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Inhibition of histone
deacetylases attenuates tumor
progression and improves
immunotherapy in breast cancer

Bi Lian, Xiaosong Chen* and Kunwei Shen*

Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao
Tong University School of Medicine, Shanghai, China
Breast cancer is one of the common malignancies with poor prognosis

worldwide. The treatment of breast cancer patients includes surgery, radiation,

hormone therapy, chemotherapy, targeted drug therapy and immunotherapy. In

recent years, immunotherapy has potentiated the survival of certain breast

cancer patients; however, primary resistance or acquired resistance attenuate

the therapeutic outcomes. Histone acetyltransferases induce histone acetylation

on lysine residues, which can be reversed by histone deacetylases (HDACs).

Dysregulation of HDACs via mutation and abnormal expression contributes to

tumorigenesis and tumor progression. Numerous HDAC inhibitors have been

developed and exhibited the potent anti-tumor activity in a variety of cancers,

including breast cancer. HDAC inhibitors ameliorated immunotherapeutic

efficacy in cancer patients. In this review, we discuss the anti-tumor activity of

HDAC inhibitors in breast cancer, including dacinostat, belinostat, abexinostat,

mocetinotat, panobinostat, romidepsin, entinostat, vorinostat, pracinostat,

tubastatin A, trichostatin A, and tucidinostat. Moreover, we uncover the

mechanisms of HDAC inhibitors in improving immunotherapy in breast cancer.

Furthermore, we highlight that HDAC inhibitors might be potent agents to

potentiate immunotherapy in breast cancer.

KEYWORDS
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Introduction

Breast cancer is one of the common tumors worldwide. Approximately 2.3 million new

breast cancer cases were estimated in 2020 in the 185 countries (1). It has been estimated

that there are 297,790 new cases of breast cancer and 59,910 deaths due to this deadly

disease in the United States (2). Approximately 11%-20% of breast cancer patients are triple

negative breast cancer (TNBC) due to lack of expression of HER2, ER and PR (3). TNBC

patients often have aggressive behavior, metastasis and poor prognosis (4). For the

treatment of local breast cancer, there are surgery and radiation, while the systemic
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therapies of breast cancer include chemotherapy, hormone therapy,

targeted drug therapy and immunotherapy (5, 6). Histone

acetyltransferases can lead to histone acetylation on lysine

residues, which can be reversed by histone deacetylases (HDACs)

(7, 8). It has been known that HDACs function on remodeling of

chromatin and modulation of gene expression by specific epigenetic

regulation (9). There are 18 HDACs that have been characterized to

regulate various biological processes, which are classified into four

groups (I-IV). Class I includes HDAC1, HDAC2, HDAC3 and

HDAC8, which are related to RPD3 gene. Class II includes HDAC4,

HDAC5, HDAC6, HDAC-7, HDAC9 and HDAC10. Class III

includes sirtulin 1-7 and class IV includes HDAC11 (10–12).

Dysregulation of HDACs via mutation and abnormal expression

contributes to oncogenesis and tumor progression (10–12).

Therefore, modulation of HDACs could be a potent strategy for

cancer treatment.
Role of HDAC in immunotherapy

Immunotherapy has emerged for fighting cancer via using the

patient’s own immune system (13). Immunotherapy includes

monoclonal antibodies, chimeric antigen receptor (CAR) T-cell

therapy, CAR NK cell therapy, tumor infiltrating lymphocyte

(TIL) therapy, endogenous T cell (ETC) therapy, immune

checkpoint inhibitors (ICIs), cancer vaccines, cytokines and

immunomodulators (14–17). It has been known that ICIs block

immune checkpoints, which allow immune cells to respond to

tumor. Inhibitory immune checkpoint molecules include

programmed cell death ligand (PD-1), programmed death ligand

(PD-L1), PD-L2, B7-H3 (CD276), B7-H4 (VTCN1), LAG3, TIM-3,

and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) (18,

19). Although immunotherapy has improved the survival of certain

cancer patients, primary resistance and acquired resistance in

immunotherapy attenuate the cancer treatment outcomes (20,

21). Hence, it is pivotal to uncover the mechanism of

immunotherapy resistance and to develop the compounds that

improve immunotherapy.

