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associated glycolysis and
pyruvate metabolic remodeling
in pancreatic cancer
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Introduction: Tumor-associated macrophage 2 (TAM2) abundantly infiltrates

pancreatic ductal adenocarcinoma (PAAD), and its interaction with malignant

cells is involved in the regulation of tumor metabolism. In this study, we explored

the metabolic heterogeneity involved in TAM2 by constructing TAM2-associated

metabolic subtypes in PAAD.

Materials and methods: PAAD samples were classified into molecular subtypes

with different metabolic characteristics based on a multi-omics analysis strategy.

20 PAAD tissues and 10 normal pancreatic tissues were collected for proteomic

and metabolomic analyses. RNA sequencing data from the TCGA-PAAD cohort

were used for transcriptomic analyses. Immunohistochemistry was used to

assess TAM2 infiltration in PAAD tissues.

Results: The results of transcriptomics and immunohistochemistry showed that

TAM2 infiltration levels were upregulated in PAAD and were associated with poor

patient prognosis. The results of proteomics and metabolomics indicated that

multiple metabolic processes were aberrantly regulated in PAAD and that this

dysregulation was linked to the level of TAM2 infiltration. WGCNA confirmed

pyruvate and glycolysis/gluconeogenesis as co-expressed metabolic pathways

of TAM2 in PAAD. Based on transcriptomic data, we classified the PAAD samples

into four TAM2-associated metabolic subtypes (quiescent, pyruvate, glycolysis/

gluconeogenesis and mixed). Metabolic subtypes were each characterized in

terms of clinical prognosis, tumor microenvironment, immune cell infiltration,

chemotherapeutic drug sensitivity, and functional mechanisms.
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Conclusion: Our study confirmed that the metabolic remodeling of pyruvate

and glycolysis/gluconeogenesis in PAAD was closely related to TAM2.

Molecular subtypes based on TAM2-associated metabolic pathways provided

new insights into prognosis prediction and therapy for PAAD patients.
KEYWORDS

pancreatic cancer, tumor-associated macrophage 2, glycolysis, pyruvate,
metabolic classification
1 Introduction

Tumor progression and development require the metabolic

reprogramming of cancer cells (1). Changes in the energy

metabolism pattern of cancer cells can meet the needs of rapid

proliferation and adaptation to the tumor microenvironment (2).

Metabolic status in the tumor microenvironment (TME) is

influenced by many factors, including angiogenesis, interactions

with other cells, and systemic metabolism (3). Metabolic

heterogeneity can influence therapeutic effectiveness and may

predict clinical outcomes (4). However, few studies have

focused on methods for distinguishing subtypes based on

metabolic heterogeneity.

Pancreatic cancer (PAAD) is a malignancy with poor prognosis

and high mortality (5). Tumor-associated macrophages (TAMs)

abundant infiltration is a prominent characteristic of PAAD (6).

TAMs can interact with pancreatic cancer cells to regulate

metabolic, inflammatory, and immune states, forming an

immunosuppressive TME and ultimately promoting tumor

occurrence and development (7). Studies have demonstrated

macrophages impact the biological function of pancreatic cancer

cells, such as glucose metabolism (8, 9). However, a method that

combines TAM- and metabolism-related characteristics to identify

new molecular subtypes of PAAD remains lacking. Metabolic

subtypes offer a unique vision for classifying patients for new

generation cancer treatment; thus, developing new molecular

subtypes according to immune-metabolic characteristics is crucial

to improve precision medicine.

Herein, we classified PAAD into four metabolic subtypes with

distinct immune-metabolic characteristics according to multi-

omics and explored the function of detected metabolic subtypes

in the clinical features, prognosis, and treatment of PAAD, aiming

to provide a new understanding of immunotherapy for PAAD.
2 Materials and methods

2.1 Patients and samples

In this study, 30 pancreatic tissues were retrieved, including 20

samples of pancreatic ductal cell carcinoma and 10 of adjacent
02
healthy tissues. All pancreatic samples were obtained from the First

Hospital of Lanzhou University from January 2016 to December

2020. M2 macrophage markers (CD206 and CD163) were

quantitatively assessed by immunohistochemical (IHC) staining

in all samples, and the Table 1 shows the features of these

patients. All samples were acquired during the surgical

procedures and were diagnosed with pancreatic ductal

adenocarcinoma via postoperative pathology. The exclusion

criteria were as follow: (I) comorbidity with other cancers; (II)

metabolic illnesses; and (III) underwent preoperative chemotherapy

or radiotherapy. The research followed the Declaration of Helsinki,

and was approved by the Ethics Committee of First Hospital of

Lanzhou University (No: LDYYLL2022-196).
2.2 RNA-Seq data download

The Cancer Genome Atlas (TCGA) and The Genotype-Tissue

Expression (GTEx) contain a total of 178 PAAD and 171 healthy

pancreatic tissues (10, 11). The University of California Santa Cruz

(UCSC) database collates and standardizes the high-throughput

sequencing (HTSeq) data in TCGA and GTEx, which can be

directly obtained for differential expression analysis of genes (12).

