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Background: Dysregulation of cell death and defective clearance of dying cells are

closely related to the pathogenesis of lupus nephritis (LN). However, the contribution

of a recently discovered form of programmed cell death (PCD) called ferroptosis to

LN has not been explored in detail. The purpose of this study was to investigate the

role of ferroptosis and its associated metabolic pathways in the pathogenesis of LN.

Methods: The composite gene expression scores were calculated by averaging

the z-scored transformed log2 expressed genes within each form of PCD and

pathway. Immunohistochemistry and immunofluorescence assays were used to

verify the bioinformatics results.

Results: We determined that ferroptosis is prominently and specifically elevated in

the glomerular compartment of LN patients compared to other forms of PCD and

kidney disease. This findingwas then verified by immunohistochemical staining of 4-

HNE (a key indicator for ferroptosis) expression in our own cohort (P < 0.0001).

Intercorrelation networks were observed between 4-HNE and blood urea nitrogen,

SLE disease activity index, serum creatinine, and complement 4, and negatively

correlated with glomerular filtration rate in our own LN cohort (P < 0.05).

Furthermore, enhanced iron metabolism and reduced fatty acid synthesis may be

themost important factors for ferroptosis within the glomerulus. Through analysis of

a single cell sequencing dataset and verification of immunohistochemical and

immunofluorescence staining, aberrantly activated lipid peroxidation in CD163+

macrophages and CD10+ PC+ (pyruvate carboxylase) epithelial cells indicated that

they may be undergoing ferroptosis in the glomerular compartment.

Conclusions: Two dysregulated genes, CD163 and PC, were identified and

verified that were significantly associated with lipid peroxidation. Targeting

ferroptosis in CD163+ macrophages and CD10+ PC+ epithelial cells may

provide novel therapeutic approaches in LN.
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1 Introduction

Lupus nephritis (LN) is one of the most common complications

of systemic lupus erythematosus (SLE) associated with high

morbidity and mortality (1). Despite the progress in

understanding the pathogenesis of LN, treatment options are still

limited. Dysregulation of cell death and defective clearance of dying

cells lead to the production of autoantigens, induction of

autoantibodies, and deposition of circulating immune complexes

in patients with LN (2). Multiple types of programmed cell death

(PCD), like apoptosis, pyroptosis, autophagy, and necroptosis, are

prominently involved in the pathogenesis of LN (2, 3). However, the

contribution of a recently discovered type of PCD, that is,

ferroptosis, to LN has not been studied in detail (4).

Unlike other types of PCD, ferroptosis depends on lipid

peroxidation and iron overload. Several studies have reported

that ferroptosis is involved in the pathogenesis and progression of

autoimmune diseases, such as rheumatoid arthritis and SLE (5–8).

Li et al. (7) reported that neutrophil ferroptosis is an important

driver of SLE neutropenia and contributes significantly to the

disease presentation. In addition, ferroptosis may promote the

development of SLE by altering Th1/Th2 ratio (8). They all

indicated that inhibition of ferroptosis reduced the production

of autoantibodies and various inflammatory cytokines, and

alleviated the severity of lupus nephritis in lupus-prone mice.

Therefore, it is necessary to explore the role of ferroptosis in LN

thoroughly and clarify which renal cells undergo ferroptosis.

In this work, we collected and analyzed microarray data from

the Gene Expression Omnibus (GEO) database of kidney tissue

from LN patients and living donors, as well as expression data from

single-cell sequencing and the Nephroseq database. By calculating

the composite gene expression scores by averaging z-scored

transformed log2 expressed genes within the pathway (9), we

determined the role of ferroptosis and its associated metabolic

pathways in the pathogenesis of LN.
2 Materials and methods

2.1 Patient samples and informed consent

A total of 46 renal biopsy tissues used for histological staining

were collected from patients with clinically diagnosed SLE and

active LN at the Second Affiliated Hospital of Zhejiang University

School of Medicine from June 2020 to October 2021. Ethical

approval was obtained from the Ethics Committee of the Second

Affiliated Hospital of Zhejiang University School of Medicine,
Abbreviations: LN, lupus nephritis; PCD, programmed cell death; SLE, systemic

lupus erythematosus; LD, living donor; TCA, tricarboxylic acid; GSH,

glutathione; FSGS, focal segmental glomerulosclerosis; IgAN, IgA nephropathy;