Several HDAC inhibitors have been developed and exhibited

the potent anti-tumor activity in a various cancer types, including

inhibition of tumor growth, metastasis and drug resistance (22–24).

For instance, abexinostat, givinostat and mocetinostat decreased the

expression of Slug and increased the expression of E-cadherin in

mammary tumor cells (25). Breast epithelial cells with E-cadherin

depletion were sensitive to several HDAC inhibitors, including

entinostat, vorinostat, pracinostat, and mocetinostat, due to

inhibition of proliferation and upregulation of cell apoptosis (26).

Here, we discuss the function of HDAC inhibitors in tumorigenesis,

especially in improving immunotherapy in breast cancer.
Vorinostat

Vorinostat, also known as SAHA (suberoylanilide hydroxamic

acid), is an oral inhibitor of class I and II of HDACs, which was the

first time to approve for clinical application in patients with
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cutaneous T-cell lymphoma in 2006 (27–29). Vorinostat has been

determined by preclinical experiments and clinical trials to decide

its therapeutic efficacy in combination with other antitumor drugs

in breast cancer (30). Vorinostat plus CDK inhibitor flavopiridol

treatments exhibited synergistic lethality in breast cancer cells via

suppression of ERK1/2 and AKT pathways and regulation of

apoptosis pathways (31). Using breast cancer brain metastatic

cells and intracranial xenograft model, radio-sensitivity was

increased by vorinostat (32). Vorinostat accelerated radio-

sensitivity of breast tumor cells, leading to suppression of lung

metastasis via inhibition of MMP-9, DNA repair proteins and

modulation of autophagy and endoplasmic reticulum stress (33).

TRAIL-resistant breast cancer cells became more sensitive after

vorinostat treatment in BALB/c nude mice because vorinostat

inhibited the expression of NF-kB, cyclin D1, Bcl-2, Bcl-xL,

VEGF, MMP-2, MMP-9, HIF-1a, IL-6, IL-8, increased the

expression of DR4, DR5, p21, PUMA, TIMP-1, TIMP-2, Bax,

Bak, Bim and Noxa (34). It has been reported that vorinostat

overcame apoptosis-inducing ligand Apo2L/TRAIL resistance via

regulation of Bax, DR5, caspase-3, caspase-8, caspase-9 and PARP

cleavage in human MDA-MB-231 breast cancer cells (35).

Vorinostat increased the sensitivity of olaparib, one PARP

inhibitor, in TNBC cells via induction of DNA damage, apoptosis

and autophagy (36). Vorinostat restrained brain metastasis and

stimulated DNA double-strand breaks and induced the

downregulation of Rad52 in a TNBC model (37). Vorinostat

promoted taxol-mediated cell death and triggered inhibition of

cell growth and induced cell cycle arrest at G2/M phase in breast

cancer (38). Vorinostat in combination with Aurora kinase

inhibitor (MK-0457) displayed synergistical inhibition of

proliferation of breast cancer cells (39). Vorinostat activated the

expression of estrogen receptor a (ERa) and sensitized a ligand of

the aryl hydrocarbon receptor, aminoflavone, -mediated growth

inhibition in mesenchymal-like TNBC cells, such as MDA-MB-231

and Hs578T cells (40). Co-treatment with vorinostat and

simvastatin exhibited synergistic functions on cell proliferation

and apoptosis via inhibition of Rab7 prenylation in TNBC cells

(41). It has been found that tamoxifen sensitivity was enhanced by

vorinostat treatment in TNBC cells (42).

Vorinostat in combination with chemotherapeutic agent

decitabine increased sensitivity of Fas ligand (FasL)-induced

apoptosis and CTL immunotherapy via promotion of CD8+ T

cells in colon cancer cells (43). Vorinostat increased sensitivity of

anti-GD2 monoclonal antibody (mAb) treatment and reduced

tumor growth through elevation of macrophage effector cells with

high expression of Fc-receptors and reduction of MDSC number in

neuroblastoma (44, 45). In pancreatic cancer, vorinostat and

sorafenib co-treatment enlarged the efficacy of anti-PD-1

antibody via promotion of CD8+ cells, M1 macrophages and NK

cells in mice (46). A combination therapy by vorinostat and anti-

PD-L1 to abrogate the immune escape has been reported via

induction of cell apoptosis and G1 phase arrest in melanoma

(47). In head and neck and salivary cancer patients with

vorinostat plus pembrolizumab treatments, NLR, neutrophils,

lymphocytes and T helper cells were associated with poor overall

survival (48). The MDA-MB-231 breast carcinoma cells and LNCaP
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prostate cancer cells displayed sensitivity to vorinostat therapy via

