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The success of the first licensed mRNA-based vaccines against COVID-19 has

created a widespread interest on mRNA technology for vaccinology. As

expected, the number of mRNA vaccines in preclinical and clinical

development increased exponentially since 2020, including numerous

improvements in mRNA formulation design, delivery methods and

manufacturing processes. However, the technology faces challenges such as

the cost of raw materials, the lack of standardization, and delivery optimization.

MRNA technology may provide a solution to some of the emerging infectious

diseases as well as the deadliest hard-to-treat infectious diseases malaria,

tuberculosis, and human immunodeficiency virus/acquired immunodeficiency

syndrome (HIV/AIDS), for which an effective vaccine, easily deployable to

endemic areas is urgently needed. In this review, we discuss the functional

structure, design, manufacturing processes and delivery methods of mRNA

vaccines. We provide an up-to-date overview of the preclinical and clinical

development of mRNA vaccines against infectious diseases, and discuss the

immunogenicity, efficacy and correlates of protection of mRNA vaccines, with

particular focus on research and development of mRNA vaccines against malaria,

tuberculosis and HIV.
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Introduction

From historical empirical immunization methods or “variolation” against smallpox,

and the development of the first live-attenuated whole pathogen vaccines in early 1900’s,

the field of vaccinology has been constantly improving. While live-attenuated vaccines are

still widely used, the current arsenal of vaccines includes killed whole organisms

(inactivated vaccines), toxoid, subunit vaccines (purified proteins and peptides,

polysaccharides), conjugated vaccines (protein-polysaccharide conjugate), virus-like

particles, outer membrane vesicles, viral vectored, and nucleic acid vaccines, including

mRNA vaccines (1, 2).
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Vaccination is undoubtedly amongst the greatest advances of

medicine, preventing millions of deaths to infectious diseases each

year. National and international vaccination programs and mass

vaccination campaigns have been responsible for a significant

decrease in mortality, particularly during childhood (3).

Importantly, vaccination led to the complete eradication of

smallpox (4). However, despite this success, current technologies

have failed to provide truly effective protection against human

immunodeficiency virus (HIV), tuberculosis (TB) and malaria,

which remain among the main causes of death, particularly in

low and middle-income countries (LMIC). Indeed, the only

available vaccine against TB, a live-attenuated strain of

Mycobacterium bovis, bacillus Calmette-Guérin (BCG), has

inconsistent efficacy, does not prevent transmission, and no

vaccine against HIV or Malaria has been licensed to date.

The recent COVID-19 pandemic and the quick development of

mRNA-based vaccines have drawn attention to this technology.

These vaccines are safe, efficient, rapid and relatively simple to

produce, and may quickly respond to the needs in emergency

settings such as a pandemic caused by emerging pathogens (5).

The research on mRNA vaccines has grown exponentially, and

vaccine candidates against a great variety of infections have entered

clinical trials, including HIV, TB and malaria. This brings hope that

mRNA technologies could offer a solution to prevent these deadly

diseases, but also for other applications such as cancer treatment

and protein-replacement therapies for genetic disorders (6).

mRNA vaccine technology presents several advantages

compared to other types of vaccines. They are safer and generally

well-tolerated in healthy patients. Live attenuated vaccines, present

a risk of uncontrolled replication in immunocompromised subjects,

which does not occur with mRNA vaccines. Inactivated vaccines

induce essentially humoral response, while mRNA vaccines activate

both humoral and cellular responses. In addition, unlike

recombinant protein-based vaccines which often need adjuvants

to improve their immunogenicity, mRNA vaccine has intrinsic

adjuvant activity (5). Furthermore, mRNA in vitro synthesis and

purification processes are cell-free, quick and easily scalable, in

contrast with the fastidious and time-consuming production of

conventional vaccines (7).

In this review we focus on the mRNA vaccine formulation

design, delivery methods and manufacturing processes. We describe

an overview on the preclinical and clinical development of mRNA

vaccines against infectious diseases, and we discuss their

immunogenicity, efficacy, and correlates of protection, with

particular focus on the three major killers, malaria, TB and HIV.
mRNA vaccine design, production
and optimization

Structure and biological function

Messenger RNA (mRNA) is a single strand nucleic acid

molecule encoding genetic information of one or several genes.

Endogenous mRNA is transcribed in the nucleus of cells from
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genomic DNA by the RNA polymerase, either constitutively or

under the control of transcription factors that activate or repress

gene expression. mRNA is then transported to the cytoplasm, where

it is translated by the ribosomal translation machinery into the

encoded protein.

