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NETosis as an oncologic
therapeutic target: a mini review
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Neutrophil Extracellular Traps (NETs) are a key form of pro-inflammatory cell

death of neutrophils characterized by the extrusion of extracellular webs of DNA

containing bactericidal killing enzymes. NETosis is heavily implicated as a key

driver of host damage in autoimmune diseases where injurious release of

proinflammatory enzymes damage surrounding tissue and releases 70 known

autoantigens. Recent evidence shows that both neutrophils and NETosis have a

role to play in carcinogenesis, both indirectly through triggering DNA damage

through inflammation, and directly contributing to a pro-tumorigenic tumor

microenvironment. In this mini-review, we summarize the current knowledge of

the various mechanisms of interaction and influence between neutrophils, with

particular attention to NETosis, and cancer cells. We will also highlight the

potential avenues thus far explored where we can intercept these processes,

with the aim of identifying promising prospective targets in cancer treatment to

be explored in further studies.
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1 Introduction – the innate immune system
and cancer

Cancer immunotherapy is centered on the host immune system eliminating cancer by

recognizing these cells as foreign. The human immune system consists of two key

components, adaptive and innate immune systems, that work closely together in a

highly complementary manner to protect the host against a plethora of invading

pathogens (1). In order to do so, the immune system needs to first be able to identify

these pathogens and the infected cells as well as having the ability to distinguish between

self from non-self molecules, which are also known as antigens (1). The adaptive immune

system’s role in cancer immunosurveillance is well established and plays a crucial role for

most cancer immunotherapies such as immune checkpoint inhibitors for example anti-

PD1 (pembrolizumab and nivolumab) and CTLA-4 inhibitors (ipilimumab) (2, 3). The

role of innate immunity in cancer surveillance is still being investigated.

The innate immune system is the first line of defense against most pathogens and is

designed to rapidly react to invading foreign organisms (1). Most innate immune cells are
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phagocytes including neutrophils, macrophages, and monocytes

(4). Phagocytes are derived from myeloid progenitor stem cells,

which digest invading pathogens by phagocytosis. Tissue resident

macrophages and mast cells are the first responders to tissue insults.

These cells are able to excrete various cytokines and chemokines to

initiate acute inflammation where other innate cells are drawn to

the infected (or insulted) tissue (5). Failure of the initial acute

inflammatory response to eliminate the invading pathogens often

lead to activation of other immune cells including T cells, which

may result in the involvement of the adaptive immune system. Most

acute inflammatory responses resolute with tissue repair phase with

the monocytes play an role in initiating the tissue repair processes.

Chronic inflammation can occur in some circumstances when there

is a failure to eliminate the offending pathogens leading to the

development of a pro-tumorigenic microenvironment within

the tissue.

This article explores the role of neutrophils, which are key

immune cells in the innate immune system, with particular

attention to the neutrophilic function of “NETosis” in promoting

cancer growth and metastasis. We also explore potential avenues to

target these that could be used as or in tandem with

immunotherapies to improve outcomes for cancer patients.
2 The role of NETosis as a key
function of neutrophils in
innate immunity

Neutrophils comprise 50-70% of leukocytes within the blood

stream (4). They are one of the first immune cell responders during

the initial acute inflammatory phase to infection, environmental

exposure, and cancer development (5). When activated, neutrophils

have three major mechanisms of destroying pathogens and

abnormal cells: phagocytosis, secretion of cytotoxic enzymes

(degranulation), and release of neutrophil extracellular traps

(NETs) by NETosis. NETs are an extra-cellular network of

decondensed chromatin, which form weblike DNA structures

which contain cytosolic and granule proteins (6). These structures

are coated with various proteins within the neutrophilic nucleus,

including cytotoxic enzymes used in degranulation and phagocytosis

such as neutrophil elastase (NE) and myeloperoxidase, histones, and

cytosolic proteins (A8, A9, A12, actin, and alpha-actinin) (7).

