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New progresses on cell surface
protein HSPA5/BiP/GRP78 in
cancers and COVID-19

Ting Li1†, Jiewen Fu1†, Jingliang Cheng1†, Abdo A. Elfiky2*,
Chunli Wei1* and Junjiang Fu1*

1Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine,
Southwest Medical University, Luzhou, Sichuan, China, 2Biophysics Department, Faculty of Science,
Cairo University, Giza, Egypt
Heat-shock-protein family A (Hsp70) member 5 (HSPA5), aliases GRP78 or BiP, is a

protein encoded with 654 amino acids by the HSPA5 gene located on human

chromosome 9q33.3. When the endoplasmic reticulum (ER) was stressed, HSPA5

translocated to the cell surface, the mitochondria, and the nucleus complexed

with other proteins to execute its functions. On the cell surface, HSPA5/BiP/GRP78

can play diverse functional roles in cell viability, proliferation, apoptosis,

attachments, and innate and adaptive immunity regulations, which lead to

various diseases, including cancers and coronavirus disease 2019 (COVID-19).

COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) infection, which caused the pandemic since the first outbreak in late

December 2019. HSPA5, highly expressed in the malignant tumors, likely plays a

critical role in SARS-CoV-2 invasion/attack in cancer patients via tumor tissues. In

the current study, we review the newest research progresses on cell surface

protein HSPA5 expressions, functions, and mechanisms for cancers and SARS-

CoV-2 invasion. The therapeutic and prognostic significances and prospects in

cancers and COVID-19 disease by targeting HSPA5 are also discussed. Targeting

HSPA5 expression by natural products may imply the significance in clinical for

both anti-COVID-19 and anti-cancers in the future.

KEYWORDS

HSPA5, expression, cancer, SARS-CoV-2, COVID-19, therapeutics, natural products
1 Introduction

Heat-shock-protein family A (Hsp70) member 5 (HSPA5) (OMIM: 138120), aliases

glucose-regulated protein 78 (GRP78) or binding immunoglobulin protein (BiP), encodes

654 amino acids by the HSPA5 gene. The HSPA5 gene (GenBank no.: NM_005347.5) is

cytogenetic and located on human chromosome 9q33.3. Like other heat shock proteins, this

protein is usually resident in the endoplasmic reticulum (ER), a continuous membrane

system within the eukaryotic cell cytoplasm. When the ER was stressed, HSPA5/BiP/GRP78

translocated to the cell surface, the mitochondria, and the nucleus that complexes with other

proteins to execute its functions. As a master chaperone protein, HSPA5 responds in the ER
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when misfolded or unfolded proteins accumulate (1) and involves in

the degradation of misfolded proteins or correct folding initially via

interacting with DnaJ heat shock protein family (Hsp40) member

C10 (DNAJC10), another ER-resident chaperone protein, facilitating

its release from substrates.

In those stressed cells, HSPA5 is translocated to the cell surface

(cs-HSPA5), thus binding to numerous ligands and activating

various intracellular signaling/pathways. On the cell surfaces,

HSPA5 could play diverse function roles, including cell viability,

proliferation, apoptosis, attachments, and regulations of innate and

adaptive immunity (2). Dysregulation of HSPA5 is associated with

various diseases, such as cancers, cardiovascular diseases,

immunological diseases, obesity, neurodegenerative diseases, and

stroke. As we known, coronavirus Disease 2019 (COVID-19) is

caused by the infection of the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) virus, which has aroused the

pandemic since the first outbreak in late December 2019. A great

number of patients suffer from the disease with defenseless

immunity, including people with cancers. Malignant tumors go

by the name of the second killer of human disease, bringing a

difficult disaster for many families. People who burden the double

miseries are an important vulnerable group, arousing the attention

of the majority of scientists. Therefore, we are urgent to find new

potential targets for tricky diseases. Additionally, it was reported

that cs-HSPA5 is responsible for many infectious diseases,

including mucormycosis, Japanese Encephalitis, and COVID-19,

through different pathways or targets (3–6).