TCGA-PAAD, GTEx- pancreas and TCGA Pan-Cancer data were

obtained from UCSC on July 1, 2022, all in transcripts per million

formats (TPM). The clinical information of PAAD patients was

obtained from TCGA. After deleting samples with missing survival

data, a total of 178 patients were included. In addition, PAAD

microarray data from Gene Expression Omnibus (GEO, GSE15471,

GSE62165, GSE62452) were downloaded for this study (13).
2.3 Proteomics and targeted
metabolomics assays

In proteomics assays, the EasynLC1200 chromatography

system (Thermo Scientific) was used to perform chromatographic

separations. Buffer consists of two liquid aqueous solutions: A is

0.1% formic acid, and B is 0.1% formic acid acetonitrile (acetonitrile

is 85%). DDA (data-dependent acquisition) mass spectrometry was

conducted using a Q-Exactive HF-X mass spectrometer (Thermo
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Scientific). All mass spectrometry data were merged by Proteome

Discoverer 2.4 software to analyze the search library and build a

spectral database. In targeted metabolomics assays, separation was

performed by high-performance liquid chromatography using

Shimadzu NexeraX2LC-30AD. Mobile phase: Liquid A was 5%

aqueous acetonitrile, 10 mM ammonium acetate, pH 9; Liquid B

was 95% aqueous acetonitrile, 10 mM ammonium acetate, pH 9.

The sample was injected into the autosampler at a column

temperature of 40°C, a flow rate of 300 µL/min, and a sample

volume of 8 µL. Mass spectrometry was conducted utilizing a

QTRAP 5500 mass spectrometer (ABSCIEX) in positive/negative

ion mode. To determine the ion pair that needed to be monitored,

MRM mode was employed.
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2.4 Proteomics and metabolomics analysis

After obtaining the protein identification matrix, proteins with

more missing values in the matrix were filtered out by the 50%

principle. The Limma R software was employed to carry out

difference analysis, and differentially expressed proteins (DEPs)

were defined as those with a P value < 0.05 and an absolute value

of log fold change (LogFC) > 1 (14). R tool “ClusterProfiler” was

utilized to assess the KEGG pathways involved in DEPs (15). Using

MultiQuant program, chromatographic peak regions and retention

periods were retrieved for targeted metabolomics sequencing.

Metabolite identification was performed using corrected retention

times of energy metabolite standards. Forty energy metabolites were
TABLE 1 Clinical characteristics of 20 PAAD patients.

Characteristics

CD206 expression CD163 expression

High
(n=10)

Low
(n=10) P value High

(n=10)
Low
(n=10) P value

Age

<60 4(50%) 4(50%) 1 5(62.5%) 3(37.5%) 0.65

>60 6(50%) 6(50%) 5(41.7%) 7(58.3%)

Gender

Female 6(60%) 4(40%) 0.371 6(60%) 4(40%) 0.371

Male 4(40%) 6(60%) 4(40%) 6(60%)

CA199

<=35 1(20%) 4(80%) 0.303 2(40%) 3(60%) 1

>35 9(60%) 6(40%) 8(53.3%) 7(46.7%)

Histologic grade

G3 7(63.6%) 4(36.4%) 0.37 8(72.7%) 3(27.3%) 0.07

G2 3(33.3%) 6(66.7%) 2(22.2%) 7(77.8%)

Pathologic stage

Stage1 0(0%) 7(100%) 0.003 3(42.9%) 4(57.1%) 1

Stage2/3 10(76.9%) 3(23.1%) 7(53.8%) 6(46.2%)

T stage

T1 3(75%) 1(25%) 0.582 2(50%) 2(50%) 1

T2/3 7(43.8%) 9(56.3%) 8(50%) 8(50%)

N stage

N0 0(0%) 7(100%) 0.003 3(42.9%) 4(57.1%) 1

N1 10(76.9%) 3(23.1%) 7(53.8%) 6(46.2%)

Vascular invasion

No 6(50%) 6(50%) 1 7(58.3%) 5(41.7%) 0.65

Yes 4(50%) 4(50%) 3(37.5%) 5(62.5%)

