration of

Gs (Figure 7D).

These results proved that the anti-inflammatory effect of Gs

depended on the inhibition of JAK2, which decreased the

transcriptional activity of STAT3 on inflammatory factors and the

production of ROS in microglia (Figure 7E). These effects of Gs

benefit the decrease of neuroinflammation in stroke.

In conclusion, Gs is beneficial to stroke by the downregulation

of neuroinflammation through multiple pathways, in which the

inhibition of the JAK2-STAT3 signal pathway plays a critical role,

and the attenuation of ROS, mitochondrial dysfunction and other

inflammatory pathways also involved in the protective effects

of Gs.
4 Discussion

In this study, we certified the protective capability of Gelsevirine

(Gs) on stroke in the tMCAO model, in which Gs significantly

reduced the infarct volumes, ischemia/reperfusion-induced

neuronal apoptosis and inflammation, especially in the penumbra

zone. The beneficial effects of Gs on stroke were related to the

inhibition of the pro-inflammatory activity of microglia, such as the
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production of inflammatory cytokines, the level of ROS and so on.

Furthermore, the anti-inflammatory effect of Gs was tightly related

to the inhibition of the JAK-STAT signal pathway by RNAseq

analysis. By molecular docking, inhibition assay and thermal shift

assay, the inhibition of Gs to JAK2 contributed to the regulation of

the JAK2-STAT3 signaling pathway. Over-expression of a gain-of-
Frontiers in Immunology 10
function STAT3 mutation (K392R) abolished the anti-

inflammatory effects of Gs. Consequently, Gs benefited to

ischemic stroke by regulating neuroinflammation through the

inhibition of JAK2-STAT3 signaling pathway.

In the pathophysiology of ischemic stroke, inflammation has

become an essential target for developing stroke therapies (30–32).
A B

D

E F

G

C

FIGURE 5

Analysis of the influence and pathways of Gelsevirine in the ischemia penumbra zone by RNA-seq. (A) Different expressed genes were showed by
volcano and (B) the clustering analysis was showed by heatmap. (C, D) GO and KEGG enrichment were used to evaluate the influence of Gelsevirine
on stroke. (E, F) GSEA method was used to GO and KEGG enrichment analysis which can explore the effect of Gelsevirine on stroke. (G) Important
pathways related to inflammatory changes by GSEA analysis.
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As a brain-resident immune cell, microglial cells are sensitive to

imbalances in the central nervous system (CNS) of stroke because of

the expressions of receptors recognizing immune signals and

danger signals from dying cells, pathogens and self-antigens (33–

35). In the ischemic brain, microglial cells were quickly activated

and enriched in the regions around the infarct (12, 36, 37).
Frontiers in Immunology 11
Although microglial cells can engulf the damaged neurons and

participle in debris clearance essential to maintain CNS

homeostasis, activated microglia induce the cascades of

inflammatory events, oxidative stress and neuron death in the

injured brain after stroke (38, 39). Risk factors released from

activated microglia, such as TNF-a, glutamate, cathepsin B,
A

B

D

E

C

FIGURE 6

Gelsevirine decreased the JAK2-STAT3 signal pathway by inhibiting the activity of JAK2 in vitro. (A) Gelsevirine significantly decreased
phosphorylation of STAT3 in CM-induced microglia in vitro. (B) Molecular docking indicated the potential inhibition of Gelsevirine on JAK2 and
(C) Gelsevirine inhibited the kinase activity of JAK2. (D) Gelsevirine inhibited the degradation of JAK2 in thermal shift assay. (E) Gelsevirine inhibited
the nuclear distribution of STAT3 in vitro. (****, compared with untreated group, P < 0.0001; ####, compared with CM group, P < 0.0001; ns
compared with CM group, P > 0.05; n = 3).
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reactive oxygen and nitrogen species, are widely certified to induce

death in surrounding neurons, including apoptotic, excitotoxic and

neuronal death (2, 40, 41). Dysregulated microglia are also proven

to engulf neurons in the peri-infarct and increase neuron loss in

stroke (42). So, targeting inflammation post-stroke, especially over-

activated microglia, is currently considered a potential target for

stroke therapies.

Activated microglia, especially the M1 type, release reactive

oxygen (ROS) and play an essential role in the inflammatory

pathways. The excessive generation of intracellular and extracellular

ROS leads to direct cellular damage. It increases the activation of the

microglia and leukocytes, which release various damaging

inflammatory mediators and effectors, including ROS. It is believed

that the inhibition of overproduced ROS can suppress intracellular
Frontiers in Immunology 12
pro-inflammatory signals. Thus, the modulation of redox balance is

an effective way to regulate inflammatory responses.