Endogenous eucaryotic mRNA is composed of an open reading

frame (ORF), which contains the sequence of the encoded genes.

This ORF is flanked by 5’ and 3’ untranslated regions (UTRs), that

are important for the regulation of translation, as well as for the

stability of the molecule. Additional essential structures are the cap,

consisting of a N7-methylated guanosine residue (m (7)Gppp) at

the 5’ end, and the poly(A) tail at the 3’ end, composed of

approximately 250 to 300 adenosine residues (5, 8) (Figure 1A).

The 5’ cap is important for translation initiation, through binding to

the cap recognition protein eIF4E, which is engaged in the

preinitiation complex eIF4F, facilitating ribosome binding and

initiation of translation (9). The 2’ O-methylation of the cap

(cap-1) is a characteristic of endogenous mRNA, allowing

discrimination of self vs exogenous RNA (such as viral RNA),

preventing inappropriate immune activation through detection by

pattern recognition receptors (PRRs) (10). Indeed, this detection

induces type I interferon (IFN) production and IFN-dependent

signalling pathways that degrade and block the translation of RNA

lacking 2′Omethylation (cap-0), thus preventing translation of viral

RNA (11). The poly(A) tail results from a nuclear polyadenylation,

and its length is tightly regulated both in the nucleus and cytoplasm,

notably through binding to the polyadenylate-binding protein

(PABP), which plays dual functions: protecting and stabilizing the

poly(A) tail, but also facilitating the deadenylation process through

recruitment of deadenylases, under certain conditions that are not

fully elucidated (12). Beside its importance for the protection and

stability of mRNA, the poly(A) tail, in combination with PABP,

participates in the stabilisation of the 5’ cap binding to the

translation initiation complex, which is an important target of

translation initiation regulation (8, 12, 13). While it has long been

postulated that a positive correlation exists between poly(A) tail

length and mRNA stability, recent findings also suggest that short

poly(A) tails are a feature of highly expressed mRNA, while longer

tails are associated with transcripts of lower abundance and poor

translation (12, 14).

Of note, beside conventional mRNA vaccines, another type of

mRNA, self-amplifying mRNA (saRNA), has been widely studied as

a vaccine platform against infectious diseases, particularly for viral

infections (15–20). saRNA contains a replicase gene derived from a

viral replicon, usually from alphaviruses or flaviviruses, conferring

them an auto-replicative activity. This results in higher antigen

production in host cells, allowing to lower the dose of mRNA

needed for vaccination and thus lowering the manufacturing costs

(15, 21).
In vitro synthesis of mRNA and
optimization for vaccine development

mRNA vaccine production relies entirely on an in vitro, cell-

free process, and is thus safe, quick and can be easily
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standardised (Figure 1B). It necessitates a DNA template (usually

a linearized plasmid), in which the antigen and promoter

sequences are encoded. In vitro transcription (IVT) of mRNA

is then performed using an RNA polymerase from bacteriophage

origin (such as T7, T3 or SP6) and nucleotides triphosphates

(NTPs) under the control of the promoter, which is located

upstream of the antigen sequence in the DNA template. Virtually

any antigen sequence or multiple antigens can be transcribed

with this method, and the DNA template can encode all the

elements of functional mRNA except the 5’ cap, which needs to

be added during the manufacturing process (6). Two methods

are used for this purpose: a synthetic cap analogue (such as the

CleanCap developed by TriLink) added during the IVT reaction

to be directly incorporated in the synthesised mRNA, or

alternatively a capping enzyme, such as the vaccinia capping

enzyme, which will add the cap during an additional step after

the transcription, in the presence of a methyl donor substrate.

The poly(A) tail can either be encoded directly in the DNA

template sequence or be added enzymatically with the

recombinant poly(A) polymerase after IVT. However, this
Frontiers in Immunology 03
enzymatic process generates mRNAs with poly(A) tails of

different lengths and thus direct encoding of poly(A) tail is

often preferred for clinical applications (22).

mRNA instability, as well as its recognition by the innate

immune system, are major obstacles for their use in therapeutic

applications. Thus, several methods have been developed to

increase the stability, translation efficiency and immune profile

of therapeutic mRNA, such as codon optimisation, nucleotide

modification, and selection of efficient purification processes (6).