M stage

M0 10(50%) 10(50%) 10(50%) 10(50%)
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quantified in all samples, and the screening criteria for differentially

expressed metabolites (DEMs) was a T test P value < 0.05. The

MetaboAnalyst 5.0 database was utilized to conduct KEGG

enrichment analysis of DEMs (16).
2.5 TAM2-related metabolic
pathway analysis

To analyze TAM2-associated protein functions, co-expressed

proteins of CD206 and CD163 were obtained by Pearson

correlation analysis, and the screening criteria were defined as a P

value < 0.05 and a correlation coefficient >0.3. KEGG enrichment

analysis was carried out to assess the biological processes involved

in TAM2-associated proteins. Given the important role TAM2

plays in the metabolic remodeling of PAAD, we further

integrated metabolomics and IHC data to identify metabolite

modules closely associated with TAM2 infiltration levels by

weighted gene co-expression network analysis (WGCNA). All

recognized metabolites were included in the construction of the

co-expression network by the WGCNA R package (17). The

samples with a large dispersion are removed by hierarchical

clustering. The soft power of k = 6 was selected. Subsequently,

the transformation of the expression matrix into a topology matrix

was executed. The hybrid dynamic shearing tree standard was

employed to cluster genes using the average-linkage hierarchical

clustering approach, according to TOM. The module trait

correlation was based on the module and the TAM2 infiltration

level determined by Pearson’s relevant tests, and the metabolites

contained in the module were defined as TAM2-associated

metabolites when the P value was ≤0.05. Finally, the metabolic

pathways involved in TAM2 were identified based on TAM2-

associated metabolites in the MetaboAnalyst 5.0 database.
2.6 Metabolic subtype classification

The metabolic subtypes of PAAD were further investigated

based on TCGA-PAAD transcriptome data. Genes from the gene

sets hsa00620 and hsa00010 of the Molecular Signatures Database

(MSigDB) were utilized as pyruvate and glycolysis/gluconeogenesis

(GG) metabolism-associated genes, respectively (18). Hierarchical

clustering was conducted on pyruvate and GG metabolism-

associated genes utilizing the HCLUST R function, and genes

with dispersed expression in pyruvate and GG metabolism-

associated genes were excluded. To categorize samples into the

quiescent (pyruvate ≤ 0, GG ≤ 0), pyruvate (pyruvate > 0, GG 0),

GG (pyruvate ≤ 0, GG > 0), and mixed (pyruvate > 0, GG > 0)

metabolic subtypes, the median expression patterns of pyruvate and

GG metabolism-associated genes were employed. To assess the

reliability of the metabolic subtypes, the expression of pyruvate

pathway genes, GG pathway genes and TAM2-associated genes was

compared among different subtypes. The design style of integrating

a multi-omics strategy for metabolic subtype classification was

informed by previous studies (19).
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2.7 Clinical features and mechanistic
investigation of metabolic subtype

Kaplan-Meier survival curves were created to explore variations

in survival (overall survival [OS], disease-specific survival [DSS],

progression-free survival [PFS]) among various metabolic subtypes

utilizing the R tools Survival and Survminer (20). The clinical

characteristics of the different metabolic subtypes were also

examined by chi-square or Fisher’s exact test. Characteristic

molecules for each metabolic subtype were obtained by

differential analysis using the Limma R package and in

accordance with the following screening criteria: 1. genes showed

significant upregulation in one subtype in comparison with the

other three subtypes; 2. P value < 0.05 and LogFC > 0.6. Using

Cytoscape plugins ClueGO and ClusterProfiler R packages, the

enriched pathways were detected by these characteristic molecules

to evaluate probable pathway deficits across several metabolic

subtypes (21). The parameters for the ClueGO plugin were set as

follows: the ontologies were set to include biological process,

cellular component, and molecular function; only pathways with

a p-value less than 0.05 were displayed; The GO tree interval was set

to range from 3 to 8, and the Kappa score is set to 0.5. The

parameters for the ClusterProfiler R packages were set as follows:

organism = hsa, pvalueCutoff = 0.05, pAdjustMethod = fdr, qvalue

Cutoff = 1.
2.8 Immune infiltration
of metabolic subtypes

The composition of the tumor microenvironment for all

TCGA-PAAD samples was calculated by the Estimate R package,

such as immune, stromal and estimate scores. Subsequently, the

Wilcox test was employed to detect significant differences in

microenvironmental scores among distinct metabolic subtypes.

Additionally, a thorough investigation of the infiltration intensity

of each kind of immune cell was conducted utilizing a variety of

algorithms such as TIMER, CIBERSORT, xCELL, EPIC,

MCPcounter, and QUANTIseq Each sample’s immune cell

infiltration by various metabolic subtypes was shown using the

Heatmap R tool, and Kruskal test results were used to detect

significant differences. Additionally, we analyzed the differential

expression of immunosuppressive gene sets in different metabolic

subtypes by the Wilcox test.
2.9 Therapeutic prediction
of metabolic subtype

Considering the application of chemotherapeutic agents and

immune checkpoint inhibitors in PAAD, we analyzed the response

of patients with different metabolic subtypes to targeted therapy.

