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Traditional Chinese medicine has been used in China for thousands of years. In

2022, the 14th Five-Year Plan for the Development of Traditional Chinese

Medicine was released, aiming to enhance traditional Chinese medicine health

services and improve policies and systems for high-quality traditional Chinese

medicinal development by 2025. ERIANIN, the main component of the

traditional Chinese medicine Dendrobium, plays an important role in anti-

inflammatory, antiviral, antitumor, antiangiogenic, and other pharmacological

effects. ERIANIN has broad-spectrum antitumor effects, and its tumor-

suppressive effects have been confirmed in the study of various diseases, such

as precancerous lesions of the stomach, gastric cancer, liver cancer, lung cancer,

prostate cancer, bladder cancer, breast cancer, cervical cancer, osteosarcoma,

colorectal cancer, leukaemia, nasopharyngeal cancer and melanoma through

themultiple signaling pathways. Thus, the aim of this reviewwas to systematically

summarise the research on ERIANIN with the aim of serving as a reference for

future research on this compound and briefly discuss some future perspectives

development of ERIANIN in combined immunotherapy.

KEYWORDS

traditional Chinese medicine, ERIANIN, cancer, innate immunity, signaling
pathways, immunotherapy
1 Background

Natural products have had a longstanding role in drug discovery and development, and

the unique biological activities of these products are continuously emerging (1–3). Natural

products and their derivatives, which are characterised by structural diversity and high

biological activity, have exhibited a wide range of pharmacological activities in the

treatment of common clinical diseases, such as heart diseases, infectious diseases, skin
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diseases, especially in malignant tumors (4–6). The global tumor

burden continues to increase, and malignant tumors with biological

features such as abnormal cell differentiation, proliferation,

metastasis and the suppressive immune microenvironments have

become a worldwide problem and a serious threat to human health

(7, 8). In addition, drug resistance in malignant cells is the primary

cause of cancer treatment failure, and the side effects and high cost

of cancer therapies limit their clinical application (9–11). The active

ingredients of traditional Chinese medicine have been shown to

enhance the body’s immune function, remodel the tumor

microenvironment, and induce death of tumor cells, while also

enhancing the effectiveness, reducing the toxicity, and reversing

multidrug resistance when used in combination with chemotherapy

drugs (12–14). The antitumor effects of traditional Chinese

medicine are mainly divided into two types: exerting a direct

inhibitory effect on the growth of tumor cells and an indirect

effect of enhancing damaged immune function so as to activate

the immune response of tumor cells (15, 16).

ERIANIN, a natural biphenyl compound derived from the

Chinese herbal medicine Dendrobium, is one of the most

prominent chemical components and has been used as an

antipyretic and analgesic agent (17). ERIANIN also plays an

important role in the treatment of inflammation, diabetic

nephropathy, retinopathy, psoriasis, and cancers including

stomach, gastric cancer, liver cancer, lung cancer, prostate cancer,

bladder cancer, breast cancer, cervical cancer, osteosarcoma,

colorectal cancer, leukaemia, nasopharyngeal cancer and

melanoma through the multiple signaling pathways and holds

promise as a potential therapeutic agent for a variety of diseases

(18, 19).For example, ERIANIN inhibited PDL1-mediated

angiogenesis, proliferation, invasion and migration through the

mTOR/p70S6K/4EBP1 pathway and RAS/Raf/MEK/MAPK-ERK

pathway in cervical cancer (19).

In this review, we provide an overview of the role of ERIANIN,

especially in cancer and innate immunity, and elaborates on its

molecular mechanism related to anticancer activity through the

well-known signalling pathways, including phosphoinositide 3-

kinase (PI3K)/AKT pathway, MEK pathway, JNK pathway,

NRF2/PLOOH pathways, Janus kinase (JAK)/signal transducer

and activator of transcription 3 (STAT3) pathway, GSK3b
pathway, and NLRP3/ROS pathway. Moreover, we discuss the

potential value of ERIANIN in the treatment of diseases and to

reveal its promise as a novel drug combined with immunotherapy

for the prevention and treatment of cancer for clinical applications.
2 An overview of ERIANIN: structure,
source and biological activity

ERIANIN (C18H22O5) is a natural compound with a low

molecular weight and is mainly isolated from Dendrobium

officinale and Dendrobium chrysotoxum (17). Dendrobium is a

traditional Chinese medicinal herb and a second-class protected

plant in China, with rich medicinal value and a history in medicine

of more than 2000 years (20). The genus Dendrobium includes

Dendrobium officinale, Dendrobium huoshanense, Dendrobium
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nobile, and other species (21). It benefits the stomach, nourishes

the yin, and clears heat. The main active ingredients of Dendrobium

are alkaloids, polysaccharides, phenanthrenes, bibenzyls,

flavonoids, sterols, terpenes, and amino acids, among which

alkaloids are the main pharmacologically active ingredients (22).