The codon optimization, consisting of the replacement of rarely

used codons by synonymous, frequently used codons in humans,

is commonly performed in order to increase the translation

efficiency of the mRNA in the target cells. Indeed, due to

species-specific differences in codon usage and abundance of

transfer RNAs (tRNAs), which transport the corresponding

amino acids to the ribosomes, this approach may increase the

protein elongation rate, yet the importance of codon optimisation

for therapeutic mRNA design is still debated as it may affect

mRNA secondary structure, translation dynamics and protein

conformation (23, 24).
A

B

FIGURE 1

Structure, function and in vitro synthesis of vaccine mRNA. (A) mRNA are single stranded nucleic acids composed of an open reading frame (ORF)
encoding the gene of interest, flanked by untranslated regions (UTRs) implicated in translation regulation, a cap at the 5’ end consisting of a N7-
methylated guanosine residue, important for translation initiation and immune detection, and a poly(A) tail at the 3’ end, participating in the stability
of the mRNA, as well as the stabilisation of the translation initiation complex. (B) In vitro synthesis of mRNA is often performed from a linearised
plasmid template. The gene of interest is encoded in the plasmid template downstream of a promoter sequence. E. coli are transformed with the
plasmid and cultured in liquid medium containing an antibiotic for which the plasmid encodes a resistance gene, thereby allowing the selection of
bacteria that express the plasmid. The plasmid is then purified from the culture and digested using restriction enzymes to obtain a linear DNA
template. In vitro transcription of mRNA is performed in the presence of the DNA template, an RNA polymerase and nucleotides triphosphates
(NTPs). The capping can be performed by directly adding a cap analogue in the IVT reaction mix (1-step reaction), or alternatively by an enzymatic
capping reaction after the IVT. If the poly(A) tail is not encoded in the plasmid, an additional step of polyadenylation is required. Created with
BioRender.com.
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Nucleoside modification, notably the replacement of uridines

by pseudouridine and derivatives, has been widely used as a

strategy to avoid recognition by innate immune receptors

(detailed below), thus decreasing unwanted immune activation

and side effects. Preclinical studies demonstrated that nucleoside-

modified mRNAs induced increased translation efficiency,

prolonged detectability, and increased immunogenicity of

mRNA vaccines in animal models (25–27). Pfizer-BioNTech and

Moderna have both adopted this strategy, as uridines are replaced

by N1-methylpseudouridine in both licensed mRNA-based

COVID-19 vaccines, BNT162b2 and mRNA-1273. Of note,

while CureVac has always defended the interest of using non-

modified mRNA despite the mitigated results of its COVID-19

candidate vaccine CVnCoV, they recently reported preliminary

data of a study comparing two next generation nucleoside-

modified versus unmodified COVID-19 mRNA vaccines (28).

The results indicate that the modified mRNA induces similar

antibody levels than the unmodified vaccine at the same dose, but

with many fewer side effects, allowing to safely increase the dosage

to achieve maximal protection efficacy. As a consequence,

CureVac announced they will now focus their development

activity on high dose modified mRNA vaccines for both its

COVID-19 and flu vaccine programmes (28).

Regulatory regions in the 5’ and 3’ UTRs can also be modulated

to increase mRNA stability and translation efficiency (29). For

example, the COVID-19 vaccine BNT162b2 (Pfizer-BioNTech)

incorporates the 5′-UTR of the highly expressed human a-globin
gene, and the 3’-UTR contains regulatory elements of the a- and b-
globin genes as well as other segments from the human

mitochondrial 12S rRNA and AES/TLE5 gene (30). Interestingly,

a recent study in rhesus macaques comparing the immunogenicity

and efficacy of the LNP-mRNA vaccine candidate CVnCoV

(Curevac) and a similar construct with optimized UTRs

(CV2CoV), showed that the CV2CoV elicited higher neutralising

antibodies titres and memory B and T cell responses, correlating

with higher protective efficacy than CVnCoV for the same dose,

highlighting the importance of UTRs optimisation for vaccine

design (31).