Invading pathogens are entrapped within NETs, where they are

then proteolyzed by the phagocytes.

NETosis is activated through a wide variety of mechanisms

include increase in intracellular calcium concentration through b2
integrin, presence of reactive oxidative species (ROS), and

activation of various signaling cascades, such as the Raf-MEK-

ERK-MAP kinase pathway and SYK-PI3K-mTorc2 pathways (8, 9).

They can also be activated by plasma membrane surface receptors,

such as toll like receptor (TLR) 1, CD18, nucleotide oligomerization

domain (NOD)-like receptor protein 2 and phorbol myristate

acetate (PMA), presence of bacterial toxins, or cytokines such as
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complement 2 or interleukin (IL) 1 (6, 7). The activation of rapidly

inducing NETosis can be either NADPH oxidase (NOX) or

mitochondrial reactive species dependent (10, 11). Protein kinase

C (PKC) can also phosphorylate NOX to produce ROS which then

triggers NETosis.

The NOX dependent NETosis is triggered in distinct steps. It

begins with the migration of MPO and Neutrophil elastase (NE) to

the nuclear envelope. The NE then partially degrades the histones

thus promoting chromatin decondensation. Simultaneously,

hypercitrullination of histones is mediated by protein-arginine

deiminase type 4 (PAD4), which is a nuclear enzyme that

citrullinates arginine residues by converting the amine groups to

ketones (12). PAD4 can also mediates chromatin decondensation,

which is the defining feature of cellular rearrangement in the

formation of the NET (13). This process is followed by actin

cytoskeletal disassembly and extracellular release of decondensed

DNA by exocytosis or during plasma membrane lysis (mediated by

NE and the pore forming GASDERMIN D), depending on the type

of NETosis (13).

There are two types of NETosis: the suicidal NETosis and the

vital NETosis (Figure 1A). Suicidal NETosis is driven by the

activation of NOX-dependent pathways through increase in

intracellular calcium, which lead to the generation of ROS (7).

This in turn activates myeloperoxidase (MPO), which triggers

neutrophil death through rupture of the nuclear membrane to

release NET. Vital NETosis, in contrast, is a NOX-independent

process and is triggered by stimulation of neutrophil surface TLRs

by complement proteins or microorganisms. Vital NETosis does

not result in the lysis of nuclear or plasma membrane, but involves

the extrinsic release of vesicles from an intact neutrophil that does

not undergo cell death and continues to perform other cellular

functions. Both suicidal and vital NETosis are mediated by PAD4,

as described above. Also, both MPO and NE aid in histone

citrullination and DNA decondensation for both types of

NETosis (14).
3 The role of NETosis in
carcinogenesis and immunotherapy
resistance

3.1 NETosis as a driver of chronic
inflammation and carcinogenesis

NETosis can play a direct and indirect role in carcinogenesis.

Chronic inflammation is a well-established precursor to

carcinogenesis (15). Pathological inflammation damages host

tissues and induces a hyperproliferative state, which predisposes

to increased risk of somatic mutations and subsequent cancer

development. Whilst neutrophils appropriately activate the acute

inflammatory process to eliminate invading pathogens, they can

also instigate chronic, pathological inflammation in diseases such as

autoimmune conditions, post viral pneumonitis (such as COVID-
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19), and type 2 diabetes mellitus, with NETosis being a key driver

(16, 17).Constant tissue damage and subsequent DNA damage by

ROS release and NETosis have been implicated in the initiation of

cancers. These were observed in ulcerative colitis, where activated

neutrophils were found to induce G2/M checkpoint arrest and

replication errors in the colonic epithelial cells leading to colorectal

cancer (18).

NETs can directly promote cancer growth by induction of

cellular proliferation and mediation of angiogenesis. In pancreatic

and lung cancers, NETs were found to contain the matrix

metallopeptidase 9 (MMP-9), a known accelerator of angiogenesis

through the degradation of extracellular matrix by activated

neutrophils which triggers vascular endothelial growth factor

(VEGF) release (19).

