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Over the last several decades, radiotherapy has been considered the primary

treatment option for a broad range of cancer types, aimed at prolonging patients’

survival and slowing down tumor regression. However, therapeutic outcomes of

radiotherapy remain limited, and patients suffer from relapse shortly after

radiation. Neutrophils can initiate an immune response to infection by

releasing cytokines and chemokines to actively combat pathogens. In tumor

immune microenvironment, tumor-derived signals reprogram neutrophils and

induce their heterogeneity and functional versatility to promote or inhibit tumor

growth. In this review, we present an overview of the typical phenotypes of

neutrophils that emerge after exposure to low- and high-dose radiation. These

phenotypes hold potential for developing synergistic therapeutic strategies to

inhibit immunosuppressive activity and improve the antitumor effects of

neutrophils to render radiation therapy as a more effective strategy for cancer

patients, through tumor microenvironment modulation.

KEYWORDS
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1 Introduction

Radiotherapy, a therapy that has been applied worldwide for several decades to reduce

tumor size and relieve pain from metastatic cancer patients. Two-thirds of cancer patients

benefit from radiation which delivers high-energy X-rays or particles to destroy tumors (1).

There is ample evidence that high-dose radiotherapy is associated with prolonged overall

survival, as demonstrated by a broad spectrum of cancer patients’ clinical therapeutic results

and preclinical experiments. Patients who received low-dose irradiation following high-dose
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irradiation at local tumor triggered a systematic antitumor response

rate of metastatic burden, as observed in preclinical studies (2, 3). So

far, many studies demonstrated that high-dose irradiation triggers

system toxicity and boosts antitumor immunity in cancer patients;

low-dose irradiation, however, is under more investigation especially

its influence on profoundly reprogramming the tumor immune

microenvironment (TIME) and cytotoxic T cell recruitment which

can effectively reverse cold tumors and priming the antitumor

immunity with less toxicity (4, 5).

Neutrophils, a type of polymorphonuclear (PMN) cells, have

short lifespan and play an indispensable role in immune defense by

their tumoricidal activity, granules release and etc. that are

necessary for tumor suppression (6). Neutrophils regulate the

microenvironment through pro- and anti-inflammatory cytokines

expression; in turn, cytokines in the microenvironment mediate the

function of neutrophils (7). Various subtypes of tumor-associated

neutrophils (TANs) either promote or inhibit tumorigenesis,

metastasis, and recurrence (8, 9).

TANs are distinguished from the potent immune-suppressive

polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs)

not by cell surface markers but only by functional characteristics (9). A

recent study by Condamine et al. found that the lipid metabolism-

related protein lectin-type oxidized LDL receptor-1 can distinguish

PMN-MDSCs from neutrophils, yielding a potential target in medical

oncology (10). However, in some cancer types, neutrophils have

disparate roles in either supporting or suppressing the tumor cells

proliferation, depending on the cancer types (11).

The contribution of neutrophils after low or high radiotherapy

doses to patients’metastasis-free survival (MFS) and local tumor control

is still a matter of controversy. Elevated numbers of peripheral

neutrophils result in radioresistance by activating the mitogen-

activated protein kinase (MAPK) pathway (12, 13). Neutrophil

depletion through antibodies or pharmacological approaches before

radiotherapy boost cancer immune response of cancer patients (12).

However, compelling evidence also indicates that fractionated radiation

doses initiate neutrophil recruitment and promote antitumor immunity

(14). These antitumor effects of neutrophils are amplified by concurrent

administration of granulocyte colony-stimulating factor (G-CSF) and

radiotherapy through PI3K/Akt/Snail signaling pathway activation (15,

16). Therefore, the distinction between “bad” and “good” neutrophils

after low- or high-dose irradiation may pave the way to enhance “good”

neutrophils and inhibit the “bad” neutrophils as a potential target to

increase radiation efficacy (17, 18).

In this review, we will emphasize several phenotypes of neutrophils

after fractionated low- or high-dose radiation, respectively and provide

the potential target to enhance the combination therapy.
2 The functional versatility of
neutrophils in response to
conventional high- or low-dose
irradiation therapies

In the early stages of human lung tumors, TANs compose up to

25% of cells from isolated tumor samples, indicating neutrophils’
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indispensable role in tumor development and further progression

(19). At the same time, crosstalk between T cells and neutrophils in

this period encourages cytotoxic signaling expression on the surface

of neutrophils, which fosters T cell proliferation (9, 19). Neutrophils

also demonstrate functional diversity in the late stage of BALB/C

mice bearing 4T1 mammary carcinoma. High-density neutrophils

(HDN) from tumor-bearing mice prompt antitumor activity while

low-density neutrophils (LDN) induce immunosuppressive

properties (20, 21).