Mucormycosis is a serious but uncommon fungal infection

caused by Rhizopus species (mainly R. oryzae). In contrast,

Japanese encephalitis is a viral infection that targets the brain,

while COVID-19 was caused by betacoronavirus called SARS-CoV-

2. SARS-CoV-2 is a human coronavirus like the previously reported

members, MERS (middle east respiratory syndrome) and SARS

(severe acute respiratory syndrome) human coronaviruses. SARS-

CoV-2 has caused a global pandemic since the first outbreak at the

end of 2019. Therefore, targeting HSPA5 might benefit fighting

against those diseases (7–11).

In patients with prostate or ovarian cancer, the extracellular

expositions of HSPA5 lead to product autoantibodies, which

possess the ability of HSPA5 targeting. Since cell surface HSPA5

expression is associated with cancer and COVID-19, antibody

strategies represent exciting target therapeutics (12). In this study,

we will review the recent research progresses of cell surface HSPA5

functions, expressions, and the mechanisms/pathways of cancers

and SARS-CoV-2 invasion. The therapeutic significance and

prospects in cancers and SARS-CoV-2 entry by targeting HSPA5

will also be discussed (Figure 1).
2 HSPA5 in cancers

2.1 The HSPA5 expression is significantly
higher in most malignant cancers

Using the Gene Expression Profiling Interactive Analysis

(GEPIA) and Human Protein Atlas (HPA) datasets, the HSPA5
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mRNA expression in different types of cancers and healthy tissues

is high and the highest in thyroid carcinoma. Moreover, HSPA5

expression was significantly upregulated in fourteen cancer types,

including brain lower-grade glioma (LGG), cholangiocarcinoma

(CHOL), colon adenocarcinoma (COAD), esophageal carcinoma

(ESCA), lymphoid neoplasm diffuse large B-cell lymphoma

(DLBC), gl ioblastoma mult i forme (GBM), pancreat ic

adenocarcinoma (PAAD), rectum adenocarcinoma (READ),

prostate adenocarcinoma (PRAD), stomach adenocarcinoma

(STAD), thymoma (THYM), uterine corpus endometrial carcinoma

(UCEC), skin cutaneous melanoma (SKCM), and uterine

carcinosarcoma (UCS). In contrast, the expressions of HSPA5 were

remarkably downregulated only in acute myeloid leukemia (LAML)

(Figure 2A) (13). These results implied that HSPA5 is an important

marker for cancer which is highly expressed in the majority of

malignant tumors and will be a helpful diagnostics and prognostic

tool for cancer patients (14). Additionally, HSPA5 likely plays a

critical role in SARS-CoV-2 invasion/attack in most cancer patients

via tumor tissues if HSPA5 is highly expressed (13). HSPA5

expression showed a prognostic significance in patients with

pancreatic ductal adenocarcinoma treated with neoadjuvant

therapy versus those patients of surgery first (15). Recently, Wang

et al. found that HSPA5 is upregulated in bladder cancer tissues and

significantly associated with tumor progression and poor prognosis in

the patients of bladder cancer (16).
2.2 The HSPA5 expression is a prognostic,
diagnostic, and therapeutic marker

By analyzing the database of The Cancer Genome Atlas (TCGA),

the Tumor Immune Estimation Resource (TIMER) method, the

Kaplan-Meier plotter, or Cox regression, Zhang et al. (17)
FIGURE 1

The brief flowchart of heat shock protein A5 (HSPA5) roles in pan-
cancers and coronavirus disease 2019 (COVID-19). High expressed
in the malignant tumors, HSPA5 likely plays a critical role in severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invasion/
attack in cancer patients, and targeting HSPA5 may not only implies
the significance in clinical for both anti-COVID-19 and anti-cancers
but also provides an intriguing clue for medical treatments and
management of cancer patients with COVID-19 in the future.
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concluded that HSPA5 is a marker for prognostics that correlates with