NETs can also promote cancer cell metastasis. Increased

interleukin-17/Granulocyte colony-stimulating factor (IL17/

GCSF) axes, a known inducer of NETosis, triggered by increased

neutrophil levels have been associated with metastasis of lung and

breast cancers (20–22). B2-integrin (CD18), a key cell surface

protein in the activation of NETosis, has been positively

correlated with metastases of colorectal cancer to the liver in mice

(23, 24). In non-alcoholic steatohepatitis, NETosis has been linked

to hepatocellular cancer development and metastasis (25, 26).

Neutrophil activation by high mobility group box 1 protein

(HMGB1) is implicated in melanoma metastasis (27, 28).

Autophagy, a lysosome-dependent degradation process of

intracellular components, plays an important role in NETosis.

ROS, one of the triggers of NETosis, can both induce and inhibit

autophagic signaling (29). In phorbol myristate acetate (PMA)-

stimulated neutrophils, autophagy and ROS production were

required for NET formation (30). In acute promyelocytic

leukemia cells, autophagy was found to induce NETosis (31).

Autophagy in NETosis is relatively understudied.
Frontiers in Immunology 03
3.2 NETosis is an inducer of the pro-tumor
N2 neutrophil phenotype

There are two neutrophil phenotypes, N1 and N2. N1 is an anti-

tumor phenotype and N2 is a pro-tumor neutrophil, also known as

tumor associated neutrophils (TAN). N1s are associated with high

levels of TNF-alpha, CCL2 and ICAM-1, and low levels of arginase.

N2s are associated with increased levels of chemokine ligand 2

(CCL2), chemokine ligand 3 (CCL3), chemokine ligand 4 (CCL4),

chemokine ligand 8 (CCL8), chemokine ligand 12 (CCL12),

chemokine ligand 17 (CCL17), chemokine ligand 1 (CXCL1),

chemokine ligand 2 (CXCL2), interleukin 8 (IL-8) and chemokine

ligand 16 (CXCL16). N1s exhibit enhanced NOX activity, which

directly triggers tumor cell death through ROS release. N1s can

indirectly mediate cancer cell cytotoxicity through the activation of T

and B lymphocytes, NK cells, and dendritic cells. In contrast, N2s

trigger NETosis, which leads to the development of an unfavorable

tumor microenvironment and the release of pro-angiogenic factors

(Figure 1B) (32). Interestingly, NETosis can generate

hypercoagulative states and induction of N2 phenotype

transformation in small intestinal neoplasia in mice (33). Whilst

more N1s can be detected in the early stages of carcinogenesis, a

switch from N1 to N2 phenotype is seen at later stages of cancer

progression, indicating a link between the tumor microenvironment

and neutrophils to trigger a neutrophil metabolic reprogramming to a

pro-tumor phenotype (18). TANs have been shown to upregulate

fatty acid transport protein 2, mediated by STAT3 and STAT 5,

leading to increased cancer cell uptake of exogenous fatty acids and

can induce reprogramming of N1s to N2s (18). In murine mammary

tumors, IL-1b release by TANs during NETosis can upregulate IL-17

expression that can cause gCSF dependent TAN recruitment (34–36).

IL-1b can promote pancreatic cancer development in a process

involving crosstalk between TANs, adipocytes and pancreatic
A B

FIGURE 1

(A) Molecular process of vital and suicidal NETosis. The two forms of NETosis include suicidal NETosis and vital NETosis. Suicidal NETosis involves
the dissolution of the plasma membrane while vital NETosis preserves the membrane with exodosis of NETs via vesicles. The two pathways
converge upon the activation of PAD4, NE and MPO which leads to histone hypercitrullination, chromatin decondensation, the formation of NETs
and the disruption of nuclear membrane. (B) Polarization of N1/N2 neutrophils in the tumour microenvironment (TME) and the effect of NETs on
tumour and surrounding cells. Neutrophils in the TME are polarized towards either N1 or N2 phenotypes, which is determined by the influence of
factors produced by surmunding NK cells and tumour cells. N2 neutrophils that undergo NETosis release a myriad of molecules and enzymes that
have immunosuppressive and pro-tumour properties as well as causing damage to surrounding epithelial cells. In turn tumour cells release various
factors that induce the polarization, recruitment, and trigger NETosis in N2 neutrophils.
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stellate cells (37). TANs have higher NADPH oxidase and ROS