ERIANIN is an important bioactive component that exerts

medicinal value and belongs to the bibenzyl group of compounds,

with the chemical name 2-methoxy-5-[2-(3,4,5-trimethoxy-

phenyl)-ethyl]-phenol. In addition to natural sources, ERIANIN

can also be chemically synthesised (23). Pharmacological studies

have shown effects such as anti-inflammatory, antiviral, antitumor,

antiangiogenic, and other pharmacological effects (Figure 1).
3 Significances of ERIANIN in cancers

ERIANIN has broad-spectrum antitumor effects, and its tumor-

suppressive effects have been confirmed in the study of various

diseases, such as precancerous lesions of the stomach (24), gastric

cancer (25), liver cancer (26–28), lung cancer (29–31), prostate

cancer (32), bladder cancer (33), breast cancer (34, 35), cervical

cancer (36), osteosarcoma (37), colorectal cancer (38, 39),

leukaemia (40–42), nasopharyngeal cancer (43), and melanoma

(44). In recent years, several cytotoxicity experiments have

demonstrated the inhibitory effect of ERIANIN on tumor cells.

By summarising the 50% inhibitory concentration (IC50) values of

the experiments, it was found that the inhibitory effect of ERIANIN

on different tumor cells was different and was mostly dose-

dependent. However, the IC50 of 28/31 cancer cell lines at the

specified point in time was below 100 nM, which indicated that

ERIANIN has high specificity to tumor cells and good antitumor

activity. The specific values are listed in (Table 1).
3.1 Apoptosis effects

Apoptosis, also known as programmed cell death, is an active

physiological suicidal behaviour that plays an important role in

normal development, maintenance of homeostasis, formation of

immune tolerance, and tumor surveillance in multicellular

organisms (45). Apoptosis is genetically controlled and energy

dependent. In tumors, cells lose their ability to undergo apoptosis,

so inducing apoptosis in tumor cells can effectively inhibit cancer

progression and achieve the goal of cancer treatment. There are four

apoptotic pathways in eukaryotic cells, including the endogenous

(mitochondrial-mediated), exogenous (death receptor-mediated),

granzyme, and endoplasmic reticulum stress (ERS) pathways (46,

47). The first two are recognised as classical apoptotic pathways

(48). The granzyme pathway is mediated by cytotoxic T

lymphocytes, which generate perforin to act on the cell

membrane and release granzyme A and granzyme B

intracellularly, leading to apoptosis (49). In recent years, ERS has

been found to induce apoptosis (50). The accumulation of unfolded

proteins in the endoplasmic reticulum causes ERS and regulates the

BCL-2 family and Ca2+ channels, which in turn promotes the

mitochondrial outer membrane permeabilization (MOMP)
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process to induce apoptosis (51), therefore, the ERS pathway can be

regarded as a complement to the mitochondrial apoptotic pathway.

The apoptotic pathways are different, but all end up with the same

executive signalling pathway, namely the caspase family activation

cascade (52). ERIANIN can induce typical apoptotic phenomena,

such as cell crumpling, chromosome condensation, changes in

mitochondrial membrane potential, and apoptotic vesicles.

The caspase family belongs to cysteine proteases that play

initiation and effector roles in apoptosis (52). According to the

mode of action and function of the cascade reaction of apoptosis,

caspase family members are divided into two categories: apoptosis

initiation factor promoters, including Caspases-2, 8, 9, and 10, and

apoptosis effect factor executors, including Caspases-3, 6, and 7 (53,

54). In normal cells, caspases exist as inactive zymogens. Upon

stimulation by apoptotic signals, the promoter becomes an active

caspase through self-cleavage, activating other downstream

caspases and causing a cascade reaction. Finally, the activated

executor cleaves key proteins associated with apoptosis, such as

protein kinases (protein kinase B, protein kinase C, focal adhesion

kinase, and Raf 1), nuclear lamins, cellular structural proteins, and

enzymes related to DNA repair, thereby causing apoptosis (55).

Caspase-3 is one of the most important apoptotic execution factors

in the caspase family and is the key protein kinase and main effector

of apoptosis. Most apoptosis triggers require the caspase-3-

mediated signalling pathway to complete apoptosis (56). The

DNA repair enzyme PARP is a cleavage substrate of caspase and

can be used as a marker of apoptosis. In leukaemia HL-60 cells (40),

breast cancer MDA-MB-231 cells (34), and colon cancer SW480

cells (57), ERIANIN can induce caspase cascade reactions and

PARP degradation. Treatment of breast cancer MDA-MB-231
Frontiers in Immunology 03
cells with 40, 80, and 160 nM of ERIANIN for 24 h exhibited

significant pro-apoptotic effects in a dose-dependent manner.

ERIANIN upregulates the expression of caspase-3, caspase-9,

PARP, and cytochrome C (Cyt-C), and changes the ratio of BCL-

2/BAX. Cyt-C is a specific protein located in the mitochondria,

indicating that ERIANIN induces apoptosis in MDA-MB-231 cells

by mediating the mitochondrial pathway and activating the caspase

cascade reaction. In addition, DAPI staining clearly revealed

chromosome condensation and breakage in the nucleus, which

are typical morphological manifestations of apoptosis (34).

Studies have shown that PI3K and ERK signalling pathways are

involved in the process of cell apoptosis (58, 59). The PI3K/AKT

pathway is an important signal transduction pathway in a variety of

malignancies, and the PI3K protein family is involved in regulating

various cellular functions, such as cell proliferation, differentiation,

apoptosis, and glucose transport (60). Ras is an upstream regulatory

gene of the PI3K/AKT signalling pathway and is involved in

regulating the biological behaviour of cells (61). Ras can produce

PIP3 upon activation, and PIP3 acts as a secondary messenger to

recruit AKT proteins to the cell membrane and activate AKT.