enhancement of the immune evasion, leading to promotion of T-

cell-induced lysis. HDAC1 was further identified to play a pivotal

role in tumor immune escape in breast cancer cells (49). Data from

ER-positive breast cancer patients after vorinostat, tamoxifen and

pembrolizumab treatments revealed that exhausted T cell signature

was linked to immunotherapy response (50). Hence, combination

of HDAC inhibitors and immunotherapy could obtain synergistic

effects in cancer therapy in breast cancer.
Entinostat

Entinostat, a class I HDACs inhibitor, has been uncovered to

attenuate cell proliferation and stimulated cell apoptosis in breast

cancer (51, 52). Moreover, entinostat was critically involved in

reversal of tumor immune escape in breast cancer (51). One study

revealed that entinostat promoted lapatinib efficacy via inhibition of

AKT phosphorylation, activation of FOXO3 transcription, leading

to elevation of Bim1 expression in breast cancer cells with HER2

overexpression (53). Entinostat can attenuate the resistance of

trastuzumab/lapatinib-resistant breast cancer cells with HER2

overexpression to the trastuzumab/lapatinib treatment (53).

Entinostat plus MEK inhibitor pimasertib retarded cell growth in

TNBC cells and inflammatory breast cancer (IBC) cells, and

reduced tumor growth in mice via regulation of NOXA-

participated MCL1 degradation (54).

One study used microarray analysis and revealed that

doxorubicin and entinostat regulated numerous gene expressions

related to differentiation, inflammation and proliferation.

Entinostat sensitized doxorubicin-mediated cell cycle arrest at G2

phase (55). Doxorubicin and entinostat inhibited the expression of

E2F and Myc genes, elevated interferon genes and increased the

numbers of tumor-infiltrating lymphocytes. Moreover, entinostat

and doxorubicin enhanced the expression of tumor testis antigens,

such as IL13RA2, and elevated the expression of ICOSL and GITRL

in MDA-MB-231 cells, which were immune checkpoint agonists

(55). PD-L1 expression was increased by entinostat and reduced by

doxorubicin treatment. Entinostat, all-trans retinoic acid, and

doxorubicin together stimulated cell death and differentiation,

leading to regression of tumor growth in mice by a xenograft

model of TNBC (55). A combination of entinostat, all-trans

retinoic acid, and doxorubicin caused tumor regression via

targeting tumor-initiating cells in TNBC and modulating the

ESE-1 and ELF-3 (56).

Entinostat, a cancer vaccine, and an IL15 agonist N-803

displayed a synergistic effect on tumor growth via upregulation of

infiltration of CD8+ T cells, promotion of tumor inflammation-

related gene expressions, enhancement of T cell responses to

antigens, reduction of VISTA expression in 4T1 TNBC murine

carcinoma model and MC38-CEA colon mouse model (57).

Combined treatments with vaccine, entinostat, ICIs, and

chemotherapy had exhibited a potential efficacy in advanced

breast cancer (58). The breast cancer cells and prostate tumor

cells exhibited sensitivity to entinostat by T-cell-involved lysis (49).

Entinostat altered the tumor-related antigens, including PSA,
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brachyury, CEA and MUC1, and elevated the expression of

several proteins that governed tumor immune recognition and

ant igen process ing (49) . Ent inos ta t combined wi th

immunotherapy could be a potential strategy for breast

cancer therapy.
Romidepsin

Romidepsin (FK228), a class I HDAC inhibitor, has been

reported to inhibit the tumor growth in different types of cancers

(59, 60). For example, in colon cancer cells, romidepsin attenuated

cellular immune functions via upregulation of PD-L1 expression by

enhancing the acetylation of histones H3 and H4 and modulation of

BRD4 (61). Romidepsin accelerated the number of FOXP3+

regulatory T cells, reduced the number of IFN-g+ CD8+ T cells,

and alleviated Th1/Th2 ratio in TME in subcutaneous model and

colitis-related cancer mice. Moreover, Romidepsin-mediated tumor

suppression was abrogated by anti-PD-1 antibody treatment in

colon cancer cells (61). One case report showed that romidepsin

might be safe and effective for treatment of anaplastic large cell

lymphoma (ALCL), which did not impair cellular immunity to

HTLV-1 (62).