Somatic mutation data of TCGA-PAAD were integrated and

analyzed by the Maftools R package, and chi-square test was

employed to calculate significant variations (22). According to
frontiersin.org
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their gene expression patterns, the “Oncopredict” R tool was

employed to calculate each TCGA-PAAD patient’s treatment

sensitivity (23). The parameters for the “Oncopredict” R tool

were set as follows: trainingPtype = GDSC2_Res, testExprData =

testExpr, batchCorrect = eb, powerTransformPhenotype = TRUE,

removeLowVaryingGenes = 0.2, minNumSamples = 10,

printOutput = TRUE, removeLowVaringGenesFrom = rawData.

The estimated drugs include common clinical agents and clinical

trial agents for pancreatic cancer. Subsequently, the Wilcox test was

utilized to examine the four metabolic subtypes for medicines that

could be sensitive, with lower half maximal inhibitory

concentration (IC50) measures revealing higher drug sensitivity.
2.10 Statistical analysis

Software used for statistical analysis of data: R (version 4.0.2),

SPSS (version 25.0), Prism (version 8.0.2). Test methods for
Frontiers in Immunology 05
calculating significant differences included the Kruskal test,

Wilcox test and chi-square test. Correlation analysis using

Pearson’s test. Differential analysis of expression profiles using the

Limma R package. Tools used for data visualization: ggplot2 R

package, Prism (version 8.0.2).
3 Results

3.1 TAM2 is highly infiltrative in PAAD and
associated with poor prognosis

Integrating TCGA-PAAD and GTEx-pancreas data, the TAM2

infiltration level of all samples was measured using CIBERSORT

algorithm. The findings revealed significant upregulation of TAM2

infiltration in PAAD than pancreatic tissues (Figure 1A).

Microarray data sourced from the GEO database were used to

validate this result. In GSE15471, GSE62165 and GSE62452, TAM2
B C D

E F

G

H

I

J

A

FIGURE 1

TAM2 infiltration was abnormally elevated in PAAD. TAM2 infiltration in PAAD and healthy pancreatic tissues was calculated by the CIBERSORT
algorithm in TCGA&GTEx (A), GSE15471 (B), GSE62165 (C) and GSE62452 (D). (E) Immunohistochemical staining of CD206 and CD163 in PAAD
tissue and normal pancreatic tissue. Quantitative analysis of CD206 (F) and CD163 (G) proteins in PAAD and healthy pancreatic tissues.
(H) Differential expression of CD206 protein in PAAD patients with N0 and N1 stages. Survival analysis of CD206 (I) and CD163 (J) proteins in 20
patients with PAAD. TAM2, tumor-associated macrophage 2; PAAD, pancreatic cancer; TCGA, The Cancer Genome Atlas; GTEx, genotype-tissue
expression. *P < 0.05, **P < 0.01, ***P < 0.001.
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infiltration in PAAD tissue was abnormally abundant (Figures 1B–

D). CD206 and CD163 are the classical cellular markers of TAM2.

Pan-cancer analysis of the TCGA&GTEx database showed that

CD206 and CD163 mRNA expression was heterogeneous among 33

malignant tumor tissues, but both were significantly highly

expressed in PAAD tissues (Figures S1A, B; Table S1).

Subsequently, we quantified the protein expression of CD206 and

CD163 by IHC staining in 20 PAAD tissues and 10 normal

pancreatic tissues (Figure 1E). Consistent with the mRNA levels,

the results indicated that CD206 and CD163 protein expression was

upregulated in PAAD (Figures 1F–H; Table S2). Moreover, survival

analysis findings indicated that PAAD patients in the high CD206

or CD163 protein expression groups exhibited shorter survival

times compared to the low expression group, although this

difference was not statistically significant for CD163 (Figures 1I,

J). These results suggest that TAM2 is abundantly infiltrated in the

PAAD microenvironment and may be associated with the

malignant progression of the tumor.
Frontiers in Immunology 06
3.2 Proteomics and metabolism
suggest metabolic abnormalities
in pancreatic cancer

Differential analysis based on the proteomic matrix screened a

total of 310 DEPs, including 269 upregulated DEPs and 41

downregulated DEPs in PAAD tissues (Figure 2A; Table S3).