immune infiltration of breast cancer. Dong et al. (18) revealed HSPA5

should be a marker for prognostics that correlates with immune

infiltrates of another cancer type, thyroid carcinoma (THCA). CXCR4

belongs to the G protein-coupled receptor (GPCR) subfamily and is a

cofactor facilitating the human immunodeficiency virus (HIV) entry

into the CD4+ T cells. HSPA5 may be a target for an inducer of

immunogenic cell death (19). Angeles-Floriano et al.(20) reported that

HSPA5 and CXCR4, both expressed at the cell surface, are correlated

with high-risk acute lymphoblastic leukemia for diagnostics in

childhood. Tumor-associated antigens (TAAs) have been

investigated as potential early diagnosis tools, Ma et al. (21) found

that anti-p16 and anti-HSPA5 autoantibodies have the potential to be

diagnostic markers for Hispanic hepatocellular carcinoma (HCC)

patients. HSPA5 was reported to facilitate M2 macrophage

polarization and lung tumor progression in vitro and in vivo (22).
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In addition, HSPA5 was reported to promote the response of

osteogenesis and angiogenesis in periodontal ligament stem cells,

thus considered a therapeutic target for the repair of the diseased

periodontium (23). Thus HSPA5 might be a prognostic, diagnostic,

and therapeutic marker (24).
2.3 HSPA5 promotes cancer cell viability,
proliferation, and migration in cancers
through different mechanisms/pathways

HSPA5 promotes cancer cell viability, proliferation, andmigration

in different tumor types. Mechanistically, Ha et al. (25) reported that

targeting HSPA5 inhibits the expression of oncogenic KRAS protein

and reduces the viability of cancer cells when they beard different

KRAS variants. In comparison, Ning et al. (26) revealed that activation
A

B

FIGURE 2

Heat shock protein A5 (HSPA5) expression comparisons in cancers and paired normal samples and its comparison among different entry proteins in
pan-cancers. (A) HSPA5 expression in cancers and paired normal samples in 33 types of cancers. (B) Expression comparisons among HSPA5,
angiotensin-converting enzyme 2 (ACE2), cathepsin L (CTSL), transmembrane protease serine 2 (TMPRSS2), transmembrane protease serine 4
(TMPRSS4), ADAM metallopeptidase domain 17 (ADAM17), neuropilin-1 (NRP1), and dipeptidyl peptidase-4 (DPP4) in both malignant cancers and
corresponding normal samples in 31 types of cancers in The Cancer Genome Atlas (TCGA) datasets. The expression analysis was conducted in Gene
Expression Profiling Interactive Analysis (GEPIA2) (http://gepia2.cancer-pku.cn/#analysis). “T” stands for tumor tissue, and “N” stands for the matched
normal tissue.
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of HSPA5 ATPase suppresses migration by promoting ITGB4

degradation in A549 lung cancer cells. HDAC6 is a deacetylase that

regulates cancer progression by modification of various substrates. By

HDAC6 inhibition, the translocation of HSPA5 to the cell surface was

blocked, thereby suppressing cell proliferation of cholangiocarcinoma

(27). E3 ubiquitin ligase seven in absentia homolog 2 (Siah2) involves

reactive oxygen species (ROS) generation under the conditions of

hypoxia and hypoglycemia. Dixit et al. (28) reported that siah2-

HSPA5 interaction modulates ROS and promotes cell proliferation

of Helicobacter pylori-infected gastric epithelial cancers. HSPA5 was

reported to determine the sensitivity of glioblastoma to UBA1

inhibition-induced UPR signaling and the death of cancer cells (29).

HSPA5/Yorkie interactions promoted Ire1/Xbp1s pathway activation

and aggravated epithelial-mesenchymal transition (EMT), migration,

and invasion in triple-negative breast cancer (TNBC) (30).