Neutrophils are divided into three major subtypes: pre-

neutrophils, immature and mature neutrophils from previous

reports, and these subtypes have various functional capacities

(22). Neutrophil to lymphocyte ratio (NLR), an indicator and

prognostic factor of progression-free and overall survival, a higher

ratio is proportional to a lower immune response and more

frequent relapsing rate in metastatic Non-small-cell lung

carcinoma (NSCLC) (23). NLR provides an extensive range of

cancer types with prognostic biomarkers after high- and low-dose

irradiation treatment (23–25). In cervical cancer autochthonous

mouse models of soft tissue sarcoma, elevated neutrophil numbers

suppress the immune response and promote resistance to

radiotherapy after the tumor receives a total 20 Gy in situ

radiation (12). The accumulation of monocytic (M-)MDSCs in

the tumor sites of MC38 tumor-bearing mice after 20 Gy irradiation

stimulation results in radioresistance through STING pathway

activation (26).

The effects of repeated radiation doses on positively or

negatively regulating the immune can be influenced by the

neutrophils that are infiltrated into tumors. Despite the

immunosuppressive properties of neutrophils, neutrophils also

participate in the first line of innate and adaptive immune

response in tumor models after radiotherapy (14, 15, 27).

Fractionated radiation of 8Gy leads to a remarkable increase of

phosphorylated histone H2AX (gH2AX) which considerably

induces CXCL1, CXCL2, and CCL5 inflammatory chemokine

secretion and improves radiosensitivity. Neutrophils recruited by

hypofractionated radiation facilitate mesenchymal-epithelial

transition (MET) via the ROS-mediated PI3K signaling pathway

and impel tumor elimination. A combination of high- or low-dose

radiotherapy and granulocyte colony-stimulating factor (G-CSF)

enhances radiosensitivity and antitumor activity with anticancer

functional neutrophils (14, 15, 28, 29).
3 Neutrophils are reprogrammed in
the tumor microenvironment after
either low- or high-dose radiotherapy

Neutrophils are a critical component of the innate immune

system, the pro- or anti-inflammatory functions of neutrophils

depends on cytokines stimulation in the TIME (30–32). MDSCs,

for example, is a type of the immunosuppressive neutrophils that

involve in tumor progression in numerous cancer types after

pathogen activation (33). Antitumor neutrophils can be regulated

by ICAM-1 and TNFa, leading to reduced neutrophil extracellular
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traps (NETs) and improved radiotherapy response, resulting in

prolonged survival in cancer patients (8, 9, 34, 35). With a better

understanding of the crosstalk between neutrophils and the TIME,

patients could benefit from improved diagnosis, more effective

immune protection strategies, and targeted therapies.
4 Antitumor effects of neutrophils
after high-dose or low-dose
irradiation

4.1 Type 1 tumor-associated neutrophils

Similar to tumor-associated macrophages (TAMs), neutrophils

undergo a reprogramming process under the stimulation of

chemokines, tumor necrosis factors, colony-stimulating factors

(CSFs), and interferons (IFN), which results in non-identical

polarized phenotypes. Some are antitumor (N1 TANs), while

others promote tumor progression and metastasis and pro-tumor

TANs (36). However, there is currently no definitive method for

identifying N1 TANs and N2 TANs (pro-tumor TANs) based on

specific functional characteristics (37).

IFN-a and IFN-b, also referred as type 1 IFN, are considered as

potential anticancer agents to maintain immune system surveillance

capabilities. IFN- b can polarize neutrophils into an antitumor N1

phenotype (38). The presence of IFN-b in the early stage of tumor

development restricts angiogenesis and backing neutrophils to

antitumor N1 phenotype. This conversion leads to an increase in

cytotoxic T cells and suppression of tumor cell proliferation, leading

to improved outcome of cancer patients (36, 38). Antitumor N1

TANs have been shown, through immunohistochemical analysis in

various cancer types, to promote leukocyte recruitment by

producing cytotoxic reactive oxygen species (ROS), tumor growth

inhibitor matrix metalloproteinase (MMP)-8, Fas-ligand for

antibody-dependent cell-mediated cytotoxicity (ADCC), and

multiple cytokines. These mechanisms result in similar antitumor

effects regardless of whether high or low doses of radiation are used

(36, 39, 40).