Hierarchical clustering plots showed that DEPs had different

expression patterns in the normal pancreas group and PAAD

group (Figure 2B). KEGG enrichment analysis findings revealed

that the cellular pathways related to the DEPs included the

following five main functional categories: biological processes,

biosynthesis, metabolism, cellular structure and human diseases

(P < 0.05, Figure 2C; Table S4). The metabolic pathways of the

DEPs showed a correlation with glucose, lipid and amino acid

metabolisms (Figure 2C). Targeted metabolomics analysis

identified 40 energy metabolites, of which 16 metabolites were

highly expressed in PAAD tissues. Log2FC, P value and
B

C

D E

A

FIGURE 2

Proteomics and metabolomics analysis in PAAD and healthy pancreatic tissues. Volcano (A) and heatmaps (B) of differentially expressed proteins in
20 PAAD tissues and 10 normal pancreatic tissues. (C) KEGG functional enrichment analysis for differentially expressed proteins. (D) Radar plot of
differentially expressed metabolites in 20 PAAD tissues and 10 normal pancreatic tissues. (E) KEGG functional enrichment analysis for differentially
expressed metabolites. PAAD, pancreatic cancer; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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expression level of DEMs are shown in a radar chart (Figure 2D).

Functional enrichment analysis of the MetaboAnalyst 5.0 database

revealed that DEMs have role in metabolic pathways, such as

pyruvate metabolism, glycolysis/gluconeogenesis and the citrate

cycle (TCA cycle) (P < 0.05, Figures 2E, S2; Table S5).
3.3 TAM2 is associated with metabolic
abnormalities in PAAD

Based on the proteomic, metabolomic and immunohistochemical

data of 20 PAAD tissues, we further analyzed the biological

mechanisms involved in tumor metabolism by TAM2. A total of

20 CD163 co-expressed proteins and 155 CD206 co-expressed

proteins were screened by Pearson correlation analysis (P value <

0.05 and correlation coefficient >0.3, Figures 3A, B; Table S6).

AKR1A1, LDHB, MDH1/2 and DLAT were closely associated with

glycolysis and pyruvate metabolism and exhibited a significant

positive correlation with CD206 in PAAD (Figures 3C–G).

According to KEGG pathway analysis findings, the functions of
Frontiers in Immunology 07
CD206 and CD163-related proteins were mainly enriched in five

biological directions, with the metabolic pathway accounting for the

largest proportion (Figure 3H; Table S7). We further analyzed the

TAM2-associated metabolite module by WGCNA. Samples C3 and

C15 were dispersed from the other samples in the sample

dendrogram and were excluded from the WGCNA (Figure 4A). All

metabolites were divided into four modules according to the

association of expression in the cluster dendrogram (Figure 4B).

The correlation between each metabolite module and CD206 or

CD163 was examined using Pearson’s test. Consequently, findings

illustrated close association between the blue metabolite module with

CD206 expression (Figure 4C). The gene significance was highly

significantly related to module membership in the blue module

(Figure 4D). KEGG enrichment analysis of the metabolites

contained in the blue module showed that starch and sucrose

metabolism and GG and pyruvate metabolism had high pathway

impact scores (P value < 0.05 and impact scores>0.2, Figure 4E).

These results suggested that TAM2 was closely associated with the

metabolic remodeling of PAAD and mainly involved in GG and

pyruvate metabolism.
B C

D E

F G

HA

FIGURE 3

TAM2-related metabolomic analysis in PAAD. (A) Proteins co-expressed with the TAM2 cell markers CD163 (A) and CD206 (B). Scatter plot of
association of glycolysis- with pyruvate metabolism-related proteins (C–G) and CD206 expression. (H) KEGG functional enrichment analysis of
KEGG for CD163 and CD206 co-expressed proteins. PAAD, pancreatic cancer; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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3.4 Detection of four metabolic subgroups
of PAAD according to GG and pyruvate
metabolism-related genes

RNA-HTSeq data from the TCGA-PAAD cohort were used to

classify PAAD according to the expression profiles of pyruvate and GG

metabolism-associated genes. All PAAD samples were classified into

the following four subgroups: quiescent, pyruvate, GG and mixed

(Figures 4F, G). The heatmap demonstrated that the expression of

pyruvate and GG metabolism-associated genes sequentially increased

from the quiescent subgroup to the mixed subgroup (Figures 4H, I,

S3). CIBERSORT, xCELL as well as QUANTIseq algorithms were
Frontiers in Immunology 08
utilized to calculate the infiltration level of TAM2 infiltration in each