Phosphorylated AKT induces a cellular cascade response that

activates antiapoptotic proteins and inhibits the expression of

pro-apoptotic proteins (62). MDM2 is a protein downstream of

AKT (63). After activation, it is translocated from the cytoplasm to

the nucleus and interacts with the suppressor gene p53, inhibiting

p53 expression and leading to p53 degradation. In cervical cancer

cells (36), ERIANIN activates p53, increases the expression of BAX

and Caspase-3, inhibits the proliferation of cervical cancer HeLa

cells, and promotes apoptosis. ERIANIN also decreased the

expression of phosphorylated ERK1/2 and inhibited the ERK1/2

signalling pathway to mediate mitochondrial apoptosis. Moreover,

ERIANIN can treat gastric precancerous lesions by modulating the

HRAS/PI3K/AKT pathway, inhibiting MC activity, decreasing

MDM2 expression, enhancing p53 activity, promoting early

apoptosis of gastric cancer cells, and preventing cancer (24).

The regulation of the PI3K/AKT pathway by ERIANIN is not

unique to gastric cancer. In triple-negative breast cancer, ERIANIN

downregulates the expression of p-PI3K and p-AKT, confirming

that inhibition of the PI3K/AKT pathway plays an important role in

the regulation of breast cancer (34). In hepatocellular carcinoma

studies, ERIANIN inhibited the activation of the PI3K/AKT

pathway and induced apoptosis in hepatocellular carcinoma cells

by inhibiting AKT phosphorylation and promoting the expression

of the negative regulatory protein PTEN. At the same time, it also

inhibits hepatocellular carcinoma cells through the p38 and ERK/

MAPK pathway (64). ERK1/2 phosphorylation was also reduced in

a dose-dependent manner in ERIANIN-treated nasopharyngeal

carcinoma cells. ERIANIN may induce apoptosis in human

nasopharyngeal carcinoma cells through the ERK pathway (43).

In lung cancer studies, ERIANIN upregulated the expression of

BAX, Caspase-3, and Caspase-9, downregulated the expression of

BCL-2, p-PI3K, p-AKT, and p-mTOR, affected apoptosis and

pathway-related proteins, induced early and late apoptosis in

H1975 lung cancer cells by regulating the PI3K/AKT/mTOR

pathway, and inhibited the growth of human lung cancer cells

(30). This suggests that the PI3K/AKT signalling pathway may be
FIGURE 1

The structure and role of ERIANIN. The Chemdraw-Chem3D
showed the secondary structure of ERIANIN. ERIANIN play a role in
anti-tumor, anti-viral, anti-inflammation and the others
pharmacological function by regulating the different biological
phenotypes through the indicated pathways.
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an important mechanism by which ERIANIN exerts its

antitumor function.

BAX and BCL-2 are important apoptosis regulatory proteins

(65). BCL-2 is located on the outer mitochondrial membrane and

exerts antiapoptotic effects by inhibiting the permeability of the

mitochondrial membrane and preventing the release of Cyt-C and

inducible factors, thereby preventing caspase activation (66). BAX

increases the permeability of the mitochondrial outer membrane,

establishes outer membrane channels, promotes the release of Cyt-

C and reactive oxygen species (ROS), and recruits caspases, thereby
Frontiers in Immunology 04
inducing apoptosis (67). In bladder cancer cells, ERIANIN

upregulated the expression of BIM and BAD, and downregulated

the expression of BCL-2; the IC50 value was 65.04 nM after

treatment with ERIANIN for 48 h, indicating that ERIANIN

activated the mitochondria-mediated apoptotic pathway by

regulating the balance between pro-apoptotic and antiapoptotic

protein expression (33).

ERIANIN upregulated p-JNK, p-c-Jun, and p-BCL-2 (Ser70) to

activate JNK signalling, and the JNK inhibitor SP600125 effectively

inhibited ERIANIN-induced apoptosis (37). ROS is an important
TABLE 1 Inhibitory effect of ERIANIN on different tumor cell lines.

Tumor Tumor cell lines IC50 (nM) Time (hr) Reference

PLGC MC 80.00 48 (25)

Gastric cancer SGC7901 175.90 48 (26)

Liver cancer HepG2 43.69 24 (27)

SMMC-7721 81.02 24 (27)

Huh7 37.40 48 (28)

PLC/PRF/5 55.00 72 (29)

HLE 28.60 72 (29)

Huh1 25.90 72 (29)

Bel-7402 21.50 72 (29)

SUN739 17.70 72 (29)

Lung cancer A549 52.64 48 (30)

H1975 0.51 48 (31)

H460 25.00 72 (32)

H1299 50.00 72 (32)

Prostate cancer LNCaP 26.50 48 (33)

Bladder tumor EJ 65.04 48 (34)

T24 45.90 48 (34)

Breast cancer MDA-MB-231 70.96 24 (35)

EFM-192a 78.58 24 (35)

T47D 68.4 72 (36)

Cervical cancer HeLa 8300.00 48 (37)

Osteosarcoma 143B 40.97 48 (38)

MG63.2 44.26 48 (38)

Colorectal cancer SW480 24.50 48 (39)

HCT116 45.00 48 (39)

Caco-2 2654.19 48 (40)

Leukemia HL-60 38.00 24 (40)

JurkaT 42.55 48 (43)

K562 14.13 72 (42)