Signaling pathways in CDK7/HSPA5 could contribute to tumor

growth, invasion, and metastasis of osteosarcoma (31). Activating

HSPA5/PERK signaling together with ER stress mediator TMTC3

promoted squamous cell carcinoma progression (32). DnaJ Heat

Shock Protein Family (Hsp40) Member B11 (DNAJB11), a co-

chaperone of HSPA5/BiP/GRP78 (33), was reported to promote the

development of pancreatic cancer cells in vitro and in vivo by

upregulating the HSPA5 expression and activating EGFR/MAPK

pathway (34). Galectin−1, a small protein family member with an

affinity for b-galactosides (35), was reported to bind HSPA5 to

promote the proliferation and metastasis of gastric cancers in vitro

and in vivo (36). Leucine zipper EF-hand-containing

transmembrane protein-1 (LETM1) was disclosed to have its

genomic deletions in Wolf–Hirschhorn syndrome (WHS) and

revealed to regulate ion homeostasis, cell viability, mitochondrial

morphology, as well as overexpression in different human cancers.

LETM1/HSPA5 axis or HSPA5-LETM1 interaction was revealed to

play roles in lung cancer progression (37). X-linked inhibitor of

apoptosis-associated factor-1 (XAF1), a suppressor for stress-

inducible tumors, was reported to drive apoptotic switches of ER

stress response via destabilization of HSPA5 and ubiquitin E3 ligase

CHIP (38). By stabilizing HSPA5, deubiquitinase USP11 was said to

promote the chemoresistance of ovarian cancer (39). In cervix

cancer, inhibiting the degradation of HSPA5 from activating FAK

and overexpressing eukaryotic translation initiation factor 3D

(EIF3D) were reported to increase stem cell-like properties and

promote metastasis (40).

Homeobox (HOX) transcript antisense RNA (Hotair) is a long

noncoding RNA significantly elevated in many cancers. Hotair/

miRNA-30a/HSPA5/PD-L1 axis was reported to promote the

progressions and immune escapes of laryngeal squamous cell

carcinoma (LUSC) (41). By mediating the HSPA5-mediated

autophagy and AKT/mTOR axis, radiosensitizer exosomal miR-

197-3p was reported to inhibit nasopharyngeal carcinoma (NPC)

progression and radioresistance (42). Salidroside, an extract from

Rhodiola roots (molecular formula: C14H20O7), was reported to

suppress the activation of NPC cells by targeting the axis of miR-

4262/HSPA5 (43). In addition, down-regulating HSPA5 was

reported to reverse pirarubicin resistance in TNBC through the

pathway of p-AKT/mTOR and the mimics of miR-495-3p (44).
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Ferroptosis was a new, non-apoptotic form of cell death