activities compared to N1 cells, which are associated with increased

inflammation and inhibition of T cell function (18).
3.3 NETosis can generate an unfavorable
tumor microenvironment

The tumor microenvironment includes the constitution of

connective tissue, blood vessels, extracellular matrix, and

inflammatory cells that infiltrate and reside in the tumor stroma.

Within the tumor microenvironment, NETosis can promote cancer

growth and metastasis. NETs can physically trap circulating cancer

cells whilst cathepsin G (neutrophil derived serine protease) can

cause the release of insulin like growth factor 1. The insulin like

growth factor 1 can increase E cadherin-mediated intercellular

adhesion and promote cancer cell aggregation and entry into

blood vessels (38, 39).

NETs can also induce proliferation of cancer cells through NE

and HMGB1 (13). In in vitro models of triple negative human breast

cancer and murine lung cancer, NET formation stimulated the

invasion and migration of the tumor cells (40). Carcinoembryonic

antigen-related cell adhesion molecule 1 (CEACAM1) is particularly

tropic to neutrophils and found abundantly in NETs. CEACAM1

blockade, through 5F4 (CEACAM1 monoclonal antibody) or NE

inhibitor Sivelestat, can significantly decrease colonic carcinoma

migration, suggesting that CEACAM1 is key to cancer cell

metastasis (41). NET-DNA scaffold recognition by Coiled-Coil

Domain Containing 25 (CCDC25) in cancer cells can activate the

ILK-b-parvin pathway to promote cancer cell proliferation and

migration (42).

Epithelial to mesenchymal transition (EMT) is one of the

fundamental processes in cancer metastasis (43). NETosis can

promote EMT in breast and gastric cancers (44, 45). This process

is thought to be driven by NE, which induces tumor cell migration

via the activation of Src/PI3K/Akt pathway (46).

NETosis has been linked to chemotherapy resistance in cancers.

In a mouse model of multiple myeloma, neutrophils promoted

chemoresistance to doxorubicin and melphalan through soluble

factors released in the tumor microenvironment during NETosis

(47, 48). MMP9, released in NETs, are a key driver of angiogenesis

in cancers and corelates with poorer sensitivity to oxaliplatin in

gastric cancer. The inhibition of MMP-9 improved sensitivity of

colorectal cancer cells to 5-FU chemotherapy (49, 50).

In cancers such as ovarian cancers that are typically

immunologically cold tumors, which are associated with resistance

to immunotherapies , often have immune-suppressive

microenvironment (51). Recent studies showed that ovarian cancer

cells can induce NETosis by neutrophils within the tumor

microenvironment to create a premetastatic niche within the

omentum for cancer cells to seed whilst evading immune detection

(52). Endometrial cancers are also typically immunologically ‘cold’

and NETosis has been detected in these cancers on a tissue level, with

circulating cell free DNA and citrullinated histone H3 are being

explored as potential biomarkers of NETosis in these endometrial

cancers (53).
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Lastly, NETosis can be linked to resistance of cancer

immunotherapies as it creates a favorable tumor microenvironment

for tumor immune evasion. In pancreatic ductal adenocarcinomas

(PDACs), high expression of IL-17 and PADI1 have been correlated

with poorer prognosis. IL-17 and PADI1 blockade increased tumor

cell sensitivity to anti-PD-1 and anti-CTLA4 immunotherapies (22).