Nasopharyngeal carcinoma NPC-039 80.00 48 (44)

NPC-BM 80.00 48 (44)
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signal of apoptosis, and high levels of ROS activate the

mitochondrial apoptotic pathway and increase the levels of JNK

and c-Jun phosphorylation (68). ERIANIN induced an increase in

ROS levels and activated the JNK/c-Jun pathway. N-acetyl cysteine

(NAC) pre-treatment significantly reversed the inhibitory effects of

ERIANIN on proliferation, apoptosis in osteosarcoma cells (37),

suggesting that JNK activation is dependent on ROS and is an

important pathway for ERIANIN-induced apoptosis. By causing

ERS to upregulate the phosphorylation of IRE1a and eIF2a,

ERIANIN interferes with endoplasmic reticulum homeostasis,

increases BAX and CHOP protein expression levels, and

promotes apoptosis in prostate tumor cells (32). In conclusion,

ERIANIN induces tumor cell apoptosis, as shown in (Figure 2).
3.2 Autophagy effects

Autophagy is a fundamental formof degradation and recirculation

of cytoplasmic components that is essential for maintaining cell

survival and homeostasis (69). Autophagy mainly involves wrapping

damaged organelles, error proteins, and microorganisms within

vesicles through autophagosomes, interfusing with lysosomes, and

hydrolysing vesicle contents to generate energy and nutrients for

cellular reuse (70). Autophagy occurs upstream of apoptosis, and

excessive activation of autophagy leads to apoptosis. Only a portion

of chromatin is condensed in the death mode of autophagy, however,

DNAfragments canbe found inapoptotic cells (71, 72).Autophagy is a

complex process that plays a dual role in tumor therapy, protecting cell

survival and promoting cell death. LC3 is a marker of autophagy, and

the autophagy junction protein p62 is a selective substrate for

autophagy (73, 74). After treating osteosarcoma cells with ERIANIN,

it was found that the intracellular acid-vesicle organelles increased, the

expression of LC3-ll, p62, and Beclin1 was upregulated, and ROS
Frontiers in Immunology 05
accumulation was induced, which induced an increase in the

phosphorylation levels of JNK and c-Jun, suggesting that ERIANIN

activated the ROS/JNKpathway to induce autophagy in osteosarcoma

cells. After using the autophagy inhibitor 3-MA, apoptosis was

enhanced, suggesting that the autophagy-promoting effect of

ERIANIN on osteosarcoma cells has a protective effect (37). Similar

results were obtained in a study of ERIANIN in oral squamous cell

carcinoma (75). In the ERIANIN-treated cells, green fluorescent

autophagic vesicles were distinctly observed, the expression of LC3-

I/LC3-II increased, and p62 decreased, indicating that autophagy was

accompanied by apoptosis. The mitogen-activated protein kinase

(MAPK) pathway is a crucial component of cellular signalling

processes and regulates important intracellular functions, including

proliferation, differentiation, migration, apoptosis, and autophagy.

MAPK mainly includes ERK, JNK, and p38 MAPK. The

phosphorylation levels of ERK1/2 and JNK1/2 were significantly

increased after ERIANIN treatment, while the levels of p-p38 were

decreased, but those of p-AKTwere not significantly changed. The use

of autophagy inhibitors revealed a significant decrease in ERK1/2 and

JNK1/2 inhibitor-mediated autophagy but no significant change in

p38, and the inhibition of autophagy increased the rate of apoptosis in

both SAS and SCC9 cells. Since autophagy is involved in cell survival

and death, the relative contribution of ERIANIN to cytotoxicity was

assessed. ERIANIN induces apoptosis and autophagy by regulating the

MAPK signalling pathway, whichmay be associated with cell survival.

ERIANIN induces autophagy, as shown in Figure 2 (Figure 2).
3.3 Ferroptosis effects

Ferroptosis is a new form of programmed cell death that is iron

ion dependent, mainly manifested by an increase in ROS levels and

the accumulation of lipid peroxides (76–78). Morphology is
FIGURE 2

The role of ERIANIN in cell apoptosis, cell autophagy and Ferroptosis. ERIANIN regulates cell apoptosis through the MEK/ERK pathway and the PI3K/
AKT pathway. ERIANIN regulates autophagy through the classical JNK/LC3 pathway and the PI3K/AKT/mTOR pathway; In addition, ERK, p53 and
AMPK pathway also play a role in the process of autophagy through the mTOR pathway; ERIANIN regulates Ferroptosis through the NRF2/GPX4/
PLOOH pathway and the CoQH2/PLOOH pathway. p38, p38 kinase; MEK1/2, serine/threonine protein kinase 1/2; ERK1/2, Extracellular signal-
regulated kinase 1/2; Bax, BCL2-associated X protein; Ras, RAS oncogene homolog; Raf, Raf oncogene; PI3K, phosphatidylinositol 3-kinase; AKT,
serine/threonine kinase; MDM2, MDM2 proto-oncogene; PARP, poly(ADP-ribose) polymerase; JNK, c-Jun NH2-terminal kinase; Bcl2, BCL2
apoptosis regulator; LC3, microtubule associated protein 1 light chain 3; AMPK, AMP-activated protein kinase; NRF2, NFE2 like bZIP transcription
factor 2; GPX4, glutathione peroxidase 4; GSH, pyrimidodiazepine synthase; ROS, reactive oxygen species; PLOOH, phospholipid hydroperoxides;
NAD+, nicotinamide adenine dinucleotide.
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characterised by a decrease in mitochondrial volume, rupture of the