recognized by iron-dependent lipid peroxidation. Both ferroptosis

and unfolded protein response are critical factors in developing

colorectal cancer (CRC). HSPA5 was reported to repress

ferroptosis, thereby promoting CRC development by maintaining

the stability of the GPX4 protein (45).
3 HSPA5 in SARS-CoV-2 invasion

3.1 SARS-CoV-2 entry proteins/receptors

Currently, it is well known that the SARS-CoV-2 virus enters

the host cell mediated by the spike protein (S-protein) and host

receptor(s) (46–48). Various entry related-proteins or host cell

receptors/coreceptors have been identified for SARS-CoV-2

invasions. These include angiotensin-converting enzyme 2

(ACE2), Furin, BSG/CD147, cathepsin L (CTSL), transmembrane

protease serine 2/4 (TMPRSS2/4), ADAMmetallopeptidase domain

17 (ADAM17), neuropilin-1 (NRP1), dipeptidyl peptidase-4

(DPP4), and HSPA5 (49–58). HSPA5 shows high expression

among above entry proteins even though CTSL expression shows

comparable high in both malignant cancers and corresponding

normal samples (Figure 2B), demonstrating the significance of viral

invasion by HSPA5. Additionally, it was reported that HSPA5 is

upregulated during SARS-CoV-2 infection while it acts as a pro-

viral protein (59).
3.2 SARS-CoV-2 invasion through HSPA5

The S-protein binding site to cell surface protein HSPA5 was

first predicted by Ibrahim et al. (51) using molecular docking and

structural bioinformatic strategies. They found that the binding

sites are favorable at the regions of domain III (C391-C525) and IV

(C480-C488) in the receptor-binding domain (RBD) of the S1 C-

terminal domain. Also, they conclude that region IV (C480-C488)

would be the main driving force site for the binding of cell surface

HSPA5 protein. The best fit for the binding site to HSPA5 was the

cyclic nine amino acid residues (CNGVEGFNC) of region IV in

RBD, and the sequence of this amino acid was cyclic and surface-

accessible and protrudes to the outside of the spike (60) (Figure 3).

Equal average binding affinities of HSPA5 against the wildtype RBD

and delta variants of the S-protein for SARS-CoV-2 were also

revealed (61). The new variant spikes of 501.V2 and omicron are

predicted to be tightly bound to HSPA5 more than the wildtype

RBD (62, 63). While the ACE2 required TMPRSS2/4 to cleave the S-

protein, the N-terminus nucleotide-binding domain (NBD) of the

HSPA5 provided the energy for the SARS-CoV-2 entry (64). ACE2

requires HSPA5 for its translocation to the cell surface, and when

HSPA5-depleted cells are tested, their ACE2 fails to be expressed on

the cell surface but activates UPR markers(65).

Shinn et al. (66) reported the S-protein from SARS-CoV-2 can

physically interact with cell surface HSPA5 protein in adipose tissue

of COVID-19 patients with older age, obesity, and diabetes.
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Furthermore, Palmeira et al. (67) revealed that HSPA5 inhibitors

interfered with SARS-CoV-2 entry through a virtual screening

study. Therefore, HSPA5 could be an entry protein or coreceptor

for the SARS-CoV-2 attachment and invasion (10, 51, 68, 69).

Besides, the HSPA5 expression level was uncovered to be higher in

the group of SARS-COV-2-positive patients compared with other

groups (70).
3.3 The HSPA5 expression, susceptibility to
infection, and severity of COVID-19

HSPA5 expression in various tissues may be tightly close to the

susceptibility and severity of the viral invasion. Therefore,

understanding the expression of HSPA5 in various malignant

cancers and corresponding normal tissues is essential. In addition,

organ dysfunctions, for example, acute respiratory distress

syndrome (ARDS), acute cardiac injury, acute kidney injury

(AKI), shock, and death, occur in severe events of COVID-19 (71,

72). Older people with comorbidities, for example, cardiovascular
Frontiers in Immunology 05
disease, diabetes, cerebrovascular disease, and high blood pressure,

were also reported to suffer from severe COVID-19 (73, 74).

Moreover, HSPA5 was reported to upregulate during SARS-CoV-

2 infection in patient tissues and serum as a pro-viral protein (59).

The incidences of malignant tumors are increasing and are the

general comorbidity with COVID-19 (75–77). Dysregulating the

expression of HSPA5 in cancer tissues, particularly in the lungs,

could influence the susceptibility to virus infection and its severity

(13). A targeting strategy for HSPA5 might help develop and design

new therapeutics against viral invasion associated with carcinomas

during ER stress (69, 78, 79).
4 Associations between
SARS-CoV-2 invasion and HSPA5
expression in cancers