subtype. The three algorithms yielded consistent results showing the

highest TAM2 infiltration levels for the mixed subtype, the lowest for

the quiescent subtype, and no significant difference between the

pyruvate and GG subtypes (Figures 5A–C). The expression levels of

TAM2 markers from the Cellmarker database also increased gradually

from the quiescent subtype to the mixed subtype (Figure 5D). Survival

analysis of OS, PFS and DSS suggested a significant difference of the

outcome among the four metabolic subtypes, which in turn revealed

clinical significance among the classification of metabolic subtypes

(Figures 5E–G). Moreover, the analysis of clinical characteristics

findings illustrated that only T-stage differed among the different
B C D

E F

G H I

A

FIGURE 4

PAAD samples were classified into four subtypes based on TAM2-associated metabolic pathways. PAAD sample dendrogram (A), metabolite cluster
dendrogram (B), correlation between metabolite module and TAM2 cell markers (C), correlation between gene significance and module
membership (D) of weighted metabolite co-expression network analysis based on metabolomics. (E) KEGG functional enrichment analysis for
TAM2-related metabolite modules. (F) Crosstalk between pyruvate and GG metabolism. (G) The scatter plot demonstrates the metabolic isoforms
based on TAM2-related metabolic pathways. The X and Y axes represent the median expression patterns of GG metabolism-associated genes and
pyruvate metabolism-related genes in PAAD samples, respectively. Heatmap showing the expression of GG metabolism-associated genes (H) and
pyruvate metabolism-related genes (I) in four metabolic subtypes. PAAD, pancreatic cancer; TAM2, tumor-associated macrophage 2; KEGG, Kyoto
Encyclopedia of Genes and Genomes; GG, glycolysis/gluconeogenesis.
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metabolic subtypes, suggesting a higher proportion of the mixed

subgroup in PAAD patients with T3/4 stage (Figure S4).
3.5 Different metabolic subtypes were
involved in different biological mechanisms

The characteristic genes of each subtype were obtained by

differential analysis to represent the molecular characteristics of the

corresponding subgroup. The quiescent subtype contained 104

characteristic genes, the pyruvate subtype contained 364

characteristic genes, the GG subtype contained 147 characteristic

genes, and the mixed subtype contained 151 characteristic genes

(Table S8). The functional annotation of characteristic genes of

distinct metabolic subtypes differed significantly. For GO terms,

serine-type endopeptidase activity, hormone secretion, zymogen

activation and immune response was characteristics for the

quiescent subtype; the pyruvate subtype was characterized by cation

channel complex, vesicle-mediated transport and insulin secretion; the

GG subtype was characterized by xenobiotic metabolic process,
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detoxification, and tissue homeostasis; and the mixed subtype was

characterized by extracellular matrix, antigen presentation and serine/

threonine kinase signaling pathway (Figure 6A; Table S9). KEGG

pathways of the quiescent subtype were dominated by glucose, amino

acid, and lipid metabolisms. KEGG pathways of the pyruvate subtype

were closely related to the MAPK and CAMP signaling pathways.

KEGG pathways of the GG subtype were enriched in substance

synthesis and glucose metabolism. KEGG pathways of the mixed

subtype were involved in immune-related biological processes and

signaling molecules (Figure 6B; Table S10). These results suggested

that the function of metabolic subtypes was not only complex but also

distinctive in the different subtypes.
3.6 Immune infiltration analysis,
immunotherapy prediction and targeted
drugs sensitivity analysis

Given that the immunity is essential constituent of the

functional mechanisms of metabolic subtypes, we further
B C

D

E F G

A

FIGURE 5

TAM2 infiltration and survival analysis of metabolic subtypes. Comparison of TAM2 infiltration levels in different metabolic subtypes using the
CIBERSORT (A), xCELL (B) and QUANTIseq (C) algorithms. (D) Differential expression of TAM2 cellular markers from the Cellmarker database in
metabolic subtypes. Overall survival (E), disease-specific survival (F), and progression-free survival (G) Kaplan–Meier curves of PAAD patients with
different metabolic subtypes. TAM2, tumor-associated macrophage 2; PAAD, pancreatic cancer. *P < 0.05, **P < 0.01, ***P < 0.01.
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analyzed immune cell infiltration in distinct metabolic subtypes.

Immunoassay scores obtained utilizing the ESTIMATE method

were significantly different across metabolic subtypes, indicating a

relationship between metabolic subtypes categorization and tumor

purity in PAAD samples (Figure 7A). The results of immune

infiltration analysis based on multiple algorithms showed that the

infiltration levels of multiple immune cells were significantly

different in various metabolic subtypes, including memory B cells,

B cells, cancer-associated fibroblasts, endothelial cells, eosinophils,

mast cells, monocytes, myeloid dendritic cells, neutrophils, NK,

CD4+ memory T, CD4+ T, CD8+ T, and regulatory T cells

(Figure 7B). In addition, most immunosuppressive genes and

immune checkpoint genes were differentially expressed in

different metabolic subtypes (Figure 7C). Tumor mutational

burden is believed to predict the effect of tumor immunotherapy,

so somatic mutation data from the TCGA-PAAD dataset were

extracted for analysis. The results showed that KRAS mutations

were the most frequent in the four metabolic subtypes, but no

significant variation existed in the mutation frequency of highly

mutated genes in the different metabolic subtypes (Figures 8A, B).