outer membrane, increase in the density of the inner membrane,

and decrease or disappearance of cristae without significant changes

in the nucleus (76). The essence of this process is the alteration of

plasma membrane fluidity and permeability. There are two main

types of signalling pathways for ferroptosis: the GPX4/glutathione

(GSH) pathway and the FSP1/CoQ10/NADH pathway. GPX4 is the

only enzyme responsible for scavenging lipid peroxides in cells, and

it plays an important role in maintaining lipid bilayer homeostasis

in the cell membrane (77). Inhibition of GPX4 directly induces

ferroptosis. FSP1 is a glutathione-independent inhibitor of

ferroptosis that acts as an oxidoreductase and reduces coenzyme

Q (CoQ) to panthenol (CoQH2) on the cell membrane. CoQH2 is a

lipophilic antioxidant that traps free radicals and inhibits lipid

peroxidation (79). The important products of ferroptosis are ROS

and lipid peroxides.

Recent studies have found that ferroptosis is associated with the

development of various malignancies, such as triple-negative breast

cancer (80), liver cancer (81), lung cancer (82), and pancreatic

cancer (83). Ferroptosis inducers can effectively kill a variety of

tumor cells, exert antitumor activity, and have great development

potential (84). Ca2+/CaM signaling is a key target for ERIANIN

treatment, and the CaM protein is the main downstream molecule

of the calcium signalling pathway. ERIANIN, a novel inducer of

ferroptosis, exerts anticancer activity by activating Ca2+/CaM

signalling to increase Ca2+ and Fe2+ levels, inducing ferroptosis

and inhibiting cell migration in lung cancer cells (31). Lung cancer

cells treated with ERIANIN showed a significant increase in ROS

accumulation, GSH depletion, and lipid peroxidation, which are key

events in ferroptosis. Mitochondrial matrix cohesion and expanded

cristae formation were also observed. NAC and the ferroptosis

inhibitors Ferrostatin-1 and Liproxstatin-1 attenuated ERIANIN-

induced cell death. In addition, ERIANIN induces ferroptosis and

lipid peroxidation in bladder cancer cells. After pre-treatment with

shNRF2, GSH levels decreased significantly, but the activities of

ROS and malondialdehyde greatly increased (85). It has been

suggested that inactivation of nuclear factor e2-related factor 2

(NRF2) is the key factor for ERIANIN triggering ferroptosis in

bladder cancer cells. Overall, ERIANIN promoted ferroptosis in

tumor cells through the GPX4 and CoQ pathways, as shown

in (Figure 2).
3.4 Cell cycle effects

The cell cycle is ubiquitous in living organisms, and malignant

tumor cells are characterised by unlimited proliferation; therefore,

inhibiting tumor cell proliferation is one way to treat tumors (86).

Cell cycle processes involve the regulation of a variety of signals,

such as cyclin-CDK-CKI, a signal regulatory network in the cell

cycle, and the core regulatory protein is cyclin-dependent kinase

(CDK) (87). CDKs need to bind to cyclin to form complexes to play

the role of maintaining the cell cycle, and inhibition of CDK

expression has become a means of treating tumors (35). p21 can

inhibit CDK and is involved in a variety of cellular functions,

including cell proliferation, damage, and apoptosis (88). ERIANIN
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inhibits the cell cycle by inducing cell arrest in the G2/M phase.

Treatment of osteosarcoma cells with ERIANIN significantly

increased the number of cells in the G2/M phase, significantly

decreased those in the G0/G1 and S phases, upregulated the

expression of p53, p21, p27, p-CDK1, and cyclin B1, and

downregulated the expression levels of CDK1 and CDK7,

indicating that ERIANIN inhibited the activation of the cyclin-

CDK complex and caused cellular a G2/M block, thereby exerting

cytotoxic effects (75). In a study on gastric precancerous lesions,

ERIANIN decreased the protein expression levels of HRAS, AKT,

and p-AKT, upregulated the expression level of the p21 protein,

blocked the cell cycle, and caused cell arrest in the G2/M phase (24).

In studies of liver cancer (26), lung cancer (89), and leukaemia

diseases (40), ERIANIN similarly reduced cell viability, induced cell

arrest in the G2/M phase, and inhibited cancer cell proliferation,

which is consistent with previous studies.

Treatment of bladder cancer 5637 cells with ERIANIN resulted

in a decrease in the number of cells in the G1 phase and an increase

in those in the S and G2 phases; treatment also upregulated p21

protein expression and decreased p-AKT and AKT protein

expression, indicating that ERIANIN inhibited bladder cancer cell

proliferation through the PI3K/Akt pathway and blocked the cells

in the G1 phase (90). ERIANIN inhibited RAS protein expression

and the Raf/MEK/MAPK-ERK signalling pathway, decreased

cellular cyclin D1 and ICAM-1 expression, promoted PD-L1

protein hydrolysis, and enhanced the killing effect of T cells in

tumors (19). Similarly, ERIANIN blocked nasopharyngeal

carcinoma cells in the G0/G1 phase (43). Thus, it is evident that

the molecular mechanisms of ERIANIN-induced cell cycle blockade

differ in different types of tumor cells. The blocking effect of

ERIANIN on the cell cycle is shown in (Figure 3).
3.5 Metastasis effects

Local invasion and distant metastasis are the most important

features of malignancy (91). Epithelial-mesenchymal transition

(EMT) refers to the biological process of transforming epithelial

cells into mesenchymal cells, in which epithelial cells lose their

polarity, intercellular tight junctions, and adhesion junctions and

acquire the ability to infiltrate and migrate, while possessing the

morphology and characteristics of mesenchymal cells (92–94).