Romidepsin increased paclitaxel sensitivity and blocked tumor

metastasis in inflammatory breast cancer (63). Specifically,

romidepsin impaired tumor emboli and lymphatic vascular

structure, and suppressed the expression of VEGF and HIF-1a in

inflammatory breast cancer. Moreover, romidepsin induced the

expression of acetylated Histone 3 proteins, triggered cell apoptosis

and upregulated p21 expression level (63). Recently, romidepsin

treatment upregulated the expression of chemokines, stimulated T-

cell infiltration, and promoted T-cell-induced tumor regression. A

combination of romidepsin and PD-1 blockade elevated T-cell

infi l t ra t ion and increased the e fficacy of ant i -PD-1

immunotherapy in lung adenocarcinoma (64). One group

reported that a triple combination (gemcitabine, romidepsin,

cisplatin) accelerated cell death in MDA-MB-231 and MDA-MB-

468 cells (65). Moreover, a triple combination treatment using

gemcitabine, romidepsin and cisplatin inhibited cell survival and

invasion via targeting EMT in an ROS-dependent way, leading to

suppression of tumor development, recurrence, and metastasis in

TNBC (66).
Panobinostat

It has been known that panobinostat (LBH589), a pan-HDAC

inhibitor, performs a tumor suppressive function in various cancer

types (67, 68). The function of panobinostat has bene verified in

breast carcinogenesis and progression. Panobinostat enhanced the

acetylation of GRP78 (glucose-regulated protein 78) and increased

endoplasmic reticulum stress via upregulation of p-eIF2a, CHOP

and ATF4, and elevation of BIK, BIM, Bax and BAK expression,

acceleration of the caspase-7 activity and UPR in breast cancer cells

(69). Panobinostat inhibited proliferation of breast cancer cells via

modulation of aromatase gene expression, and synergized the anti-
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tumor function of letrozole in hormone-dependent breast cancer

(70). In addition, panobinostat exposure elevated histone

acetylation, induced G2/M cell cycle arrest and alleviated cell

proliferation in TNBC cells. Panobinostat increased the

expression of E-cadherin and changed the cell morphology in

MDA-MB-231 cel ls (71). Another study showed that

panobinostat inhibited the expression of ZEB family (ZEB1 and

ZEB2) and led to suppression of tumor metastasis in TNBC (72).

The proliferation of breast cancer cells with aromatase inhibitor

resistance was mitigated by panobinostat in part via inactivation of

NF-kB1 pathway (73). The invasive and migratory ability of breast

cancer cells was also repressed by panobinostat via induction of E-

cadherin and alteration of Slug, MTA3 and Snail (74). Using a

claudin-low TNBC PDX model, one group revealed that

panobinostat inhibited the mesenchymal phenotype, such as

inhibition of collagen expression (75). Panobinostat accelerated

the expression of APCL and blocked Wnt/b-catenin pathway via

promotion of b-catenin degradation in breast cancer, resulting in

inactivation of b-catenin targets, including c-Myc, CD44, Cyclin D1

and c-Jun, which contributed to inhibition of tumor growth and

metastasis (76). Panobinostat plus rapamycin led to increased

efficacy against TNBC on inhibition of proliferation, invasion,

migration and induction of apoptosis, which could be due to

overproduction of ROS ad activation of endoplasmic reticulum

stress in breast cancer (77). Panobinostat inhibits tumor growth by

induction of autophagy and accelerated secretory autophagy via

targeting Vps34/Rab5C pathway in breast cancer (78).