Understanding the HSPA5 expressions, as mentioned above,

and localizations of entry proteins/receptors of SARS-CoV-2 in host
FIGURE 3

When the endoplasmic reticulum (ER) is stressed, heat shock protein A5 (HSPA5) is translocated to the cell surface (csHSPA5) and subsequently
bound to the region IV (C480-C488) through the position of amino acids CNGVEGFNC in the spike protein (S-protein) of SARS-CoV-2, thus acted
as a receptor/entry protein for virus entry. For the cell surface protein HSPA5, its SBDb domain was predicted to bind to the spike protein. The image
was created with MedPeer (www.medpeer.cn). ER, the endoplasmic reticulum; KDEL-R, the endoplasmic reticulum protein retention receptor; RBD,
receptor binding domain; SBD, substrate binding domain.
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tissues can give insights into COVID-19 therapeutics for reducing

the spread of COVID-19, viral replication, disease pathology, and

disease severity. In addition to ACE2, other entry proteins like

HSPA5 could act as receptors/coreceptors for SARS-CoV-2 entry

(51, 80). The HSPA5 mRNA levels were significantly higher than

those of ACE2 in both cancers and healthy individuals in most

cancer types (Figure 2B). Moreover, in the normal lungs, the mRNA

level for HSPA5 was a 54.4-fold increase than that of ACE2, and in

lung cancer, it was a 253-fold increase, implying that HSPA5 plays a

vital role in SARS-CoV-2 invasion in cancer progression by the

lungs (13).

Understanding the expression for HSPA5 is essential. Once

again, HSPA5 expression showed high in almost healthy tissues and

upregulated in most cancer tissues, suggesting that all the organs

can be invaded, high susceptibility to SARS-CoV-2, and severity to

diseases in those people bearing cancers (Figure 2A). Besides, high-

expressed HSPA5 largely downregulated the overall survival of 7

types of cancer patients, such as adrenocortical carcinoma (ACC),

bladder urothelial carcinoma (BLCA), head and neck squamous cell

carcinoma (HNSC), kidney renal papillary cell carcinoma (KIRP),

GBM, liver hepatocellular carcinoma (LIHC), and uveal

melanoma (UVM).

Patients bearing malignant tumors are usually too weak and

prone to more severe SARS-CoV-2 infection. When studying the

expression level of ACE2, Lee et al. reported that patients of men

with lung tumors likely have a high-risk COVID-19 condition (81).

HSPA5 is expressed in male reproductive tissues that may facilitate

the virus entry into the male reproductive tract, linking the SARS-

CoV-2 and the HSPA5 could become a target of therapeutics to

mitigate its harmful effects on male fertility (82). Our systematic

review and meta-analysis showed that 7.15% of COVID-19 patients

presented malignant tumor coincidental situation, and the rate of

more severe events of patients with both COVID-19 and tumors

was higher than that of all patients with COVID-19 (33.33% versus

16.09%, respectively, p<0.01) (13). Other systematic reviews and

meta-analyses could also support coincidental cancer situations

(83–85). Therefore, these data suggested that SARS-CoV-2 might

have a high ability to infect highly expressed HSPA5 tissues,

including cancer tissues. Altogether, HSPA5 expression implied

the association, roles, and clinical significance in SARS-CoV-2

invasion in cancer patients.
5 HSPA5 targeting and the
natural products in anti-cancer
therapeutics and anti-SARS-CoV-2:
the perspectives

Targeting HSPA5 strategies might be potential for anti-cancer

therapeutics and anti-SARS-CoV-2 (7–11, 86). Presenting on the

surface of cancer cells and not healthy cells in vivo, cell surface

HSPA5 is an exciting target for antibody therapeutics, thereby

providing valuable insights into the clinical values of HSPA5

antibodies for the prognosis and therapy of cancer and as anti-

SARS-CoV-2 (12).
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A combination of HSPA5-targeted and doxorubicin-loaded

nanodroplets together with ultrasound was reported to be novel,

potential theranostics in castration-resistant prostate cancer (87).