The purity of mRNA is essential for its therapeutic use, as DNA

template, enzymes, residual NTPs or dsRNA contaminants

generated during IVT can significantly impact on the translation

efficiency and immunogenicity profile of the vaccine, due to innate

immune activation (5). The choice of the purification methods

depends on the production scale and application (i.e from

laboratory research and clinical trials to mass industrial

production of licensed products). At the laboratory scale,

frequently used methods include DNase treatment, lithium-

chloride (LiCL) precipitation, cellulose-based chromatography or

the use of commercially available purification kits (32, 33). For large

scale, GMP-compliant production, the purification usually relies on

advanced chromatography technics, such as ion pair reverse phase

chromatography (IPC), ion exchange chromatography (IEC),

diafiltration using tangential flow filtration (TFF) and affinity

chromatography, which are more efficient in removing short

abortive mRNA and dsRNA (5, 34).
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Delivery of mRNA vaccines

mRNA vaccines need to reach the target cells and cross the cell

membrane to enter the cytosol, where they use the cell machinery to

be translated into the encoded antigen. However, naked mRNA is

rapidly degraded by RNases in the extracellular space, and its

negative charge prevents cell membrane crossing due to

electrostatic repulsion. Thus, one of the main challenges is the

development of efficient delivery systems to carry mRNA to the

cytosol, while protecting it from degradation. Lipid-based carriers,

such as liposomes or lipid nanoparticles (LNPs) are the most widely

used for delivery of mRNA vaccines, but several other systems have

been explored: polymers and polyplexes, such as polyethylenimine

(PEI) or poly(amidoamine)s, which form complexes with nucleic

acids and efficiently deliver mRNA to the cytoplasm, but can

present a significant toxicity due to their positive charge; pH-

responsive polymers, protonated at acidic pH in endosomes and

presenting a lower toxicity profile; peptides and cell-penetrating

peptides (CPPs) such as protamine that electrostatically bind to

mRNA and form nanocomplexes due to their cationic or

amphipathic amine groups; or squalene-based cationic

nanoemulsions that adsorb mRNA on their surface (5, 22, 35).

Cationic liposomes such as N-[1-(2,3-dioleoyloxy)propyl]-N,N,

N-trimethylammonium (DOTMA) and 1,2-dioleoyloxy-3-

trimethylammoniumpropane (DOTAP) have been used

successfully for in vitro transfection of mRNA to mammalian

cells (Malone et al., (36); Zohra et al., (37)). However, the

positively charged cationic lipids tend to aggregate with negatively

charges serum proteins, increasing the clearance rate, and have a

cytotoxic effect, limiting their clinical applications (35, 38).

Incorporation of hydrophilic polymers such as polyethylene

glycol (PEG) reduces the toxicity of cationic liposomes but can

generate anti-PEG antibodies upon repeated administrations,

increasing their clearance rate (39).

LNPs are among the most efficient and widely used mRNA

delivery systems, and notably enter in the formulation of the

COVID-19 vaccines developed by Moderna and Pfizer/BioNTech.

LNPs are typically composed of cationic or ionisable lipids, and

structural lipids including sterols, helper phospholipids and

PEGylated lipids, and encapsulate mRNA in their core (35, 40).

Various parameters influence LNP properties, and depend on the

nature and proportion of the different lipids in LNP formulation:

the size impacts on biodistribution and internalisation (with an

optimal size usually comprised between 20 and 200 nm), the charge

is important for cell uptake, cytotoxicity, encapsulation efficiency

and organ targeting, while membrane hydration affects the fluidity,

deformability, membrane fusion and responsiveness to pH, which is

important for mRNA release in the acidic lysosome environment.

Cationic and ionisable lipids are composed of 3 parts: the positively

charged headgroup entraps the nucleic acid, interacts with the cell

membrane and facilitates endosomal escape; the hydrophobic tails

(typically 1 to 4) are saturated or unsaturated and impact the

lipophilicity, fluidity and fusogenicity of LNPs; and the linker

(composed of esters, amides or thiols), impacts on the stability,

biodegradability, cytotoxicity and transfection efficiency of LNPs
frontiersin.org
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(40). Ionisable lipids are preferred over cationic lipids, as they have

a neutral charge in biologic fluids and acquire their positive charge

only at acidic pH, i.e in endolysosomes, while the constant positive

charge of cationic lipids can lead to cytotoxicity by causing a

destabilization of the cell membrane (38). Phospholipids, such as

the 1,2-Distearoyl-sn-glycero-3-phosphocholine (DSPC) used in

COVID-19 vaccines or the 1,2-Dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE)) are located at the periphery of