Panobinostat has shown the treatment benefits in oncolytic

herpes simplex virus in combination with anti-PD-1/PD-L1

therapy in glioma and squamous cell carcinoma (79). The efficacy

of panobinostat was spatially correlated with multiple gene

expressions, including galectin-3, cleaved caspase-3, PD-L1,

neuropilin-1 and calrecticulin in breast cancer, suggesting that

panobinostat (80). Without a doubt, the function of panobinostat

in altering immunotherapy warrant to further exploration in

breast cancer.
Mocetinotat

Mocetinostat, a class I/IV HDAC inhibitor, has been identified

to suppress the tumorigenesis and tumor development in a various

types of human cancers (81). Mocetinostat increased PD-L1

expression and elevated the expression of antigen presentation

genes in NSCLC (82). Mocetinostat interacted with the promoters

of a class I HDAC and increased active histone marks, and

enhanced IFN-g activity in governing class II transactivator. In

mice, mocetinostat reduced the number of Tregs and MDSCs, but

elevated the number of CD8+ population in tumors. Mocetinostat

and PD-L1 antibody displayed a synergistic function in mouse lung

tumor models (82). Mocetinostat plus the BET inhibitor JQ1

reduced viability of breast cancer cells via modulation of cell

cycle-associated gene expressions. Mocetinostat and JQ1

cotreatment upregulated the expression of USP17 family

members in breast cancer cells, resulting in inactivation of Ras/

MAPK pathway and attenuation of cell viability (83).
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Fyn-related kinase (FRK) has been known to be repressed in

cancer cells due to its promoter CpGmethylation (84). Cell migration

and invasion were reduced by FRK overexpression via inactivation of

MAPK, AKT and JAK/STAT pathways and blockade of EMT in

breast cancer cells, including inhibition of slug, vimentin, fibronectin,

and upregulation of E-cadherin (85). Mocetinostat and entinostat can

induce re-expression of FRK at mRNA and protein levels in basal B

breast cancer cells, contributing to tumor regression (86). Similarly,

mocetinostat exhibited anti-cancer functions in basal-like breast

cancer cells with HDAC2 overexpression (87). Moreover,

mocetinostat plus azacytidine increased chemotherapeutic

sensitivity in mammary mesenchymal tumors via targeting EMT

process (25). One group used TCGA database and found that

mocetinostat and vorinostat exhibited the functional similarity with

the FDA-approved drugs for the treatment of HER2-postive breast

cancer (88). Mocetinostat combined with capecitabine showed a

synergistic effect on suppression of proliferation and induction of

apoptosis in 4T1 breast cancer cells via targeting Bax, Bcl-2, PI3K/

AKT, c-Myc, PTEN, p53, caspase-7, -9, and cleaved PARP (89). It is

required to further dissect the function of mocetinostat in improving

immunotherapy in breast cancer.
Abexinostat

Abexinostat (PCI-24781, CRA-024781) is a Pan-HDACs

mainly targeting HDAC1. It has been reported that abexinostat

increased tumor radio-sensitivity in NSCLC (90). PCI-24781 was

developed to decrease cell proliferation, differentiation and

metastasis via influencing calcium influx by activation of RGS2 in

breast cancer (91). Abexinostat triggered the differentiation of

cancer stem cells in breast cancer with low level of lncRNA Xist

expression (92). Moreover, low expression of lncRNA Xist could

indicate abexinostat response in breast tumor PDXs and linked to

an inhibition of cancer stem cells in breast cancer (92).

Interestingly, administration of abexinostat did not change the

expression of ESR1, ERa, and ESR1-associated genes in xenograft

models (93). This study indicated that it is doubtable to use a

combination of abexinostat and hormone therapy for the

management of breast cancer patients. Due to unclear role of

abexinostat in immune response, it is pivotal to define the

function of abexinostat in regulation of immunotherapy of breast

cancer patients.
Belinostat

Belinostat (Beleodaq, PXD101) is a HDACi with antineoplastic

function in part via targeting HDAC6. One study showed that

TNBC cells and HER2-enriched breast cancer cells were remarkably

sensitive to belinostat and panobinostat treatment. Moreover,

belinostat and panobinostat increased doxorubicin sensitivity in

TNBC cells (94). Belinostat and SAHA sensitized TNBC cells to the

PARP inhibitor olaparib treatment, showing the synergistic

inhibition of proliferation of TNBC cells and induction of cell

apoptosis (95). Belinostat plus Hsp90 inhibitor 17-AAG displayed a
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synergistic effect on suppression of invasion and cell growth in