MCD, minimal change disease; MGN, membranous glomerulonephropathy;

eGFR, estimated glomerular filtration rate.
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Hangzhou, China (approval number: 2020-306). Seven paracancer

tissues (considered as controls) were obtained from the

Department of Pathology, Shandong Provincial Hospital

affiliated with Shandong First Medical University, from October

2021 to February 2022. Ethical approval was obtained from the

Ethics Committee of the Shandong Provincial Hospital affiliated

with Shandong First Medical University, Jinan, China (approval

number: SWYX: NO. 2021-277). All SLE patients met the

American College of Rheumatology 1997 criteria and the

Systemic Lupus International Collaborating Clinics 2012 criteria

for SLE (10, 11). LN was classified according to the 2003

International Society of Nephrology/Renal Pathology Society

consensus (12). The clinical characteristics of the 46 LN patients

and seven living donors (LDs) are shown in Supplementary

Table 1 (all the lab data from urine and serum were obtained at

the time of kidney biopsy).
2.2 Immunohistochemistry and
immunofluorescence

Following sample collection, the tissue specimens were quickly and

thoroughly fixed in 4% paraformaldehyde (P1110; Solarbio, Beijing,

China) or frozen at −80°C. After the tissues were dehydrated and made

transparent, paraffin (preheated to 60°C) was added and left overnight.

The fixed or frozen tissues were then sectioned using a microtome, and

the paraffin-fixed tissues were subjected to antigen retrieval. All tissue

sections were treated with 5% bovine serum albumin (BSA) and

hydrogen peroxide to block endogenous enzyme activity, washed,

and incubated with a primary antibody working solution overnight

at 4°C. For immunohistochemical staining, the sections were incubated

with an appropriate amount of biotin-labeled secondary antibody for

30 min at room temperature. After the DBA chromogenic agent was

added for 5–10 min, the sections were rinsed, redyed, dehydrated,

made transparent, sealed, and observed under a forward microscope

(Leica DM3000 LED, Wetzlar and Mannheim, Germany). For tissue

immunofluorescence staining, the sections were incubated with an

appropriate amount of fluorescein-conjugated secondary antibody for

1 h at room temperature. After being rinsed with phosphate-buffered

saline (PBS), the sections were redyed, sealed, and observed with a

forward fluorescence microscope (Leica DM6B, Wetzlar and

Mannheim, Germany). For cell immunofluorescence staining, cell

slides were fixed with 4% paraformaldehyde (P1110; Solarbio) and

sealed with 5% BSA. After incubation with corresponding primary and

secondary antibodies, the cells were observed under a forward

fluorescence microscope (Leica DM6B). The antibodies used for the

immunostaining were anti-4-HNE (ab46545; Abcam, Cambridge,

UK), anti-CD163 (YM6146; ImmunoWay, Plano, TX, USA), anti-

pyruvate carboxylase (anti-PC, 16588-1-AP, ProteinTech, Chicago, IL,

USA), anti-pyruvate carboxylase (sc-271493, Santa Cruz

Biotechnology, Dallas, TX, USA), anti-ATP6V0A4 (DF14858,

Affinity Biosciences, Cincinnati, OH, USA), Dylight 488 Goat Anti-

Rabbit IgG (H+L) (A23220; Abbkine,Wuhan, China), and Dylight 594

Goat Anti-Mouse IgG (H+L) (A23410; Abbkine).
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2.3 Calculation of immunohistochemistry
score and cell counts for
immunofluorescence

Under high-magnification imaging, three fields of whole renal

tissue and glomerulus or tubules were selected, and the mean value of

the area of positive staining for 4-HNE, CD163, pyruvate carboxylase

(PC), and ATP6V0A4 was calculated by ImageJ software (National

Institutes of Health, Bethesda, MD, USA) and IHC Toolbox plugin

(https://imagej.nih.gov/ij/plugins/ihc-toolbox/index.html). Cell counts

for the immunofluorescence experiment were calculated by ImageJ

software under high-magnification imaging.
2.4 Acquisition of mRNA microarray
expression data