Tumor-produced chemokines, acting through CXCR1 and CXCR2

chemokine receptors, can induce NETosis and aid immune evasion

of cancers by physically coating tumor cells and preventing contact

with CD8 and NK cells (54). Additionally, PD-L1 has been detected

on the surface of NETs formed by neutrophils isolated from

colorectal cancer patients who had undergone resection of liver

metastasis, and NETosis can induce CD4 and CD8 T cell

exhaustion within the tumor microenvironment (55). CEACAM1

expression, a component of NET webs, is associated with T-cell

exhaustion and resistance to tumor infiltrating lymphocytes

immunotherapy in melanoma patients (38). T cell immunoglobulin

and mucin domain 3 (TIM3) is an inhibitory molecule correlated

with T cell exhaustion in cancers, and is a novel target for recent

immunotherapy research (39). Lastly, higher IL-8 levels have been

recently found to be an accurate prognosticator for poorer response

to checkpoint blockade immunotherapies, likely due to its known

sequelae, including activation of CXCR1 and CXCR2, triggering of

angiogenesis, and immunosuppression through recruitment of

immunosuppressive MDSC to tumor microenvironment (56).
4 Targeting neutrophils and NETosis –
the current landscape

Numerous avenues for targeting neutrophils in cancer

treatment have been explored (Table 1). PAD4, as highlighted

previously, is an essential trigger of both vital and suicidal

NETosis. When PAD4 was blocked in ovarian cancer by GSK484,

a small molecule inhibitor specific for PAD4, metastasis to the

omentum was significantly reduced (52). Another PAD4 inhibitor

chlorine amidine, a pan-PAD inhibitor, can reduce cancer cell

invasion and modified cancer cells to a less aggressive phenotype

in a PDAC in vitro model (57).

Several studies have investigated targeting NE within NETs.

BAY 85-8501 is an endogenous antiprotease NE inhibitor which has

been shown to reduce NET formation in human neutrophils in vitro

(73). Alvelestat (AZD9668), which inhibits NE in a dose-dependent

manner, was effective in reducing inflammation in a murine model

of acute lung injury (65, 67). Curcumin has also been found to

target NE by decreasing NE-induced tumor cell proliferation in

human lung adenocarcinoma cells in vitro; additionally, it has been

linked to significantly reduce NETosis-driven host tissue damage in

hepatic ischaemia-reperfusion injury in mice (64, 74).

Other studies have explored the potential of reversing pro-tumor

N2 neutrophils back to N1 phenotype. NK cells may have a role in

promoting N1 conversion. When NK cells were absent in an ex vivo

neutrophil-NK cell-tumor cell tri-cell co-culture system, N2

neutrophilic action predominated and the N1 neutrophils was

suppressed resulted in a net pro-metastatic effect (75). The same
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results were seen in pancreatic cancer, with subsequent improved

response to immunotherapy in cancer cells post N2-to-N1 conversion

(69). Non-molecular alterations to the tumor microenvironment may

also play a role in delineating dominant neutrophil phenotype. Studies

in mice and human models have shown that hypoxic tumor

microenvironment led to less neutrophils recruitment associated

with more anti-tumor activities (62).

TANs can also be targeted by blockade of fatty acid oxidation,

which mitigates their immunosuppressive tendences (66). A murine

study found anticancer activity of N1 neutrophils was enhanced

with administration of b-glucan (76). Further potential avenues

proposed to block protumor effects of TANs could be achieved by

targeting the CXCL-8/CXCR-1/CXCR-2 axis, or targeting

substances produced by TANS which promote tumor growth (77).