When EMT occurs in tumor cells, the ability to migrate and

invade is enhanced, thereby promoting distant metastasis of

tumors. Matrix metalloprotein-2 (MMP-2) and Matrix

metalloprotein-9 (MMP-9) are markers of tumor invasion and

metastasis (95). After treatment of lung cancer cells, the

expression of MMP-2 and MMP-9 was significantly reduced, the

expression of mesenchymal markers Vimentin, N-cadherin, Slug,

Snail, and MMP-9 was decreased, and the expression of epithelial

marker E-cadherin was upregulated, indicating that ERIANIN

inhibited the migration of lung cancer cells by inhibiting EMT

(31). Similarly, in SMMC-7721 cells, ERIANIN inhibits the invasion

of hepatoma cells by downregulating the expression of N-cadherin,

MMP-2, and MMP-9 and upregulating the expression of E-

cadherin (64).
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ERIANIN regulates the Wnt/b-catenin pathway. Studies have

shown that ERIANIN inhibits tumor cell invasion by reducing the

expression of key downstream targets, c-myc and p-GSK-3b (Ser9),

while reducing the expression levels of Vimentin and Snail (96). The

steady-state expression of MPP and its suppressor TIMP is essential

for breast cancer cell migration. By downregulating the activity of

ERK1/2, ERIANIN inhibited the gene expression of MPP-2, MPP-9,

and CDH2 and promoted the expression of the corresponding

inhibitors TIMP1, TIMP2, and CDH1, thereby inhibiting the

degradation of the extracellular matrix (35). Meanwhile,

ERIANIN upregulated E-cadherin and downregulated N-cadherin

and fibronectin expression to inhibit the migratory ability of cells

(97). In summary, ERIANIN acts on theWnt and ERK1/2 pathways

and their downstream genes, MMP-2 and MMP-9, to inhibit tumor

metastasis, as shown in (Figure 3).
3.6 Tumor multidrug resistance
and metabolism

Tumor multidrug resistance (MDR) is a phenomenon in which

malignant tumor cells develop resistance to one antitumor drug

along with resistance to multiple other antitumor drugs with

different structures and mechanisms of action (98). MDR is the

major cause of chemotherapy failure in colon cancer, and P-gp is

encoded by the drug resistance gene MDR-1 (99). High P-gp

expression is one of the main obstacles to therapeutic effects in

colon cancer (100). ERIANIN can inhibit the activation of the

JAK2/STAT3 signalling pathway, reduce P-gp expression, modulate

the MDR phenotype of oxaliplatin-resistant cells, inhibit the
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proliferation of drug-resistant cells, and reverse oxaliplatin

(LOHP) resistance (101) (Figure 4).

In addition, the abnormal proliferation of blood vessels around

tumor tissue, which provides oxygen and nutrients to the tumor,

plays an important role in tumor growth, invasion, and metastasis

(102). Neovascularization is a marker of tumor progression, and the

inhibition of angiogenesis is an important strategy for tumor

treatment (103). Oxidative phosphorylation that occurs during

mitochondrial respiration is essential for maintaining high levels

of ATP, which are determinants of cell function and death (104,

105). However, glycolysis is an important pathway for the

endothelial cell energy supply (106).

ERIANIN regulates angiogenesis through the cellular metabolic

process. ERIANIN induces activation of the JNK/SAPK pathway,

downregulates the rate of extracellular acidification, reduces lactate

production and glucose consumption, decreases cell survival, and

reduces intracellular ATP content, which causes mitochondrial

dysfunction and inhibits the metabolism of human umbilical vein

endothelial cells, suggesting that ERIANIN has antiangiogenic effects

(107). The antitumor activity of ERIANIN was more effective against

melanoma A375 than against hepatocellular carcinoma Bel7402,

which may be due to the more abundant vascular distribution ratio

of A375 tumors, where ERIANIN significantly caused vascular

closure and inhibited neovascularisation (44).

Indoleamine 2,3-dioxygenase (IDO) has the function of

regulating tumor angiogenesis (108). As shown in Figure 4,

ERIANIN can regulate the JAK/STAT3 pathway, inhibit the

expression of p-JAK and p-STAT3, downregulate MMP-9 and

MMP-2, reduce IDO activity, decrease the expression of IDO-

mediated inflammatory mediators (COX-2, HIF-1a, and IL-6),
FIGURE 3

ERIANIN regulates cell cycle, metastasis and MDR. ERIANIN regulates cell cycle through the PI3K/AKT and MAPK/ERK pathway. ERIANIN regulates
the EMT process through the GSK3b and ERK1/2 pathway. ERIANIN regulates MDR through the JNK/STAT3 pathway. PI3K, phosphatidylinositol 3-
kinase; AKT, serine/threonine kinase; p21, cyclin-dependent kinase inhibitor 1A; p27, cyclin-dependent kinase inhibitor 1B; CDK, Cyclin-dependent
kinase; MAPK, mitogen activated kinase-like protein; ERK, Extracellular signal-regulated kinase; Wnt, wingless-type MMTV integration site family;
GSK3b, glycogen synthase kinase 3 beta; MMP2, matrix metallopeptidase 2; MMP3, matrix metallopeptidase 3; MMP9, matrix metallopeptidase 9;
EMT, epithelial-mesenchymal transition; JNK, c-Jun NH2-terminal kinase; STAT3, signal transducer and activator of transcription 3; MDR, Multiple
Drug Resistance; P-gp, ATP binding cassette subfamily B member 1.
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significantly inhibit the metastatic ability of lung cancer cells, block