We searched the Gene Expression Omnibus database (https://

www.ncbi.nlm.nih.gov/geo/) for mRNAmicroarray expression data

in LN. We then used the following screening criteria to select

mRNA datasets: 1) tissues from renal biopsies of LN patients and

LDs and 2) >5 healthy and LN samples. We found and downloaded

four mRNA datasets (GSE112943, GSE104948, GSE104954, and

GSE32591) that met these criteria. The basic information for the

microarray datasets is shown in Supplementary Table 2.
2.5 Data normalization and identification of
differentially expressed genes

The raw data for the datasets were downloaded from the GEO

database. The affy package in R software (version 4.0.1) was used to

preprocess and normalize the data using the Robust Multiarray

Average method (13), the Limma package was used to conduct gene

analysis of inter-sample differences, and multiple hypothesis testing

and correction were conducted after the p-value was obtained. The

threshold p-value was determined by controlling the false discovery

rate, and the corrected p-value was the adjusted p-value (14, 15).

The screening criteria were log2 (fold change) >1 or <−1 and

adjusted p-value <0.05.
2.6 Selected programmed cell death and
ferroptosis-related metabolic genes

First, the hallmark, Gene Ontology (GO), Kyoto Encyclopedia of

Genes and Genomes (KEGG), REACTOME, and WikiPathways gene

sets were downloaded from the Gene Set Enrichment Analysis (GSEA)

and molecular characteristic database (MSigDB) website (http://

www.gsea-msigdb.org/gsea/index.jsp). Next, gene sets associated with

seven types of PCD (apoptosis, ferroptosis, pyroptosis, autophagy,

necroptosis, paraptosis, and cuproptosis) and eight ferroptosis-related

metabolic pathways (fatty acid biosynthesis, glutathione (GSH)

synthesis, iron metabolism, oxidative phosphorylation, glycolysis,
Frontiers in Immunology 03
tricarboxylic acid (TCA) cycle, glutamine metabolism, and selenium

metabolism) were extracted (Supplementary Tables 3, 4). The

ferroptosis gene list (39 genes) was extracted from the

WP_FERROPTOSIS gene set. The apoptosis gene list (32 genes) was

obtained as the intersection of the HALLMARK_APOPTOSIS and

REACTOME_APOPTOSIS gene sets. The autophagy gene list (28

genes) was obtained as the intersection of theWP_AUTOPHAGY and

REACTOME_AUTOPHAGY gene sets. The necroptosis gene list (22

genes) was obtained as the intersection of the KEGG database and

REACTOME_REGULATED_NECROSIS gene sets. The pyroptosis

gene list (32 genes) was extracted from the study by Ye et al. (16). The

paraptosis gene list (12 genes) was obtained by searching for the

keywords “paraptosis” and related literature (17, 18). The cuproptosis

gene list (10 genes) was extracted from the study by Tsvetkov et al. (19).

The fatty acid biosynthesis gene list (22 genes) and glutathione

synthesis gene list (16 genes) were from the PathCards database

(https://pathcards.genecards.org/). The iron metabolism gene list (70

genes) was extracted from the study by Li et al. (20). The oxidative

phosphorylation gene list (83 genes) was extracted from the

KEGG_OXIDATIVE_PHOSPHORYLATION gene set. The

glycolysis gene list (29 genes) was extracted from the study by

Grayson et al. (9). The TCA cycle gene list (23 genes) was obtained

as the intersection of the PathCards_TCA cycle III (animals) and

KEGG_CITRATE_CYCLE_TCA_CYCLE gene sets. The glutamine

metabolism gene list (23 genes) was extracted from the

GOBP_GLUTAMINE_METABOLIC_PROCESS gene set. The

selenium metabolism gene set (25 genes) was extracted from the

study by Kryukov et al. (21).
2.7 Calculation of the composite gene
expression scores

The composite gene expression scores were calculated by

averaging the z-scored transformed log2 expressed genes within

each form of PCD and pathway (9).
2.8 Analysis of CD163, PC, and ATP6V0A4
expression features in LN based on the
Nephroseq database

Nephroseq (https://nephroseq.org/) is a web-based analysis engine

for studies on kidney diseases and related disorders. CD163, PC, and

ATP6V0A4 mRNA expression levels according to LN histological

classes (GSE32591 cohort: 8 class II, 8 class III, 13 class IV, and 2

class V) separated into the tubulointerstitial and glomerular

compartments were extracted from the Nephroseq database.
2.9 Statistical analysis