LNP and organise into a bilayer structure, influencing the fluidity,

membrane fusion, as well as the biodistribution of LNPs, as they can

be designed for organ-specific targeting (41–43). Sterols (such as

cholesterol, oxidised cholesterol derivatives and phytosterols) are

the most abundant lipids in LNP formulation (20-50% of total

lipids). They are essential for surface organisation through

stabilisation of the lipid bilayer, shielding the positive charge, and

influence the fluidity of the nanoparticles, protein fusion and

endosomal escape (44, 45). PEG-anchored lipids (2-5% of total

lipids) are composed of the hydrophilic polyethylene glycol

conjugated to an anchoring phospholipid. The amount, length

and type of PEG-lipids regulate the size of LNPs by limiting lipid

diffusion and protect them from aggregation and undesired

interactions with biological environments, such as serum protein

and macrophage phagocytosis. However, an excess of PEG lipids

can reduce receptor-mediated cell uptake and transfection of LNPs,

thus reducing mRNA delivery. This can be overcome by using a

PEGylating agent with weak bilayer anchor or a cleavable linker,

resulting in a progressive loss of PEGylation in biologic fluids (35,

43). They can also be used to functionalise the surface of LNPs to
Frontiers in Immunology 05
enable bioconjugation with ligands and macromolecules, for organ/

tumour targeting for example (46).
Immunological bases of
mRNA vaccines

Innate immune detection of
exogenous RNAs

Exogenous nucleic acids are detected by the innate immune

system, as a coevolutionary mechanism of eucaryotes against

invading pathogens. Exogenous RNAs are recognised by

Immune-sensing receptors localised at the cellular or

endolysosomal membrane, such as toll-like receptor (TLR)3,

TLR7 and TLR8, or by cytoplasmic receptors, including the

Ret inoic Acid Induc ib le Gene-I (RIG-I) , me lanoma

differentiation-associated protein 5 (MDA5) or nucleotide-

binding oligomerization domain (NOD)-like receptors (NLR)

Family Pyrin Domain Containing 1 (NLRP1). Activation of these

receptors induces expression of pro-inflammatory genes,

particularly type-I and type III IFNs, and IFN-stimulatory genes

(ISGs), triggering various defence mechanisms to eliminate the

pathogens (Figure 2). Additional mechanisms, such as antiviral

restriction factors and RNases participate in exogenous RNA

neutralisation and degradation (48). RNA degradation by RNases,

such as RNase T2 and RNase 2, which occurs at sites containing
FIGURE 2

Mechanism of action and immune response induced by mRNA vaccines. 1) mRNA vaccines enter the cells through different mechanisms depending
on the nature and size of the nanoparticles, such as clathrin-, caveolin- and receptor-mediated endocytosis, micropinocytosis, phagocytosis or
diffusion across the cell membrane (47). 2) After reaching the cytoplasm, mRNAs are translated by the ribosomes into the encoded protein. 3) The
protein is processed by the proteasome into small antigenic peptides. 4) The peptides are presented at the surface of the antigen presenting cell by
major histocompatibility complex (MHC) molecules to prime CD4+ and CD8+ T cells through, respectively, MHC-II or MHC-I interaction with the T
cell receptor (TCR), to activate humoral and cellular adaptive responses. 5) Exogenous mRNAs can be detected by the innate immune system
through binding to pattern recognition receptors (PRRs) localised at the endosomal membrane or in the cytosol, inducing the transcription and
translation (6) of proinflammatory factors, such as type 1 interferons (IFN-I), IFN-stimulated genes (ISGs) and RNases. NF-kB, nuclear factor kB.
Created with BioRender.com.
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uridine, generates by-products, that are further detected by TLR8,

amplifying the immune response (49–51). Indeed, TLR7 and TLR8

have been shown to recognise guanosine- and uridine-rich ssRNA

(51–53). Activation of this receptors induce cytokine production,

particularly type I IFN, which promotes expression of RNA sensors,

leading to a reduction of mRNA translation and increase

inflammation (54). Thus, as previously mentioned, mRNA

vaccine design often includes uridine replacement by

methylpseudouridine, in order to avoid this mechanism.

The cap is also important in this regard, as the 5’-triphosphate

end of RNA (m (7)GpppN, cap-0) can be detected by RIG-I,

triggering type I IFN immune response, whereas N1 methylation

of the 5’ cap (m (7)GpppNm, cap-1), which is a feature of self-RNA,

prevents this recognition (55, 56). Similarly, the human IFN-

induced protein with tetratricopeptide repeats 1 protein (IFIT1)

binds to Cap-0, competing with the translation initiation factor

complex eIF4F, thus reducing mRNA translation (57–59).

In addition, IVT mRNA production can generate double-

stranded (ds) RNA by-products during the synthesis process,

which can drive inflammatory and translation inhibitory

pathways through TLR3, RIG-I, or MDA5 activation, as well as

through detection by restriction factors such as the Protein kinase R

(PKR), Oligoadenylate synthetase (OAS), and Adenosine

deaminase acting on RNA (ADAR1) (60).