Targeting HSPA5 was reported to sensitize reactive oxygen species

(ROS) osteosarcoma cells to the therapy of pyropheophorbide-a
methyl ester-mediated photodynamics (88). Anti-breast cancer

drugs were predicted to bind to cs-HSPA5 in stressed cells. The

cyclin-based kinases 4/6, abemaciclib, and ribociclib, and the

effective anticancer agent, tunicamycin, maintained their binding

affinity during 100 ns molecular dynamics simulation against the

nucleotide-binding domain of cell-surface HSPA5 (89).

Host cell stress response may predict the infectivity of SARS-

CoV-2 and the progression of COVID-19 disease (90). A decrease

in HSPA5 expression may potentially prevent COVID-19,

especially in cancer patients. Therefore, HSPA5 was implied as an

anticancer drug target (11, 91, 92). On the cell surface, HSPA5 was

earlier found to execute as an entry protein/coreceptor for virus

internalization to associate with class I molecules of major

histocompatibility complex (MHC). Thus antibodies can direct

against both the N and C-terminus of HSPA5, majorly affecting

the binding of the SARS-CoV-2 to the cell surface and its infectivity

to liver cancer (93, 94). The virus entry for Borna disease was

regulated by the association of HSPA5 with the cleaved N-terminus

envelope glycoprotein GP1 (95). The antibody against the N-

terminus of HSPA5 (N20) can interrupt GP1 binding to HSPA5

and reduce virus infection. Therefore, we could consider the

potential of using HSPA5 inhibitors/antibodies for COVID-19

treatment (96). Indeed Shin et al. showed that the above-known

inhibitors of HSPA5 interfered with the SARS-CoV-2 infection

through virtual screening studies (66). Two of these drugs,

Ponatinib and Bosutinib, are SRC inhibitors and are patented as

capable of blocking the expression of HSPA5.

Natural products have been shown to disrupt the attachment of

SARS-CoV-2 to stressed cells, which is also worth further investigating

(69, 97). These products can interfere with SARS-CoV-2 attachment

through the substrate-binding domain b (SBDb) of HSPA5 on the

host-cell membranes (69). For example, in addition to anti-cancerous

effects, terpenoids of the Chaga mushroom (Inonotus obliquus),

mainly for Oleanolic acid and Inonotsulide A, had high affinities

toward the HSPA5 SBDb (98). Previous in silico studies also revealed

that terpenoids of the Chaga mushroom might interfere with SARS-

CoV-2 recognition by the host cells by binding the viral spike protein

(99). Based on the values of binding affinities, phytoestrogens

(Biochanin A, Diadiazin, Genistein, and Formontein) and estrogens

are the best to bind HSPA5, thus could disrupt SARS-CoV-2

attachments. We thus could use these small molecules from

mushrooms or herbs as anti-COVID-19 drugs for people with

higher risks of cell stress, like cancer patients, elders, and front-line

medical staff. Therefore, targeting HSPA5 expression by natural

products may imply the significance in clinical for both anti-

COVID-19 and anti-cancers in the future.

Moreover, SARS-CoV-2 was frequently mutated. Interestingly,

some mutated variants of the S-protein RBD in SARS-CoV-2 are

predicted to be tightly bound to cell surface HSPA5 more than that of

the wildtype S-protein RBD (62, 63, 100). The binding affinities of

both ACE2 and HSPA5 against the SARS-CoV-2 spikes of the
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wildtype and the alpha, beta or gamma, delta, delta+, C36, lambda,

and omicron variants were predicted by Elfiky et al. (101). Both

lambda and omicron variant spikes showed enhanced average

binding affinities against HSPA5. This might be a key for the

design of inhibitors to interfere with SARS-CoV-2 attachments and

entry to the host cell by disrupting S-protein/HSPA5 binding (62, 63).

Altogether, we reviewed the high expression of HSPA5 in the

most cancers and the possibility of being invaded by the virus as a

new coronavirus receptor. Targeting HSPA5 may not only implies

the significance in clinical for both anti-COVID-19 and anti-

cancers but also provides an intriguing clue for medical

treatments and management of cancer patients with COVID-19

in the future (Figure 1).
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