IBM SPSS Statistics 25 (IBM Corp.) and GraphPad Prism 8.0

(GraphPad Software Inc.) were used to analyze the data and draw
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scatter diagrams. Normally distributed data were expressed as mean

± standard deviation, and the differences between the groups were

analyzed by Student’s t-test. Non-parametric data were expressed as

median (range), and differences between groups were analyzed by

the Mann–Whitney U test. Spearman’s correlation coefficient

analysis was applied to detect correlations between the two

groups. Values of p < 0.05 were considered significant. The

numbers of independent technical repeats (n) are indicated in the

figure legends.
3 Results

3.1 Alteration of seven types of PCD in
living donors and lupus nephritis patients

Gene expression signatures for seven types of PCD were profiled

in the whole kidneys or the glomerular and tubulointerstitial

compartments between patients with LN and LD. In the whole

kidney tissues (GSE112943 cohorts), it was found that seven types

of PCD were all significantly increased in 14 LN patients compared

with seven LDs (Figures 1A–G, p < 0.05). This is in line with previous

studies (2). In the glomerular compartment of the GSE104948 and

GSE32591 cohorts, the gene expression of ferroptosis, apoptosis,

pyroptosis, and necroptosis was significantly increased in two

independent datasets in patients with LN relative to LD (p < 0.05),

while the gene expression of autophagy, paraptosis, and cuproptosis
Frontiers in Immunology 04
was only significantly increased (p < 0.005) in the GSE32591 cohort

and had no significance in the GSE104948 cohort. However, different

patterns were observed in the tubulointerstitial compartment.

Compared with LD, the gene expression of apoptosis, pyroptosis,

and necroptosis was only significantly increased (p < 0.05) in patients

with LN from the GSE32591 cohort, while the gene expression of

autophagy was only significantly increased (p = 0.0074) in patients

with LN from the GSE104954 cohort. In contrast, there was

significantly decreased gene expression of the paraptosis in patients

with LN relative to LD (p = 0.0281). Additionally, gene expression

related to ferroptosis and cuproptosis was not statistically significant

in patients with LN compared with LD (Figures 1B–U). These results

suggest that ferroptosis is prominently and specifically elevated in the

glomerular compartment of LN patients from two independent

cohorts compared to other forms of PCD.
3.2 Level of ferroptosis in LN and other
kidney diseases and association with
kidney function

Immunohistochemical staining revealed that the expression of 4-

HNE (lipid peroxidation), a key indicator for ferroptosis, was

significantly increased in the glomerulus and tubules of 46 LN

patients compared with seven controls (Figure 2A, p < 0.001). To

confirm if the increased ferroptosis level was unique to LN, we

compared the gene expression of ferroptosis for various renal diseases
A B D E F G

IH J K L M N

C

O P Q R S T U

FIGURE 1

Alteration of seven types of PCD in living donors and lupus nephritis patients. (A–G). Bar graph of apoptosis (A), ferroptosis (B), pyroptosis (C), autophagy (D),
necroptosis (E), paraptosis (F), and cuproptosis (G) gene expression within the whole kidney in the GSE112943 cohort. (H–N) Bar graph of apoptosis (H),
ferroptosis (I), pyroptosis (J), autophagy (K), necroptosis (L), paraptosis (M), and cuproptosis (N) gene expression within the glomerular and tubulointerstitial
compartments in the GSE104948/54 cohort. (O–U) Bar graph of apoptosis (O), ferroptosis (P), pyroptosis (Q), autophagy (R), necroptosis (S), paraptosis (T),
and cuproptosis (U) gene expression within the glomerular and tubulointerstitial compartments in the GSE32591 cohort. *p < 0.05; **p < 0.01; ***p < 0.001;
ns, not significant. Values of p < 0.05 were considered significant. PCD, programmed cell death.
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in the GSE104948 cohort (Figures 2B, C). The gene expression of

ferroptosis did not differ between LD, normal kidney biopsy sections

from patients who underwent tumor nephrectomy and patients with

focal segmental glomerulosclerosis (FSGS), IgA nephropathy (IgAN),

min ima l change d i s ea s e (MCD) , and membranous

glomerulonephropathy (MGN). The gene expression of ferroptosis

in LN was significantly greater than in LD (p < 0.001) but was not

different from antineutrophil cytoplasmic antibody-associated

vasculitis (AAV). Interestingly, compared with kidney from the

four forms of nephrotic syndrome with potential inflammatory

components (FSGS, IgAN, MCD, MGN) and also the hypertensive

nephropathy and tumor nephrectomy, the gene expression of

ferroptosis was significantly increased in the glomerular

compartment of LN (p < 0.05). In an analysis restricted to patients
Frontiers in Immunology 05
with LN in the Berthier Lupus cohort (GSE32591) where detailed