On the other hand, the production of inflammatory cytokines in

antigen presenting cells (APCs) participates in the activation of

adaptive immune response through enhancement of antigen

presentation to T cells (61). These mechanisms are important

considerations when designing and producing mRNA vaccines,

and several optimisation and purification methods have been

developed to limit the innate immune recognition to generate a

balanced innate response, for efficient activation of APCs, while

limiting mRNA degradation which reduces translation efficiency (5,

32, 61). In addition, high innate immune activation is responsible of

acute post-vaccination symptoms, including injection-site pain,

fever, chill, headache and fatigue, limiting the maximal dose that

can be administered (62–64).
Immunogenicity of mRNA vaccines and
correlates of protection

There are several immunologic aspects to consider when

developing a vaccine: the innate immune stimulation or “adjuvant

effect”, and the adaptive response, which comprises humoral and

cellular responses, as well as the generation of memory cells. The

adjuvant effect is essential to the recruitment and activation of APCs

and priming of T cells to induce adaptive responses. Therefore, it is

often necessary to add adjuvant molecules to the vaccine

formulation in order to increase its immunogenicity, particularly

in the case of subunit vaccines (5). The humoral and cellular

adaptive responses, relying on antibody production and cytotoxic

T lymphocytes (CTL) respectively, are the two main effector

mechanisms of acquired, -natural or vaccine-induced-, protection

against pathogens. While live attenuated vaccines stimulate both

responses, inactivated and subunit vaccines, although having a
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better stability and safety profile, often induce only humoral

response (5). This is of importance since, while antibody titres are

usually the main correlate of protection for most available vaccines

(65), cellular immunity may participate to the protection against

intracellular pathogens such asM. tuberculosis (66–71) or influenza

(72–74). Finally, as antibody titres fade over time after

immunisation, the generation of long-lasting memory B cells and

T cells, which can rapidly respond, upon new encounter with the

pathogen, by clonal expansion and massive antibody production, is

crucial for long-term vaccinal protection, particularly for diseases

with long incubation time (65).

Since the first demonstration by Wolff and colleagues in 1990 of

the ability of mRNA to induce protein expression after direct in vivo

administration (75), several studies reported the production of

specific antibodies and induction of CTL-mediated cellular

immunity, highlighting its potential for vaccination against

infectious diseases as well as for targeted cancer therapy (27, 76–

80) (Figure 2). However, our understanding of the exact

contribution of these mechanisms to the protection against

infection is still incomplete and pathogen-dependent (54).

The innate response and the role of APCs have been

investigated in a recent preclinical study with the nucleoside-

modified mRNA-LNP COVID-19 vaccine BNT162b2 (Pfizer/

BioNTech). The authors reported an increased activation of

monocytes, macrophages and DCs in dLN, lung and spleen as

well as increased cytokine and chemokine levels (including MCP1,

Mip1b, CXCL10, IL-6, IFN-a and IFN-g) in serum in the first

hours/days following intramuscular vaccination (81). Consistent

with observations in vaccinated patients (82, 83), this innate

response was enhanced in the mouse model following the boost

dose compared to the first dose, and was accompanied by a higher

magnitude of IFN-g-secreting CD4+ and CD8+ T cells in draining

lymph nodes (dLNs), lung and spleen. By contrast, NK cells

appeared to be the major source of IFN-g after the first dose (81).
Similar observations were made with an LNP-mRNA vaccine

coding for influenza haemagglutinin H10 in rhesus macaques,

with rapid and transient infiltration of neutrophils, monocytes

and DCs, associated with type I IFN-inducible gene stimulation

in dLNs, which correlated with priming of specific CD4+ T cells

(84). However, while particle uptake by DCs and monocytes/

macrophages resulted in high transcript translation, poor protein

production is observed in neutrophils, suggesting that those cells

may rather have a competitive role for particle uptake by APCs. In

line with this, a study showed that, following intradermal

administration of influenza vaccine, DC and langherans cells

contribute to optimal T cell activation in dLNs, while neutrophils

are dispensable (85). Of note, transgenic mice were used to

demonstrate that MDA5 and Interferon-alpha/beta receptor alpha

chain (IFNAR1) (but not TLR2,3,4,5,7, inflammasome or STING-

cGAS) signalling pathways are essential for innate immune

activation and induction of specific CD8+ T cell response

following BNT162b2 vaccination, but have only a modest role in

inducing specific antibodies, as IgG titres were only mildly

decreased in deficient mice (81).