By RNAseq analysis, the JAK-STAT signaling pathway was

tightly related to the effect of Gs. It has been reported to initiate

neurotoxicity by regulating the expression of different cytotoxic

materials, including ROS. According to our results, Gs

downregulated the activity of microglia by inhibiting the JAK2-

STAT3 pathway, which is vital to decrease neuroinflammation and

brain damage. JAK2, a member of the protein-tyrosine kinase

family, is an essential regulator of many other signaling molecules

tightly related to neuroinflammation. JAK2 can specifically induce

the phosphorylation of STAT3, and mounting evidence proves that

the JAK2-STAT3 pathway exerts an essential effect on the

inflammatory reaction (43, 44). The JAK2-STAT3 pathway affects
A B

D E

C

FIGURE 7

Over-activity of STAT3 abolished the anti-inflammatory effect of Gelsevirine in microglia. A gain-of-function STAT3 mutation (K392R) was over-
expressed in BV2 cell by Lipofectamine® 3000 (A) which increased the inflammatory response and anti-inflammatory effect of Gelsevirine in BV2,
such as the expression of iNOS and COX2 (B), the production of inflammatory cytokines (C) and ROS (D). It indicated that the inhibition of Gs on the
JAK2-STAT3 signaling pathway decreased the expressions of inflammatory and ROS-related factors, which benefit the rescue of stroke (E). (**,
compared with Scramble group, P < 0.01; *, compared with Scramble group, P < 0.05; &&&&, compared with STAT3 (K392R) group, P < 0.0001;
&&&, compared with STAT3 (K392R) group, P < 0.001; &&, compared with STAT3 (K392R) group, P < 0.01; ##, compared with STAT3 (K392R) + LPS
group, P < 0.01; n = 3).
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the expression of many cytokines, such as TNF-a and IL-6. In

ischemia/reperfusion, the JAK2-STAT3 pathway contributes to

brain damage (45–47). The activities of NOX family members

(including NOX1-5, DUOX1, and DUOX2) are tightly related to

the generation of ROS (48). STAT3 is also reported to bind to the

NOX1 promoter and increase the production of NOX1 which

subsequently stimulates the production of O2•− (49). Therefore,

the regulation of overactivated STAT3 in microglia is essential to

regulate microglial activation, ROS level and neuroinflammation, all

of which are tightly related to neuron damage in stroke.

The JAK2-STAT3 signaling pathway is also tightly related to the

regulation of autophagy, a crucial pathway maintaining cellular

homeostasis and cell survival by removing damaged organelles and

abnormally folded proteins. Mitophagy is a type of autophagy

clearing impaired mitochondria essential for sustaining the

homeostasis of mitochondria and cells (50). Accumulating

evidence suggests that damaged mitochondria increased in stoke

and mitophagy cannot be eliminated effectively with abnormal

mtROS production and mitochondrial DNA, leading to immune

hyperactivation, tissue damage, and increased host mortality (51).

The regulation of autophagy is essential to eliminate abnormal

mitochondria which also contributes to the attenuation of ROS and

inflammation (52, 53). The regulation of Gs on the JAK2-STAT3

signaling pathway is also beneficial to decreasing intracellular stress

and attenuating inflammation.

Except the regulation of JAK2-STAT3 signaling pathway, Gs

should also influence the Toll-like receptor (TLR) signaling

pathway according to the result from RNA-seq, in which the

activity of TLR2 and TLR4 in microglia is reported to increase

the ischemic injury (54). The suppression of TLR signaling pathway

could decrease the cytokine production in microglia and attenuate

the neurons death-promoting actions in neuron (55). It indicated

that multi-targets contribute to the regulation of the activity of

microglia by Gs.

In our previous report, the inhibition of STING is essential to

decrease the chronic inflammation in osteoarthritis by Gs (20), but

it was not enriched in the MCAO model after the administration of

Gs by RNA-seq. STING signal pathway is essential to the over-

activation of microglia. The inhibition of the STING signal pathway

is reported to suppress the shift of microglia to an inflammatory

M1-phenotype after MCAO (56). Moreover, the inhibition of

STING signaling also downregulates the recruitment of peripheral

immune cells which is related to neuroinflammation in stroke (57).

The dose of Gs used in osteoarthritis is 5 mg/kg, but 10 mg/kg of Gs

protected the mice from MCAO. The inflammatory status in

MCAO is acute but chronic inflammation in osteoarthritis (58).

The status of inflammation and the dose of Gs might induce the

difference in inflammation-related signaling pathways regulated

by Gs.

Taken together, the inhibition of Gs on the JAK-STAT signaling

pathway plays an essential role in downregulating the over-

activation of microglia in stroke. The downregulation of the over-

activation of microglia and the protective effect of Gs make it a

potential agent for stroke treatment.
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