clinical features were available for review, the gene expression of

ferroptosis was increased in the glomerular compartment of patients

with LN that estimated glomerular filtration rate (eGFR) less than 90

ml/min/1.73 m2 (Figure 2D). However, there was no significant

difference in ferroptosis score between patients categorized by

concomitant glucocorticoid and/or immunosuppressants used at

the time of biopsy and those not treated (Figure 2E). Similarly, 4-

HNE levels were positively correlated with blood urea nitrogen, SLE

disease activity index, serum creatinine, and complement 4 but

negatively correlated with eGFR in our own LN cohort (Figure 2F,

p < 0.05). In addition, ferroptosis levels were higher in LN patients at

class III and IV compared with LD and other classes in both the

GSE32591 cohort and our own LN cohort (Figures 2G, H).
A B

D E F

G H

C

FIGURE 2

Level of ferroptosis in LN and other kidney diseases and association with kidney function. (A) Representative immunohistochemistry images of 4-
HNE in 46 LN patients and seven LDs. The red arrows indicate 4-HNE-positive regions. (B, C) Gene expression of ferroptosis within the glomerular
and tubulointerstitial compartments of various renal diseases and living donors in GSE104948/54 cohort. (D) Gene expression of ferroptosis within
the glomerular and tubulointerstitial compartments in distinguishing LN patients (GSE32591 cohort) with GFR ≥ 90 from those with GFR < 90.
(E) Gene expression of ferroptosis within the glomerular and tubulointerstitial compartments in LN patients (GSE32591 cohort) with treatment by
concomitant glucocorticoid and/or immunosuppressants. (F) Correlation of 4-HNE level and clinical features of 46 LN patients in our own LN
cohort. (G, H) Gene expression of ferroptosis within the glomerular compartments in different classes of LN patients from GSE32591 cohort (G) and
our own LN cohort (H). LD, living donors; LN, lupus nephritis; AAV, antineutrophil cytoplasmic antibody-associated vasculitis; DN, diabetic
nephropathy; HTN, hypertensive nephropathy; IgAN, IgA nephropathy; FSGS, focal segmental glomerulosclerosis; TMD, thin membrane disease;
MCD, minimal change disease; MGN, membranous glomerulonephropathy; TN, tumor nephrectomy; IHC, immunohistochemical; SLEDAI, systemic
lupus erythematosus disease activity index; ESR, erythrocyte sedimentation rate; C3/C4, complement 3/4; eGFR, estimated glomerular filtration rate;
SCr, serum creatinine; BUN, blood urea nitrogen; UA, uric acid. *p < 0.05; ***p < 0.001; ns, not significant. Values of p < 0.05 were considered
significant.
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3.3 Alteration of ferroptosis-related
metabolic pathways in the glomerular and
tubulointerstitial compartments

Ferroptosis is associated with multiple metabolic pathways.

Therefore, we further investigated the gene signatures for eight

major ferroptosis-related metabolic pathways in the glomerular and

tubulointerstitial compartments between patients with LN and LD

(Figure 3). In the glomerular compartment of the GSE104948 and

GSE32591 cohorts, the gene expression of iron metabolism and

oxidative phosphorylation was significantly increased in two

independent datasets in patients with LN relative to LD (p <

0.05), while the gene expression of fatty acid synthesis was

significantly downregulated (p < 0.05) in GSE104948 cohort. In

the tubulointerstitial compartment, the gene expression of fatty acid

synthesis, oxidative phosphorylation, glycolysis, and GSH synthesis

was significantly downregulated (p < 0.05). However, the TCA

cycle, glutamine metabolism, and selenium metabolism have no

consistent significance in the glomerular and tubulointerstitial

compartments of the GSE104948 and GSE32591 cohorts. There

was a strong, positive correlation (p < 0.01) between the ferroptosis

and iron metabolism in the glomerular compartment of the

GSE104948 and GSE32591 cohorts, while the ferroptosis was

positively correlated (p < 0.05) with iron metabolism, fatty acid

synthesis, oxidative phosphorylation, TCA cycle, and selenium

metabolism in the tubulointerstitial compartment (Figure 4).
3.4 Dysregulation of CD163, PC, and
ATP6V0A4 in the glomerular compartment

To find more accurate targets regulating ferroptosis, we

examined the intersection of differentially expressed genes in the
Frontiers in Immunology 06
GSE104948 and GSE32591 cohorts and metabolism-related genes.