LNP-mRNA vaccines against SARS-Cov-2, HIV, influenza or

Zika were shown to elicit durable antibody and Th1 cell responses
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in animals, associated with strong activation of antigen-specific T

follicular helper (Tfh) and germinal centre B cells in dLNs (27, 86–

89). The central role of rapidly -induced CD4+ T cells in

orchestrating humoral and cellular responses during a prime-

boost vaccination protocol against SARS-CoV-2 was highlighted

in a longitudinal cohort analysis, where CD4+ T cells induced by

the prime vaccination correlated with CD8+ T cells and antibody

titres induced following the second dose in naïve healthy

individuals (83). In addition, the prime-boost vaccination

protocol with SARS-CoV-2 vaccines induces durable memory B

cells and memory CD4+ and CD8+ T cells (detectable 6 months

post-immunisation), similar to those induced by SARS-CoV-2

natural infection (83, 90, 91).

A large body of evidence points towards collaborative roles of

humoral and CD8+ T cell-mediated responses in the protection

induced by mRNA COVID-19 vaccines. In a phase 3 clinical trial,

the titres of binding and neutralising antibodies against the viral

spike protein were indeed correlated with protection against

COVID-19 disease in individuals vaccinated with mRNA-1273

vaccine (Moderna) (92). The protective and therapeutic role of

neutralising antibodies was further demonstrated in a study

showing that the adoptive transfer of IgG from convalescent

rhesus macaques to naïve animals protected recipient animals

against SARS-CoV-2 intranasal challenge in a dose-dependent

manner (93). Beside this, CD8+ T cell depletion partially

abrogated the protection against rechallenge with SARS-CoV-2 in

convalescent macaques with declining antibody titres (4 to 7 weeks

post-primary infection (93). Another study points out a potential

role of spike-specific CD8+ T cell response in early protection

following prime vaccination with bnt162b2, when neutralising

antibodies are hardly detectable (94). Interestingly, some

observations suggest that memory T cells are less affected by

immune escape observed with mutation variants of the virus than

antibody-mediated responses and may thus be important for

protection against SARS-CoV-2 variants (95, 96).

Of note, it is now recognised that LNPs, which enter in the

composition of the commercialised COVID-19 vaccines and are the

most widely used carriers in mRNA vaccine development, exert a

strong adjuvant activity. LNPs containing ionizable lipids (iLNPs)

were shown to induce a strong chemokine and cytokine production

(including IFN-a, IL-6, IL-1b and GM-CSF), immune cell

infiltration at the injection site and in dLNs, and promote DC

maturation and monocytes and DC activation (27, 85, 97, 98).

Moreover, iLNPs were shown to play an essential role in the

stimulation of Tfh cells and germinal centre B cells, inducing

their differentiation into long lived plasma cells and memory B

cells, associated with a durable protective antibody response. This

effect was mediated by IL-6 signalling pathway, and dependant on

ionisable lipids (97). iLNPs have thus been successfully used as

adjuvants in sub-unit vaccines against dengue and hepatitis B, VZV,

influenza and SARS-CoV-2 (97, 99–101). In addition, several

studies demonstrated that cationic lipid-based nanoparticles are

detected by immune sensors, such as TLR4, TLR2, TLR3, NLRP3 or

STING and enhance vaccine immunogenicity (102–105). IL-1 and

IL-1ra are strongly produced by immune cells in vitro and in vivo

upon administration of liposome-encapsulated mRNA vaccine and
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are important regulators of the inflammatory response induced by

the vaccine in a lipid-dependent manner (106). Overall, these

studies bring some clarification about the key innate pathways

implicated in the induction of protective, specific immunity by

mRNA-LNPs vaccines, even though complementary analyses are

still required to better understand the contribution of memory B

and T cells, particularly regarding strain-diversity and protection

against reinfection with different variants in the case of SARS-

CoV-2.
Pre-clinical and clinical development
of mRNA vaccines against
infectious diseases

If the research on mRNA vaccine against infectious diseases

have truly exploded since 2020, driven by the success of COVID-19

vaccines, first preclinical evidence of the potential of RNA-based

vaccines for tumours and infections have emerged since the 90s. In

1993, mice immunization with liposome-encapsulated IVT mRNA

coding for the influenza virus nucleoprotein was shown to induce

virus-specific CTL (107). Of note, many of early preclinical reports

on the induction of protective immunity against infectious diseases

were conducted with self-amplifying RNA replicons derived from

alphaviruses or flaviviruses, packed in virus-like particles (108).