Targeting NETosis has also been explored. (Table 1) The TLR

and CXCR signaling pathways are potential targets to reduce the

pro-tumor effects of neutrophils. In PDAC, blockade of CXCR2

signaling inhibited neutrophil recruitment, reduced angiogenesis

and metastasis (58, 78). Inhibition of TLR4/9-COX2 signaling can
Frontiers in Immunology 05
decrease NET-enabled metastatic activity (26). In mice models of

liver injury, hydroxychloroquine displayed inhibition of NET

formation through inhibition of TLR-9, ROS, and PAD4 (79). A

recent study shows that the CXCR1 and CXCR2 pathways, which

induces neutrophil chemotaxis and subsequent NETosis, can be

blocked using pertussis toxin inhibiting G unit, Reparixin, which

acts as an allosteric inhibitor of CXCR1/CXCR2 signaling (54).

Administration of IL-8 antibodies via SX-682 (a small molecule

inhibitor targeting CXCR1 and CXCR2) reduces the number of

immunosuppressive myeloid-derived suppressor cells (MDSCs)

within the tumor microenvironment and enhances the efficacy of

adoptive cell therapy with NK cells (59). Tocilizumab, a monoclonal

antibody against IL-6 receptor, can inhibit NET formation in cells

of patients with rheumatoid arthritis (60). Both HMGB, which

induces NET formation through a TLR4-dependent manner, and

NETosis can be inhibited by targeting extracellular HMGB1

(through glycyrrhizin, a HMGB1 inhibitor) and NETs (through

anti DNAse I), where a recent study showed delayed tumor growth

post radiotherapy and improved overall survival. Additionally,
TABLE 1 Potential anti-N2 and anti-neutrophil extracellular trap (NET) therapeutics and evidence.

Class Mechanism Compound Evidence

PAD4 inhibitor Block initiation of NETosis Chloramidine In vivo murine model of ovarian cancer (57)

GSK484 In vitro human pancreatic adenocarcinoma cell lines (58)

TGF-b inhibitor Reversal of N2 to N1 phenotype Anti-TGF-beta (1D11) In vitro human model of colorectal cancer (59)

Anti-TGF-beta1 receptor
(SB525334)

Mixed in vivo and in vitro murine models of pancreatic
cancer (60)

Agonist of trained
immunity

Enhance N1 anticancer activity Beta glucan In vivo murine model of melanoma (61)

CXCR signalling
inhibitor

Reduce N2 recruitment Pertussis toxin inhibiting G unit
(Reparixin)

In vitro human, mixed cancers (lung, prostate, renal, pleural,
urothelial) (62)

SX-682 In vivo murine model of HNSCC (63)

HMGB inhibitor Reduce initiation of NETosis Glycyrrhizin In vivo murine model of bladder cancer (64)

DNAse Digestion of NETs Pulmozyme Murine model of multiple myeloma (65)

DNAse I Murine model of lung cancer (48)

In vitro human breast cancer (38)

In vitro human gastric cancer (55)

In vitro human colorectal cancer (66)

NF-kB inhibitor Reduce MMP-9 release in NETosis Enalapril In vivo human colorectal cancer (67)

NE inhibitor Mitigate pro-metastatic effects of NE Neutrophil elastase inhibitor In vitro murine and human models of colorectal cancer (49)

EACAM inhibitor Mitigate immunoregulatory effects of
CEACAM

Monoclonal antibody to
CEACAM1

In vitro murine and human models of colorectal cancer (49)

In vitro murine model of colorectal cancer (68)

IL-17 inhibition Prevent neutrophil migration and
metastasis

Monoclonal antibody to IL17/IL17
receptor

In vivo murine model of PDAC (69)

NADPH inhibition Inhibit suicidal NETosis Diphenyleneiodonium chloride In vitro mouse and human models (68, 70)

Inflammatory
mediator

Increase intracellular cyclic AMP Activated C protein In vitro human cancer model (71)

Prostaglandin E2 In vitro human cell lines and in vivo murine models (70g, 72)
AMP, adenosine monophosphate; CEACAM, Carcinoembryonic antigen-related cell adhesion molecule; CXCR, CXC chemokine receptor; HMGB, high mobility group box protein; HNSCC,
head and neck squamous cell carcinoma; IL-17, interleukin 17; NADPH, nicotinamide adenine dinucleotide phosphate; NE, neutrophil elastase; NF-kB, nuclear factor kappa B; PAD4, protein
arginine deiminiase 4; PDAC, pancreatic ductal adenocarcinoma; TGF-b, tumour growth factor beta.
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there was improved radiation response and increased intratumoral

CD8 T cell infiltration (80).