One upregulated gene (CD163) and two downregulated genes (PC

and ATP6V0A4) were identified in the glomerulus compartment

(Figures 5A, B). Consistent with the gene expression of ferroptosis,

dysregulation of CD163, PC, and ATP6V0A4 was specific in the

glomerular compartment of patients with LN from the GSE104948

cohort compared to other kidney diseases (especially FSGS, MCD,

and MGN) (Figure 5C). Meanwhile, CD163 and PC expression was

more dysregulated in LN patients at stages III and IV compared

with that in LD and other stages in the GSE32591 cohort, while

ATP6V0A4 expression was only downregulated in LN patients at

stages II and IV compared with LD (Figure 5D). There was a strong,

positive correlation (p < 0.01) between CD163 and ferroptosis in the

glomerular compartment of the GSE104948 and GSE32591 cohorts,

while a strong, negative correlation (p < 0.0001) between PC and

ferroptosis. In addition, ATP6V0A4 was negatively associated with

ferroptosis in the glomerular compartment, but there was no

significant (Figure 5E).
3.5 Ferroptosis of CD163+ macrophages
and CD10+ PC+ epithelial cells in the
glomerular compartment

In our own LN cohort, an immunohistochemical staining assay

verified that the level of CD163 was significantly increased in the

glomerulus of LN patients compared with controls (Figure 6A, p <

0.001), while PC expression was significantly reduced. However, in

the tubulointerstitial compartment, there was no difference in CD163

and PC levels between LN patients and controls. Unfortunately, the

level of ATP6V0A4 had no significance in the glomerulus and

tubulointerstitial compartments of LN patients and controls

(Figure 6A; Supplementary Figure 1). Next, analysis of a single-cell
A B D

E F G H

C

FIGURE 3

Alteration of eight ferroptosis-related metabolic pathways in LN patients. (A–H) Bar graphs for gene expression of iron metabolism (A), fatty acid
synthesis (B), oxidative phosphorylation (C), glycolysis (D), TCA cycle (E), glutathione synthesis (F), glutamine metabolism (G), and selenium
metabolism (H) pathways within the glomerular and tubulointerstitial compartments in GSE104948/54 and GSE32591 cohorts. *p < 0.05; **p < 0.01;
***p < 0.001; ns, not significant. Values of p < 0.05 were considered significant. LN, lupus nephritis; TCA, tricarboxylic acid.
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sequencing dataset (ImmPort ID: SDY997) from Accelerating

Medicines Partnership Phase I project indicated that CD163 was

mainly expressed in macrophages (Cluster Macrophage (CM)1,

CM2, CM3, and CM4), PC was mainly expressed in CD10+

epithelial cells (CE0), while ATP6V0A4 is only slightly expressed in

B cells, T cells, CE0, CM1, and dividing cells (Supplementary

Figure 2). Importantly, immunofluorescence staining revealed that

CD163 and 4-HNE were mainly co-localized in the glomerulus of LN

patients (Figure 6B; Supplementary Figures 3A–C). Moreover, PC

was co-localized with 4-HNE in the glomerulus of LN patients

(Figure 6C; Supplementary Figures 3D–F). These results suggested

that lipid peroxidation of CD163+ macrophages and CD10+ PC+

epithelial cells in the glomerular compartment were aberrantly

activated, and they may undergo ferroptosis.
4 Discussion

The high heterogeneity of SLE or LN patients leads to great

challenges in its diagnosis and treatment. Precisely because of this,

the exact pathogenesis of LN remains unclear. Ferroptosis,

characterized by lipid peroxidation and iron overload, is

associated with the alteration of multiple metabolic pathways,

such as iron metabolism, glycometabolism, and lipid metabolism

(22). Recently, several studies have reported that many ferroptosis-

related genes were related to immune-infiltrated cells (especially
Frontiers in Immunology 07
monocyte) in LN through analysis of a single GEO dataset (23, 24).