Several syngeneic mouse tumor models were utilized to gain

deeper insight into the early immunological effects of different doses

of radiation on neutrophils in TIME. In EG7-bearing C57BL/6

mice, which is a radiosensitive syngeneic graft tumor model,

showed remarkable impact on tumor viability with 1.3Gy

radiation and enhanced the antitumor effects through CD11b+Gr-

1 high+ neutrophils infiltration. However, 4T1-bearing Balb/c mice

required a high dose (15 Gy) to reach similar anti-neoplastic

influence through heightened production of ROS neutrophils (15).
4.2 Antitumor neutrophil extracellular traps

Neutrophils play vital roles in protecting the host against

infections through NETs. They immobilize and eliminate

invading pathogens by activating the downstream ROS pathway
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and inducing chromatin decondensation promoters such as

protein-arginine deiminase type 4 (PAD4), myeloperoxidase

(MPO), and neutrophil elastase (NE) (41, 42). Although the

mechanisms by which NETs are involved in the TIME and their

potential anti- or pro-neoplastic activation have been explored for

decades, it remains unclear how NETs regulate different types of

tumor progression and elicit radioresistance or radiosensitivity after

different doses radiation. One proposed mechanism by which NETs

may promote tumor growth is the induction of chronic

inflammation in the TIME. Moreover, the DNA in the NETs can

act as a danger signal to trigger the activation of innate immune

cells and further exacerbating inflammation in the TIME. However,

reports also mentioned the anti-tumor effects of NETs. For

example, NETs can trap circulating tumor cells and prevent

tumor dissemination, which can reduce the tumor metastasis (11,

39, 42).

Histology analysis of adenocarcinoma patients demonstrates

that the concentration of NETs reaches a peak in tumor sites in

response to tumor cells, and neutrophil infiltration decreases

gradually from tumor tissues to distal sites. In vitro evidence

confirms that cultured Caco-2 colorectal adenocarcinoma cells

and acute myeloid leukemia (AML) undergo apoptosis processes

when encountering NETs (43). Toll-like receptors (TLRs) stimulate

the formation of NETs (44). Furthermore, specific TLRs selectively

produce corresponding NETs structurally and functionally distinct,

which offers a promising foundation for further application in

disease intervention (45). Co-culture with endothelial cells

promote NETs formation, causing damage to tumor-dependent

blood vessels and slowing tumor growth; this antitumor effect could

be abrogated via NADPH oxidase inhibition (46). Histones, a

component in NETs, can trigger host cell cytotoxicity, suggesting

that NETs could be a promising target to increase tumor-killing

efficacy (47).
5 Pro-tumor effects of neutrophils
after high-dose and low-dose
irradiation

Despite the extensive literature on the antitumor functions of

TANs mentioned above in modified tumor cell lines or after

receiving specific therapies, there are a substantial number of

studies suggest their pro-tumor roles (48, 49). Increasing reports

support the contribution of neutrophils in tumor progression

through tumor angiogenesis, chemokine and cytokine release in

TIME, which induce the pro-cancer role of neutrophils and

resistance to radiotherapy (12, 26, 50). Pro-tumor TANs are

associated with tumor metastasis, tumor cell proliferation, and a

high frequency proportion of relapse. Neutrophil depletion through

antibodies or genetic methods increases radiotherapy sensitivity

(12). Neutrophils support the extravasation of disseminated

carcinoma cells and inhibit intraluminal cell clearance mediated

through NK cells; furthermore, such pro-cancer neutrophils show

an extended life span (51–53).
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5.1 Myeloid-derived suppressor cells

A subtype of immature and mature neutrophils, identified as

inhibitory immune cells partly through promoting the proliferation

of regulatory T cells (Tregs) and macrophage differentiation at pre-

metastatic niches, are known as MDSCs (31, 54). Prostaglandin E2

(PGE-2), an essential cell growth and regulatory factor whose

receptor is expressed on the surface of MDSCs, encourages

differentiation of Gr1+CD11b+ MDSCs. PGE-2 inhibits the

capacity of Th1, CTL, and NK cell and enhances Th2, Treg,

tumor-infiltrating T helper type 17 (Th17), and tumor-infiltrating

helper T cells inhibitory properties. PGE-2-deficient BALB/c mice

display lower MDSCs expression and delayed tumor growth

compared with wild-type mice when incubated with 4T1 tumor

cells (55, 56). Activation of CXCL12/CXCR4 pathway leads to PEG-

2-dependent accumulation of MDSCs, which in turn migrating via

COX2 and promote tumor progression in ovarian cancer (57).