TNBC cells via inhibiting the expression of TEAD family proteins

and elevating YY1AP1 phosphorylation and MLC1 (modulator of

VRAC current 1) (96). Chemotherapeutic drugs led to cancer stem

cell (ALDH+/CD44+) abundance in breast cancer, which was

abrogated by belinostat exposure (97). One group has

demonstrated that belinostat stimulated the expression of CXCL1

in TBNC cells, suggesting that CXCL1 clone evolution could be an

indicator for TNBC prognosis (98).
Dacinostat

Dacinostat (LAQ-824) has been observed to tackle cancer

chemoresistance in multiple myeloma ad acute myeloid leukemia

(99). One study demonstrated that dacinostat and givinostat can

restore the activity of cytotoxic T lymphocytes in in pancreatic

cancer cells (100). NVP-LAQ824 attenuated tumor growth and

angiogenesis and enhanced VEGFR inhibitor PTK787/ZK222584-

mediated inhibition of angiogenesis via upregulation of p21 and

downregulation of angioprotein-2, Tie-2, VEGF, HIF-1a, and
survivin (101). Using an orthotopic breast tumor model, NVP-

LAQ824 plus PTK787/ZK222584 induced a greater suppression of

tumor growth (101). LAQ824 can regulate the expression of

miRNAs in SKBR-3 breast cancer cells (102). It has been known

that noncoding RNAs, including microRNAs, lncRNAs and

circRNAs, are critical in carcinogenesis in a variety of human

cancers (103–105). LAQ824 increased 22 miRNA expressions and

decreased 5 miRNA expressions in breast cancer cells (102).

LAQ824 in combination with 5-Aza-2’-deoxycytidine, known as

decitabine, displayed a greater antineoplastic effect on breast cancer

cells (106). LAQ824 reduced the expression of ERa, PRb, c-Myc,

cyclin D1 and HDAC6 in breast cancer cells, leading to suppression

of cellular proliferation (107). LAQ-824 sensitized drug sensitivity,

including taxotere, epothilone B, trastuzumab and gemcitabine, via

downregulation of HER-2 expression in breast cancer cells (108).

LAQ824 was found to work as a sensitizer to immunotherapy with

adoptive T-cell transfer in melanoma (109). Further exploration is

pivotal to determine the LAQ824-enhanced immunotherapy in

cancer patients via improving the anticancer function of tumor

antigen-specific lymphocytes.
Other HDACs

Pracinostat (SB939) attenuated tumor growth and metastasis

via blocking the IL6/STAT3 pathway in breast cancer (110). YF479,

a HDACi, exhibited antitumor functions in breast cancer, including

suppression of growth, metastasis and recurrence (111). NK-

HDAC-1 was designed and synthesized for fighting breast cancer,

which induced apoptosis and cell cycle arrest via upregulation of

p21 and inhibition of Cyclin D1 (112). Givinostat (ITF2357)

increased cell death and reduced cell proliferation in urothelial

carcinoma cells and acute lymphocytic leukemia (113, 114).

Givinostat enhanced CTL sensitivity in pancreatic cancer cells

(100). In addition, givinostat reduced cancer stemness and
Frontiers in Immunology 05
reversed transformed phenotype in glioblastoma (115, 116). The

function of givinostat is breast tumorigenesis is unclear, which

should be explored in the future. Tubastatin A and alisertib reduced

the number of pulmonary metastases via suppression of HDAC6

and AURKA in breast tumor xenograft models (117). Tubastatin A

in combination with palladium nanoparticles triggered cell

apoptosis in breast cancer cells (118). MPT0G211, a HDAC6

inhibitor, exhibited an inhibition of tumor metastasis via

attenuation of HDAC6 activity in breast cancer cells (119).

Trichostatin A (TSA) inhibited the expression of DNMT1

(DNA methyltransferase 1) via reduction of DNMT1 mRNA

stability in Jurkat T leukemia cells (120). TSA decreased the

transcript and protein levels of aromatase CYP19 and

phospholipase C gamma-1 (PLC-g1) in MCF-7 breast cancer cells

(121, 122). SK-7041, a HDACi via a hybrid of TSA and MS-275,

induced cell apoptosis and G2/M arrest in breast cancer cells (123).