Additionally, Alli et al. reported that ferroptosis plays an important

role in renal tubular damage in LN (25). However, the crosstalk

between ferroptosis and metabolic pathways and the relationship

between ferroptosis and glomerular injury in LN have not

been elucidated.

The present study has revealed the changes in different types

of PCD, particularly ferroptosis, which was markedly elevated in

LN through analysis of three GEO datasets. By conducting the first

in-depth transcriptomic analysis of the changes in various

ferroptosis-related metabolic pathways in LN, we provided a

new perspective that enhanced iron metabolism and reduced

fatty acid synthesis may be significant contributors to

ferroptosis within the glomerulus. In addition, higher levels of

ferroptosis in LN patients at class III and IV and the strong

correlation between ferroptosis and kidney function indicated that

ferroptosis was closely correlated with disease activity and

progression of LN. Finally, we identified and verified two

dysregulated genes, CD163 and PC, that were significantly

associated with lipid peroxidation.

CD163 is a scavenger receptor of haptoglobin–hemoglobin

complexes and is mainly utilized as a specific marker for

macrophages (especially M2-like). It has been reported that

CD163 and SLC40A1 were selectively expressed in kidney M2-

like macrophages of LN patients, which were closely related to iron

homeostasis (26). The rupture of red blood cells caused by SLE-
A B D

E F G H

C

FIGURE 4

Correlations of eight ferroptosis-related metabolic pathways and ferroptosis in LN patients. (A–H) Correlations of iron metabolism (A), fatty acid
synthesis (B), oxidative phosphorylation (C), glycolysis (D), TCA cycle (E), glutathione synthesis (F), glutamine metabolism (G), and selenium
metabolism (H) pathways with ferroptosis within the glomerular and tubulointerstitial compartments in GSE104948/54 and GSE32591 cohort. Values
of p < 0.05 were considered significant. LN, lupus nephritis; TCA, tricarboxylic acid.
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associated autoimmune hemolytic anemia and glomerular injury

are the main sources of haptoglobin–hemoglobin complexes. Taken

together, these observations suggest that abnormally elevated

CD163+ tissue-infiltrating macrophages may lead to excessive

phagocytosis of haptoglobin–hemoglobin complexes, which may

result in excessive accumulation of iron and an increased amount of

unstable iron pools within macrophages, leading to oxidative stress

and ferroptosis. Elevated CD163 expression may also be an adaptive

change in the body to prevent further tissue damage caused by

broken red blood cells and their associated complexes. Consistent

with this view, treatment with a specific ferroptosis inhibitor was

found to ameliorate lupus nephritis and overall disease severity in

lupus-prone mice (7). Furthermore, CD163+ tissue-infiltrating

macrophages were identified as the main infiltrating cellular

subgroup in human LN, and urinary soluble CD163 derived from

the surface of these cells was closely related to histological

inflammation (27). This is consistent with our finding that

ferroptosis level and CD163 expression are specifically elevated in

LN and AAV. Although both LN patients at stages III and IV and

active AAV patients exhibit cellular crescent formation, patients

with other types of glomerulonephritis do not. However, studies on
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the mechanism of CD163+ tissue-infiltrating macrophages’

involvement in LN are lacking. Consequently, we believe that

ferroptosis is a novel and promising research target.