the angiogenic mimicry of 2LL-IDO cells, disrupt the tubular

structure of human umbilical vein endothelial cells, and inhibit

the proliferation of vascular endothelial cells (109, 110). This

suggests that ERIANIN can regulate cell metabolism and is an

effective vascular blocker that can inhibit angiogenesis and prevent

malignant tumors by inhibiting IDO expression (Figure 4). ZJU-6 is

a novel ERIANIN derivative with strong antiangiogenic and free

radical-scavenging abilities, which can enhance the antitumor

ability of ERIANIN (111).
4 Significances of ERIANIN in
innate immunity

4.1 Anti-inflammatory effects

ERIANIN exerts anti-inflammatory effects in diseases such as

joint swelling and ulcerative colitis (UC). ERIANIN is a specific

inhibitor of NLRP3 activation in vitro, reducing IL-1b and IL-18

levels, decreasing neutrophil migration, selectively inhibiting

NLRP3 inflammatory vesicle formation, and suppressing MSU-

induced acute joint swelling (112). In a UCmouse model, ERIANIN

significantly increased superoxide dismutase levels in serum and

colonic tissue, reduced ROS accumulation, decreased neutrophil

and monocyte counts, reduced IL-1b, IL-6, and TNF-a levels, and
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reduced cellular peroxidative damage and immune inflammatory

responses by modulating inflammation and oxidative stress levels

(113). ERIANIN may act on the host by inhibiting inflammatory

pathways, enhancing immunity, interfering with several bacterial

virulence factors, and reducing mortality in S. aureus-infected mice

(114) (Figure 5).
4.2 Antiviral effects

Human enterovirus 68 (EVD68) is a major pathogen of

respiratory diseases worldwide (115), and ERIANIN has a

protective effect against EVD68-induced cell damage by inhibiting

the production of human intestinal EVD68 virus by decreasing the

expression of VP1 and TCID50 (116) (Figure 5). Thus, ERIANIN is

a potential drug for the treatment of human enterovirus.
4.3 The role of ERIANIN in psoriasis

Psoriasis is a chronic inflammatory skin disease characterised

by hyperproliferation and abnormal keratinocyte differentiation

(117). ERIANIN can reduce mitochondrial membrane potential

and increase cytoplasmic calcium levels. It exerts antiproliferative

and pro-apoptotic effects on human immortalised keratinocytes

(HaCaTs) through mitochondrial pathways and ERS (118) and
FIGURE 4

ERIANIN regulates cell metabolism through the JNK/SAPK/STAT3 pathway. ERIANIN induces activation of the JNK/SAPK pathway, downregulates the
rate of extracellular acidification, reduces lactate production and glucose consumption, decreases cell survival, and reduces intracellular ATP
content. In addition, ERIANIN can regulate the JAK/STAT3 pathway, inhibit the expression of p-JAK and p-STAT3, downregulate MMP-9 and MMP-2,
reduce IDO activity, decrease the expression of IDO-mediated inflammatory mediators, including COX-2, HIF-1a, and IL-6. ATP, adenosine
triphosphate; SAPK, mitogen-activated protein kinase 9; IDO, indoleamine 2,3-dioxygenase; COX-2, cytochrome c oxidase subunit II; IL-6,
interleukin 6; HIF-1a, hypoxia inducible factor 1 subunit alpha.
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significantly reduces cell viability for treating psoriasis (119).

ERIANIN inhibits HaCaT proliferation and induces HaCaT

apoptosis through the ROS-mediated JNK/c-Jun and AKT/mTOR

signalling pathways (120).
5 Other pharmacological effects

ERIANIN inhibits neovascularization and delays the

development of diabetic retinopathy (121). The Rho/ROCK

signalling pathway is involved in the regulation of angiogenesis

and permeability. ERIANIN selectively inhibits collagen-mediated

neovascularization, interferes with collagen-cell interactions, and

suppresses human retinal vascular endothelial cells by inhibiting the

activity of the RhoA/ROCK1 pathway and decreasing integrin cell

proliferation, thereby inhibiting retinal angiogenesis (121). This

suggests that ERIANIN also has therapeutic potential for collagen-

mediated retinal angiogenesis.