The effects of metabolic remodeling on the prediction of

chemotherapy response are significant. Using the OncoPredict R

program, the IC50 values of prominent chemotherapeutic drugs

and targeted medicines were calculated for each PAAD sample. The

pyruvate subtype had decreased IC50 scores for dasatinib,
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irinotecan, rapamycin, sorafenib and X5 fluorouracil (Figure 8C).

GG subtype had decreased IC50 scores for gefitinib, lapatinib and

paclitaxel (Figure 8C). The mixed subtype had lower IC50 values for

cyclophosphamide and nilotinib (Figure 8C).
4 Discussion

Currently, the treatment of pancreatic cancer emphasizes

precision treatment. Treating PC requires accurate molecular

characteristics and targeted medicines. Research based on the

tumor microenvironment is increasingly used to guide novel

therapies for pancreatic cancer. In this study, we created an

unique multi-omics integration technique based on glycolysis and

pyruvate metabolic processes, combined with macrophage

infiltration to elucidate the metabolic variability of PAAD and its

therapeutic significance. This can help identify PAAD patients who

respond to immunotherapy and targeted therapies.

Macrophages can induce tumor cell proliferation and metastasis

through angiogenesis, immunosuppression, hypoxia induction and

other pathways and are involved in many tumor-promoting

outcomes in cancer (24). Huilin Ye et al. found that CCL18,

which secreted by tumor-associated M2 macrophage (TAM2),

promotes the progression of pancreatic cancer and activates the

glycolytic metabolic pathway in tumor cells. Conversely, VCAM-1
B

A

FIGURE 6

Functional mechanism characteristics of metabolic subtypes. GO functional annotation (A) and KEGG pathway annotation (B) for molecular
characteristics of quiescent, pyruvate, glycolysis/gluconeogenesis and mixed metabolic subtypes.GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes; PAAD, pancreatic cancer.
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in PAAD cells was able to produce more lactate by promoting

aerobic glycolysis, thereby inducing the macrophages which from

the tumor microenvironment to polarize toward M2 macrophages

(8). These results suggest that TAM2 and tumor cells form a

mutually reinforcing positive feedback loop in pancreatic cancer

(8). In addition, lactic acid produced by glycolytic metabolism in

PAAD cells can induce macrophages to express VEGF dependent

on HIF-1a and promote the conversion of M0 macrophages to M2

macrophages, which in turn enhances aerobic glycolysis in PAAD

(25). We first compared the degree of macrophage infiltration

between pancreatic cancer patients and the normal population,

found that macrophages showed high infiltration in pancreatic

cancer tissues, and searched for macrophage-related signaling

pathways for cancer occurrence and development, including

metabolism-related pathways. To clarify the metabolic status of

pancreatic cancer, we performed metabolic analysis on tissue

samples from pancreatic cancer patients. The results showed the

metabolic characteristics of PAAD progression and identified the

processes most associated with the development of pancreatic

cancer: glycolysis and pyruvate metabolism.

Since Warburg proposed the theory of cancer metabolism,

Numerous investigations have highlighted the correlation between
Frontiers in Immunology 11
cancer cells and glucose metabolism (26). Cancer metabolism is

characterized by a preference for glycolysis to produce energy in a

way that does not rely on oxygen (27). Glycolysis is key for pancreatic

cancer cells to maintain their biosynthesis and energy requirements,

promoting tumor invasion, metastasis and drug resistance (28). The

large amount of lactic acid produced by cancer cells through glycolysis

leads to the polarization of TAMs toward the M2 phenotype in the PC

microenvironment (29). In this study, we also found that the higher

glycolytic activity subtype (GG) showed higher M2-type macrophage

infiltration. This is consistent with the relationship between glycolysis

andmacrophages in pancreatic cancer. Thus, inhibition of glycolysis is

a promising strategy for targeting pancreatic cancer. Research has

shown that Chromebox protein homolog 3 (CBX-3) is a positive

modulator of glycolysis in pancreatic cancer cells, and that blocking

the CBX3-FBP1 signaling axis inhibits aerobic glycolysis, which

suggests that this approach may be useful in the treatment of

pancreatic cancer (30). Additionally, glycolysis activation in

pancreatic cancer can be reversed by an mTOR inhibitor (RAD001),

and RAD001 in combination with gemcitabine can promote the

chemotherapy sensitivity of PAAD cells (28).

Pyruvate is an important molecule for human metabolism.