Previous findings demonstrated that specific COX2 inhibitors,

nonsteroidal anti-inflammatory drugs and other agents could be

further developed as potential anticancer production by reducing

PGE-2 synthesis or increasing neutrophil superoxide anion

production to delay tumor progression and reduce metastasis

(58, 59).

Radiation induces the infiltration of MDSCs into different types

of tumors, with either low- or high- dose radiation (54, 60). The

development of bone marrow-derived myeloid cells, including

TAM and MDSCs, is dependent on CSF1/CSF1 receptor (CSF1R)

(33, 61, 62). In prostate cancer, both multiple fractions of 3 Gy or a

single 30Gy in situ radiation induce a systematic increase of MDSCs

and CSF1/CSF1R in various organs through tumor-infiltrating

myeloid cells (TIM) employment. Selective blockade of CSF1R

suppresses MDSCs infiltration and facilitates MDSCs loss results

in improved therapeutic outcomes (50, 63). In a report on MC 38

and CT26 tumor bearing mice, it reports that hypofractionated

irradiation (>= 20Gy) suppresses the accumulation and infiltration

of MDSCs. However, lower doses of irradiation tended to facilitate

the recruitment of MDSCs into tumor (64, 65).

The influence of radiation on MDSCs infiltration and

therapeutic outcomes are different between types of cancers. For

example, a single dose of 25Gy radiation can recruit CD11b+Gr-1+

MDSCs to infiltrate tumors and affects last longer than 14 days in

TRAMP-C1 intramuscular tumor model (66). However, there are

significant differences between tumors and radiation doses. In high

grade gliomas (HGG), a single dose of 4Gy radiation downregulates

M2 TAMs and M-MDSCs and encourages T cell proliferation (67).

Similar findings were shown in intracranial CT2A subcutaneous

mouse model, where nanoparticles-based fractionated 2Gy

repolarizes M2 pro-tumor phenotype to M1 antitumor phenotype

and boosts ROS generation (66). High-dose radiation, which is over

45 Gy, can have various effects on MDSCs population in head and

neck cancer patients (68).

Previous reports also suggest that MDSCs are responsible for

abscopal effects inhibition. A melanoma patient who received

radiotherapy showed decreased MDSCs concomitant with

abscopal effects, suggesting a manageable way to investigate the
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relationship between radiation-induced MDSCs and tumor

abscopal effects (69).

The depletion of MDSCs, specifically targeting the crosstalk

between MDSCs and NK cells, has been shown to mediate

immunosuppressive influence and inhibit tumor growth after no

more than 0.2Gy LDRT (70). Moreover, TGF-b secretion by

MDSCs and N2-type TANs activation damage NK cells after

receiving low radiation (63, 70) (Figure 1). The literature

mentioned above reveals that the MDSCs which receives lose-

dose and high-dose irradiation therapy establish various, and this

yields a potential target to increase MDSC-based antitumor

immunity in combination with different doses radiation with

specific timing.
5.2 NETs formation

Neutrophils can prevent fungal and bacterial cells from

invading through degranulation and nuclear chromatin expulsion

and forming the NETs (42). However, in the context of radiation

therapy, formation of NETs after radiation therapy can facilitate

tumor progression, and its inhibition post-radiation improves the

therapeutic outcome and overcomes radioresistance in syngeneic

bladder cancer mode in a TLR-4 dependent manner (71). Tissue

damage caused by radiation before tumor formation promotes

Notch pathway activation, which leads to neutrophils ’

recruitment to tumor sites and subsequent cancer metastasis (72).

Extracellular DNA accumulation is a marker of NET formation,

and DNA components of NETs (DNA-NETs) promote cancer

metastasis. DNase, which destroys DNA scaffolds through

CCDC225, has been shown to abrogate NET-mediated metastasis

(73, 74). Preclinical models have shown that NETs inhibition

through PAD4 inhibitors (citrullination) increases sensitivity to

anti-PD-1 and anti-CTLA 4 and achieve significant therapeutic

efficacy (73).