Furthermore, ERIANIN has protective effects against high

glucose-induced oxidative damage in renal tubular epithelial cells

(122). Sustained hyperglycaemic stimulation induces apoptosis in

NRK-52E cells, and ERIANIN acts as an original therapeutic target

for diabetic nephropathy by blocking the ROS/MAPK/NF-kB
signalling pathway, inhibiting ROS and malondialdehyde

production, increasing the ratio of GSH to glutathione disulfide,

alleviating oxidative stress, and inhibiting hyperglycaemia-induced

renal insufficiency (122). In diabetic retinopathy, ERIANIN reduces

cellular glucose uptake, inhibits downstream ERK1/2-NFkB
pathway activation (123), decreases the expression of VEGF

receptor 2 and its downstream signals, inhibits VEGF-induced

angiogenesis (124), and attenuates microglia-induced retinal

inflammation, thereby alleviating diabetic retinopathy.
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6 Conclusion and future perspectives

Although great progress has been made in the treatment of

cancer, it is still a high-mortality disease, and the trend of an ageing

society has increased the risk of tumor diseases (125, 126). Tumor-

targeted drugs have the characteristics of strong specificity and good

tolerability, occupying an increasingly important position in tumor

therapy, and screening of low-toxicity, safe, and effective antitumor

drugs from Chinese herbal extracts has become a focus of modern

antitumor drug research (127).

ERIANIN is a natural compound derived from Chinese herbal

medicine with a unique molecular structure and significant

pharmacological effects. It has promising therapeutic effects in

tumors, inflammation, psoriasis, diabetic nephropathy, and

retinopathy. Moreover, it has broad potential in antitumor

therapy by promoting tumor cell apoptosis, autophagy, and

ferroptosis, as well as blocking the cell cycle and inhibiting cell

migration and neovascularisation through the multiple signaling

pathways. However, given that the feedback loops in signaling

pathways are widely known, it is crucial to consider how

ERIANIN may affect these feedback loops. How ERIANIN may

influence feedback loops and how this may contribute to its

antitumor effects. For example, ERIANIN decreased the

expression of phosphorylated ERK1/2 and inhibited the ERK1/2

signaling pathway in gastric cancer, breast cancer, melanoma and

colorectal cancer (24, 35, 43, 122, 128). ERIANIN induced an

increase in ROS levels in psoriasis, high glucose-induced injury,

lung cancer and osteosarcoma (29, 37, 120, 124). As we known, ROS

can stimulate ERK signaling via the activation of upstream

activators and inactivation of catalytic activity of DUSPs, which

leads to sustained ERK activation due to the lack of negative

feedback responses elicited by dual-specificity phosphatases in
FIGURE 5

ERIANIN regulates innate immunity. ERIANIN is a specific inhibitor of NLRP3 activation in vitro, reducing IL-1b, TNF-a, and IL-18 levels, up-regulating
SOD levels. ERIANIN inhibits cell proliferation through the AKT/mTOR pathway and induces cell apoptosis through the ROS-mediated JNK/c-Jun
and caspase3/PARP signalling pathways and then regulates the psoriasis. ERIANIN has a protective effect against EVD68-induced cell damage by
inhibiting the production of human intestinal EVD68 virus by decreasing the expression of VP1 and TCID50. NLRP3, NLR family pyrin domain
containing 3; SOD, superoxide dismutase; IL-18, interleukin 18; IL-1b, interleukin 1b; TNF-a, tumor necrosis factor alpha; ROS, reactive oxygen
species; PARP, poly (ADP-ribose) polymerase; VP1, capsid protein 1; TCID50, tissue culture infective dose 50%.
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many cancers (129, 130). In addition, a lot of literature reports that

ferroptosis is governed by the efficiency of reactive oxygen species

(ROS) production through the ERK pathway in cancer cells (131,

132). Dragana Savic et al. found that as ferroptosis induction via

erastin is strongly dependent on the expression of Erk1/2 associated

with the modulation of the ratio between ROS production and

expression of ROS scavengers, phosphorylated Erk1/2 can be used

as a predictor for cancer cells’ responses to erastin (133). More

importantly, Yu et al. also reported that erianin could promote the

accumulation of lethal lipid-based reactive oxygen species (ROS)

and the depletion of glutathione (GSH) through NRF2, suggesting

the induction of ferroptosis (85). In summary, these regulated

signaling pathway networks including the Erk1/2 pathway are

complex in the tumor microenvironment. ERIANIN plays an

antitumor role by regulating these complex feedback loops in

different cancers. Although numerous studies described in the

present review have conducted substantial work on the

mechanisms by which ERIANIN are involved in cancer signal

transduction, research on the complex regulatory networks in the

tumor microenvironment (TME) formed by multiple pathways are

still lacking. Most of the research on ERIANIN focuses on cell lines

and immunodeficient mice experiments, with few tumor

immunological studies and a lack of clinical observation data in

immune-complete mice and humans. Whether ERIANIN exerts

antitumor effects and could increase sensitivity to immune

checkpoint therapy (ICB) in “cold” solid tumors is unknown.

Whether ERIANIN can improve the prognosis and prolong the

survival of cancer patients is also unknown. There is still a lack of

in-depth exploration of the direct targets, structural optimisation,

and drug delivery process in vivo of ERIANIN in immune-complete

mice and humans. In addition, moving from basic experiments to

clinical research should be the focus for the future, and is also an

inevitable requirement for clinical practice.

In summary, this article reviewed the existing effects of ERIANIN

and elaborated on the molecular mechanism of its antitumor activity,

thereby providing a reference for future research on traditional

Chinese medicines. ERIANIN-targeted therapy may be a novel and
Frontiers in Immunology 10
potentially effective strategy for cancer patients. Thus, further

understanding of the ERIANIN network, especially in the area of

cancer immunotherapy, is required.
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