Pyruvate is the end product of glycolysis and is eventually
B

C

A

FIGURE 7

Immune microenvironment analysis of metabolic subtypes. (A) The Estimate method was utilized to compare the immune, stromal, and ESTIMATE
scores across metabolic types in the TCGA-PAAD cohort. (B) Distribution of immune cell infiltration among the four metabolic subtypes according to
the TIMER, CIBERSORT, xCELL, EPIC, MCPcounter and QUANTIseq methods. (C) Differential expression of immunosuppressive genes and immune
checkpoint genes in different metabolic subtypes. TCGA, The Cancer Genome Atlas; PAAD, pancreatic cancer. *P < 0.05, **P < 0.01, ***P < 0.01.
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transported to the mitochondria to be involved in the tricarboxylic acid

cycle (31). Some enzymes in the pyruvate metabolic pathway, such as

pyruvate kinase (PK) and pyruvate carboxylase, have been studied in

cancer (32, 33). For instance, PKM2 has been shown to be

overexpressed in various cancers and can promote cancer cell

proliferation and metastasis (34). Additionally, pyruvate carboxylase

activity has a function in protecting cancer cells from oxidative damage

and regulating lipid metabolism (34). For PAAD, the survival time was

significantly reduced in high PKM2 expression patients compared to

low PKM2 expression patients. Moreover, PKM2 expression was

negatively related to the number of CD8+ cells in the tumor (35).

However, targeting these enzymes could attenuate glycolysis and

inhibit tumor proliferation (36). From our results, the “pyruvate

phenotype” seems to be less sensitive to some anticancer drugs.

Therefore, targeting pyruvate metabolism-related enzymes in the

future may help improve drug resistance in PAAD patients.

Since the in-depth study of immune checkpoints on the surface of T

cells, immune checkpoints, such as programmed death receptor 1 (PD-

1), have become new therapeutic targets for various cancers (37).

However, PAAD does not respond well to immunotherapy because

the TME of PAAD is immunosuppressed (38). At present, drug therapy
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for PAAD has gradually shifted to combination therapy with targeted

therapy and immune checkpoint inhibitors. For instance, combination

therapy targeting CXCL12 and PD-L1 may have anticancer effects in

PAAD (39). Our study provided a new molecular subtype for PAAD

based on immune status and metabolic features. The combination of

targeted therapy with immunotherapy for patients with different

immune metabolic phenotypes appears to be feasible in the future.

Pancreatic stellate cell-secreted factors promote both glycolysis and

gemcitabine resistance in PAAD cells, while drug resistance can be

reduced when glycolysis is inhibited (40). Additionally, mTOR

inhibitors can alter the TME of PAAD through metabolic

reprogramming, thereby promoting the efficacy of PD-L1 blockers in

combination with gemcitabine (41). Therefore, this combination

therapy, including immunotherapy, will become a new treatment

strategy for PAAD patients in the future.

This study has some limitations. Although the molecular subtypes

based on the TCGA-PAAD cohort have shown advantages in clinical

prognosis, tumor microenvironment and treatment outcome

prediction, the reliability of molecular subtypes needs to be further

validated in a large amount of clinical treatment data. Our study reveals

that glycolysis and pyruvate-related metabolic remodeling occurs in
B

C

A

FIGURE 8

Chemotherapy sensitivity estimation and immunotherapy response analysis. (A) Waterfall diagram showing the genes with high mutation frequency
in the somatic mutation data of TCGA-PAAD. (B) Comparison of mutation frequencies of highly mutated genes in different metabolic subtypes.
(C) IC50 values of 8 chemotherapeutic agents in PAAD patients with different metabolic subtypes. TCGA, The Cancer Genome Atlas; PAAD,
pancreatic cancer; IC50, half maximal inhibitory concentration.
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pancreatic cancer tissues, but such metabolic alterations are not an

exclusive signature of tumor cells. Single-cell sequencing and spatial

proteomics could help clarify this scientific question. In addition, future

work should focus on more novel immune-metabolic characteristics of

PAAD, including glucose metabolism, the anoxic microenvironment

and amino acid metabolism. The relationships between metabolites

and immune cells in the TME should be studied in depth.We also need

to pay attention to the metabolic characteristics of immune cells:

macrophages, B cells, and T cells.
5 Conclusions

Transcriptomic and immunohistochemical analyses confirmed

that TAM2 infiltration levels were abnormally elevated in PAAD

and were associated with poor patient prognosis. Proteomic analysis

highlighted the strong correlation between TAM2 and metabolic

remodeling in PAAD patients. Metabolomic analysis further

confirmed the co-expression relationship between pyruvate and

glycolysis/gluconeogenesis metabolism and TAM2 infiltration in

PAAD. This study identifies four subtypes of PAAD patients having

various metabolic features according to TAM2-related metabolic

pathways. Higher levels of pyruvate, glycolysis/gluconeogenesis

metabolism, and higher levels of TAM2 infiltration, poorer

survival prognosis and higher immune suppression are

characteristics of the mixed subtype. In addition, different

metabolic subtypes have different functional mechanisms and

differ in their sensitivity to different chemotherapeutic agents.
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