PC is involved in gluconeogenesis and lipogenesis in the liver

and kidney. Accalia Fu et al. (28) reported that PC protects against

reactive oxygen species (ROS) accumulation and cell death

triggered by inflammation, which is achieved by generating

NADPH relevant to thioredoxin and GSH antioxidant pathways

(29). Importantly, PC is also essential for the maintenance of GSH

pools and GSH/GSSG (oxidized GSH) ratio (28). These findings

suggest that PC can be considered a protective factor against

ferroptosis. In our study, we found that PC expression and PC-

expressing parietal epithelial cells were significantly downregulated

in the glomerulus of patients with LN. This further indicated that

decreased PC expression, reduced GSH pools, and elevated ROS

accumulation in glomerular epithelial cells may contribute to the

occurrence of ferroptosis. In addition, due to the possible adjacent

epithelial cells’ interaction in the glomerulus, PC-negative cells with

ferroptosis may further influence neighboring PC-positive cells to

induce ferroptosis. More experiments, both in vitro and in vivo, are

needed to verify this hypothesis. Future research will help us to
A B

D E

C

FIGURE 5

Dysregulation of CD163, PC, and ATP6V0A4 in the glomerular compartment of LN patients. (A) Venn diagram shows the intersection of differentially
expressed genes and metabolism-related genes in the glomerular and tubulointerstitial compartments. (B) Expression of CD163, PC, and ATP6V0A4
in the GSE104948/54 and GSE32591 cohorts. (C) Expression of CD163, PC, and ATP6V0A4 within the glomerular compartments of various renal
diseases and living donors in the GSE104948 cohort. (D) Expression of CD163, PC, and ATP6V0A4 within the glomerular compartments in different
classes of LN patients from GSE32591 cohort. (E) Correlation of expression of CD163, PC, and ATP6V0A4 and ferroptosis within the glomerular and
tubulointerstitial compartments in GSE104948/54 and GSE32591 cohorts. LD, living donors; LN, lupus nephritis; AAV, antineutrophil cytoplasmic
antibody-associated vasculitis; DN, diabetic nephropathy; HTN, hypertensive nephropathy; IgAN, IgA nephropathy; FSGS, focal segmental
glomerulosclerosis; TMD, thin membrane disease; MCD, minimal change disease; MGN, membranous glomerulonephropathy; TN, tumor
nephrectomy; PC, pyruvate carboxylase. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant. Values of p < 0.05 were considered significant.
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better understand the mechanism of action in which PC and

ferroptosis participate in the pathogenesis of LN.

There are some important potential limitations in this study. First,

the main conclusions stated that there was enhanced expression of

ferroptosis-related genes in the glomerular rather than tubular

compartment of lupus nephritis biopsies compared to living donor

controls, in association with increased CD163+ cells, and decreased

CD10+ PC+ cells based on analysis of publicly available transcriptomic

datasets lacked definitive experimental studies. Second, it has been

reported that when some cells undergo cell death, it can induce the

activation of a cell death pathway in neighboring cells (2). Whether

crosstalk occurs between glomerular macrophage and epithelial cells

needs to be confirmed. Additionally, the majority of patients in our

cohort were treated with corticosteroids or immunosuppressants at the
Frontiers in Immunology 09
time of renal biopsy, and treatment may have some effect on the level of

ferroptosis (30). Therefore, a larger cohort needs to be recruited for

subgroup comparison. Finally, validation of animal models and the

association between soluble CD163 in urine and ferroptosis is required.

Distinct alterations in programmed cell death and related

metabolic pathways were observed in the renal transcriptome

from patients with different forms of glomerulonephritis,

including systemic inflammatory diseases such as SLE and AAV,

four forms of nephrotic syndrome (FSGS, IgAN, MCD, and MGN),

and hypertensive and diabetic nephropathy. The overall patterns of

gene expression are indicative of increased ferroptosis, iron

metabolism, and decreased fatty acid synthesis, especially in the

glomerular compartment of LN patients. Aberrantly activated lipid

peroxidation in glomerular CD163+ macrophages and CD10+ PC+
A

B

C

FIGURE 6

Ferroptosis of CD163+ macrophages and CD10+ PC+ epithelial cells in the glomerulus of LN patients. (A) Representative immunohistochemistry
images of CD163 and PC in seven LN patients and seven controls. The red arrows indicate positive regions. (B) Representative immunofluorescent
staining images demonstrate co-localization of 4-HNE (green) and CD163 (red) within macrophages in the glomerular compartment.
(C) Representative immunofluorescent staining images demonstrate co-localization of 4-HNE (green) and PC (red) within epithelial cells in the
glomerular compartment. The red arrows indicate cells double-positive for CD163 or PC and 4-HNE that were undergoing ferroptosis; green arrows
indicate cells PC-positive cells or CD163-positive cells; sky-blue arrows indicate 4-HNE-positive cells. Values of p < 0.05 were considered
significant. LN, lupus nephritis; PC, pyruvate carboxylase.
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epithelial cells were observed in this study, further suggesting that

altered ferroptosis and related metabolic pathways may also play a

role in the pathophysiology of LN (Figure 7). Targeting ferroptosis

in CD163+ macrophages and CD10+ PC+ epithelial cells may

provide promising therapeutic approaches in LN.
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