MAGE-C1 (melanoma-associated antigen-C1) and MAGE-C2

expressions were linked to advanced tumor grade and poor

survival in breast cancer patients. TSA treatment increased 5-aza-

CdR-induced MAGE-C2 transcription in breast cancer cells,

indicating that MAGE-C2 could be a target for cancer

immunotherapy (124). Tucidinostat, an inhibitor of HDAC1,

HDAC2, HDAC3 and HDAC10, has shown a remarkable

anticancer activity and a synergistic ability with immunotherapy

(125). Tucidinostat combined with selinexor, an exportin 1

inhibitor, showed a greater antitumor effect on TP53 wild-type

breast cancer (126). Breast cancer patients with HR+/HER2-

received CDK4/6 inhibitor treatment and then obtained

tucidinostat-based therapy, which displayed better clinical

outcomes (127). DNMT inhibitor 5-zazcytidine and HDACi

butyrate ameliorated the tumorigenicity of CSCs and retarded

breast tumor growth (128). We believe more HDAC inhibitors

will be developed for potentiating immunotherapy in the future.
Conclusion and perspectives

In conclusion, HDAC inhibitors improve immunotherapy via

targeting HDACs and their downstream targets in breast cancer

(Figure 1). Although HDAC inhibitors might be useful to enhance

tumor immunotherapy, several concerns should be mentioned. So

far, only five HDAC inhibitors have been approved by FDA for

cancer therapy, including vorinostat, belinostat, panobinostat,

pracinostat and romidepsin (129). These HDAC inhibitors

exhibited clinical advantage in hematological malignancies. It is

required to measure the efficacy of HDAC inhibitors in solid tumors

(130). Sirtuins inhibitors, such as nicotinamide, sirtinol and

splitomicin, have shown their activities in regulation of

metabolism, DNA repair, proliferation, drug resistance and

immunotherapy (131). Due to limited space, we do not discuss

the role of sirtuins inhibitors in modulation of breast cancer

immunotherapy. Among dozens of HDAC inhibitors, which one

is the best choice for enhancement of immunotherapy in breast

cancer? The development of inhibitors based on the differential

expression of HDAC isoforms is pivotal to rationally develop

selective and effective inhibitors for personalized-medicine
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treatment (132, 133). Notably, HDAC inhibitors also have adverse

side effects and cause drug resistance, which should be overcome.

The resistant reasons of HDAC inhibitors are still incomplete. This

might be due to cancer cell types, tumor-specific mutations, tumor

microenvironmental conditions, upregulation of efflux pumps (P-

glycoprotein), overexpression of HDAC enzymes. Lastly, triple

combination of HDACi, immunotherapy and other inhibitors

could be a promising approach for the treatment of breast cancer.
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Glossary

ATF activating transcription factor

BET bromodomain and extra C-terminal

Bim1 a BH3 domain-containing pro-apoptotic protein

CDK cyclin-dependent kinase

CHOP CAAT/enhancer binding protein homologous protein

eIF2 eukaryotic translation initiation factor

ER estrogen receptor

ERK1/2 extracellular signal-regulated kinase 1/2

HER2 human epidermal growth factor receptor 2

HIF-1 hypoxia-inducible factor-1

HLA human leukocyte antigen

HTLV-1 human T-lymphotropic virus type 1

IFN-g interferon gamma

LAG3 lymphocyte activation gene-3

MAPK mitogen-activated protein kinase

MDSC myeloid-derived suppressor cells

MHC major histocompatibility

MMP matrix metalloproteinase

mTOR mammalian target of rapamycin

NF-kB nuclear factor-kappa B

NLR neutrophil-to-lymphocyte ratio

PARP poly ADP-ribose polymerase

PDX patient-derived xenograft

PI3K phosphatidyl inositol 3 kinase

PTEN phosphatase and tensin homolog

PR progesterone receptor

ROS reactive oxygen species

STAT signal transducers protein kinase

TIM-3 T-cell immunoglobulin domain and Mucin domain 3

TIMP-1 tissue inhibitor of metalloproteinase-1

TNBC triple-negative breast cancer

TRAIL tumor necrosis factor-related apoptosis-inducing ligand

Treg T-regulatory cell

UPR unfolded protein response

VEGF vascular endothelial growth factor.
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