DNAse I is another potential agent to inhibit NETosis. In a

mouse model of multiple myeloma, pulmozyme, a DNAse targeting

extracellular DNA in NETosis, can reverse tumor resistance to

doxycycline (48). DNAse I has successfully block NETs in lung

cancer, with subsequent reduction in number of metastases in

murine models (40). In humans, administration of DNAse I is

linked to reduced metastasis in breast and gastric cancers (44, 45).

In addition, DNAse I has been found to reverse NET-dependent T-

cell exhaustion in vitro in human neutrophils isolated from patients

with metastatic colorectal cancer (55). However, DNase I has a

relatively short-half and is quickly inactivated by G actin proteins,

for therapeutic window of DNase I is small. Nuclear-penetrating

anti-DNA autoantibodies, such as the 3E10 derivative DX1, can

interfere with the DNA damage response in NETosis and inhibits

both suicidal and vital NETosis in vivo in both human granulocyte-

like cells and murine neutrophils (81).

Enalapril, an antihypertensive medication, can re-sensitize

colorectal cancer cells to 5-fluorouracil chemotherapy by

inhibiting NF-kB and reducing MMP-9, a pro-angiogenic

molecule released in NETosis (49). NE within NETs can be

targeted with a NE inhibitor and CEACAM1 with a CEACAM1

monoclonal antibody, where both have been found to reduce

metastasis in colonic cancer cells, with a synergistic effect when

used in combination (41). In a murine colorectal cancer model, co-

blockade of CEACAM1 and TIM3 with monoclonal antibodies

enhanced intrinsic anti-tumor responses, highlighting a potential

target to enhance the efficacy of immunotherapies (61). NETs can

also be inhibited by activated C protein or prostaglandin E2,

through an increase of intracellular cyclic AMP (82, 83).

Ruboxistaurin, a protein kinase C inhibitor, can inhibit

lipopolysaccharide (LPS) and PMA-induced NETs in neutrophils

isolated from hospitalized patients with COVID-19 (84). IL-17 is

another potential target, with recent studies displaying that IL-17

neutralization can prevent neutrophil migration and metastasis,

which was linked to inhibition of tumor cell growth (21, 22).

Prostaglandin E2 was found to inhibit the cAMP-PKA pathway

induced by NETosis (63, 82). Lastly, NADPH can be targeted by

diphenyleneiodonium chloride, which inhibits NADPH (68, 70).

Whilst a few clinical trials are currently underway to

characterize NETosis in acute respiratory infection, there are

currently no active trials examining NET inhibitors in cancer

patients (71, 72).
5 Conclusion

Neutrophils have a clear role to play in the complex interactions

between cancer cells and the innate immune system, and evidence

highlights that NETosis can be hijacked and exploited by tumor
Frontiers in Immunology 06
cells to help cancers evade detection by immune cells and to

enhance tumor growth, invasion, and metastasis. We have only

begun to understand the intricacies of interaction between

neutrophils and cancer cells, and the potential to target these

pathways to improve the efficacy of cancer immunotherapies.

Further, more comprehensive studies, both in vitro and in vivo,

will help to further characterize these potential targets, paving the

road for clinical trials utilizing these targets in immunotherapies

with the aim of improving outcomes for patients with cancer. Lastly,

although highly contentious, we should also be cautious of the use

of granulocyte colony growth factor (gCSF) to promote neutrophil

expansion post chemotherapy to reduce the risk of hospitalization,

which has now been a common practice since the covid19

pandemic. The effect of neutrophilia in this instance on cancer

treatment outcomes should be investigated.
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