Mitochondrial biogenesis and tumor cell proliferation have

been found to be correlated with NETs formation and PAD4

expression in human cell lines (75–77). High dose of radiation

(10 Gy) induces NETs formation in tumors, which capture tumor

cells and shield them from detection by CTLs to facilitate tumor cell

metastasis to distal sites (50). PAD4-KO tumors have the properties

of elevated apoptosis, mitochondrial membrane potential and less

ATP production, indicating the potential target for clinical

appilicability (50, 75). However, a study also shows low-dose

radiation (2Gy) has no influence on NETs formation in bladder

cancer model (50). The involvement of NETs in radiation resistance

demands further exploration.
5.3 N2 TANs

Substantial evidence suggests that functional disparity by

factors in the TIME is the basis of the heterogeneity of

neutrophils. For example, tumor releases IL-8, IL-10, PGE-2, and

TGF-b to interstitially induce tumor progression N2 TANs and
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promote tumor growth and metastasis (12, 78). In addition, VEGF

and TNF production from N2 TANs promote tumor

vascularization and Matrix Metalloproteinases (MMP)-9

secretion, which participates in the tumor extracellular matrix

reconstruction and contributes to subsequent tumor metastasis (9,

79, 80).

The tumor microenvironment and the patient’s overall TIME

promote the conversion of neutrophils to the N2 TANs phenotype,

as previously described that the absence of IFN-b stimulation leads

to N2 TANs to promote tumor growth (36). Moreover,
Frontiers in Immunology 05
neovascularization was accompanied by increased invading N2

TANs that expressed more VEGF and CXCR4 (19, 81).

In contrast, differentiated N2 TAN secretes copious hydrolases,

cytokines and chemokines to reinforce the immunosuppressive state

of the TIME and promote tumor proliferation and migration. Tumor

cells, pro-neoplastic neutrophils and even tumor-derived fibroblasts

secrete MMP-9 to mediate the degradation of the tissue basement

membrane type IV collagen to promote tumor growth and stimulate

VEGF to promote vascularization (82, 83) (Figure 2).

N2-type neutrophils in tumor tissues stimulate Th17

proliferation and differentiation through CCL-20, IL-23 secretion

and inhibition of TNF-a production, which in turn strengthens the

immunosuppressive effects of Th17 and inhibit antitumor effects of

CD4+ Th1 to negatively regulate functional homeostasis to tumor

onset (14, 84–86). In the preclinical transgenic lung tumor mouse

model, abnormal neutrophil accumulation correlated with an N2-

like SiglecFpos and Ly-6G downregulation. Furthermore, incomplete

neutrophil deletion mediated with Ly-6G along with the

radiotherapy retards tumor growth and triggers durable tumor

regression (82).
6 Conclusion and perspectives

Radiation therapy induces a systematic immune response in

cancer patients and improves survival. However, the cytotoxic

effects are not persistent and patients develop radioresistance after

several months. Therefore, more concurrent administration

strategies are needed to refine radiotherapy.

Factors determine the function and polarization of neutrophils

in the TIME; thus how the signalings and chemokines are involved

in inducing the chemotaxis has been explored for several decades

but still needs more elucidation. Neutrophil-targeted therapies offer

a promising therapeutic route to strengthen therapeutic effects in a

wide range of cancers from preclinical to clinical cancer patients. In

multiple cancer patients’ histology samples, NLR is regarded as a

reliable and accessible biomarker for predicting prognosis as cancer

progresses. Low- or high radiotherapy slows tumor growth,

interrupts the tumor cell cycle and releases neo-antigen from

tumor cells to recruit immune cells and reinforce anti-neoplastic

neutrophils and or dampen pro-tumor neutrophils to accelerate

tumor shrinkage or undermine radioresistance, the mechanisms are

still unclear. Chemotherapies or ICI and different doses of

synergistic radiotherapy strategies render cancer patients

responsive to radiation therapy to amplify immune responses and

extend the cytotoxic effects of functional T cells. Cancer patients are

benefited from combinational therapy with tumor shrinkage and

extended survival. However, owing to the TIME and tumor gene

mutation burden (TMB) in multiple cancer types, further research

is necessary to better illustrate the interactions between neutrophils

and high- and low-dose radiation therapy.
FIGURE 1

The involvement of TGF-b in neutrophil polarization.
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In addition, limited documents elucidate the appropriate

application time and doses of radiation when combined with

neutrophil-target therapies across various cancer classifications,

which highlights the necessity for expanding our understanding of

the precise underlying mechanisms of how tumor-induced cytokines

and chemokines modify neutrophils to inhibit immunosuppressive

neutrophils and extend immunotoxic neutrophils.
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