They targeted mostly viruses, such as influenza (16, 109, 110),

vaccinia virus (111), parainfluenza virus type 3 (20), tick-borne

encephalitis virus (16, 112), HIV (19, 113, 114), herpes simplex

virus (115), or Ebola (18, 116). However, viral vectors present a risk

due to anti-vector immunity, have limited loading capacity, and

their production is more fastidious (108). Nonetheless, the

undeniable advantages of mRNA over other vaccine platforms as

a safe, highly adaptable and easily produced template for in vivo

protein expression, with intrinsic adjuvant properties and no risk of

insertional mutagenesis (unlike DNA), kept the interest of the

scientific community despite the absence of clinical validation.

The use of lipid-based nanocarriers, formulated to protect and

deliver small molecules such as nucleic acids to the cells, have

significantly contributed to the mRNA vaccine field (40, 97). In

parallel, important advances have been made in the design of

mRNA, with modifications by genetic engineering to improve

their stability, translation efficiency and immunogenicity/safety

profile (117). These efforts culminated in the development and

approval of two COVID-19 vaccines in a record time. As a result of

this success, modified or unmodified mRNA formulated with LNPs

are now predominant in both preclinical and clinical development

of mRNA-based vaccines against infectious diseases (40) (Table 1).

Influenza vaccine research, for example, have largely

beneficiated from these technologic advances. Indeed, the high

mutation rate of Influenza viruses means that the vaccine

formulation needs to be constantly adapted to the last circulating

strains, which is difficult to manage due to the long production time

of conventional influenza vaccines, and results in variable

effectiveness. mRNA technology could help in improving antigen

design, or ideally developing a universal, cross-reactive vaccine, as
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TABLE 1 list of clinical trials evaluating mRNA vaccines against infectious diseases.

Application Designation (Sponsor) NCT
number

Development
phase

Date Status

Influenza mRNA NA vaccine (Sanofi Pasteur) NCT05426174 Phase 1 2022 Active

GSK4382276A (GSK) NCT05446740 Phase 1 2022 Recruiting

mRNA-1010 (Moderna) NCT04956575 Phase 1/2 2021 Completed

NCT05415462 Phase 3 2022 Active

mRNA-1020 & 1030 (Moderna) NCT05333289 Phase 1/2 2022 Completed

MRT5407 (Sanofi Pasteur) NCT05553301 Phase 1 2022 Recruiting

Modified mRNA vaccine (Pfizer) NCT05052697 Phase 1/2 2022 Recruiting

Quadrivalent influenza modRNA vaccine (qIRV) (Pfizer) NCT05540522 Phase 3 2022 Recruiting

Quadrivalent Influenza mRNA Vaccine CVSQIV (CureVac) NCT05252338 Phase 1 20222 Recruiting

PF-07852352 & others Influenza saRNA (Pfizer) NCT05227001 Phase 1 2022 Recruiting

SARS-CoV-2 and
Influenza

mRNA-1073 (Moderna) NCT05375838 Phase 1/2 2022 Active

HIV eOD-GT8 60mer (mRNA-1644) (IAVI, Moderna) NCT05414786 Phase 1 2022 Active

mRNA-1644 & 1644v2-core (IAVI, Moderna) NCT05001373 Phase 1 2021 Active

BG505 MD39.3, BG505 MD39.3 gp151, and BG505 MD39.3 gp151
CD4KO HIV Trimer mRNA Vaccines

NCT05217641 Phase 1 2022 Active

Zika mRNA-1325 (Moderna) NCT03014089 Phase 1 2017-
2019

Completed

mRNA-1893 (Moderna) NCT04917861 Phase 2 2021 Active

NCT04064905 Phase 1 2019-
2021

Completed

CMV mRNA-1647 (Moderna) NCT05085366 Phase 3 2021 Recruiting

NCT05105048 Phase 1 2021 Recruiting

NCT04975893 Phase 2 2021 Enrolling by
invitation

NCT04232280 Phase 2 2020 Active

NCT03382405 Phase 1 2017-
2021

Completed

EBV mRNA-1189 (Moderna) NCT05164094 Phase 1 2021 Recruiting

RSV mRNA-1345 (Moderna) NCT05127434 Phase 2/3 2021 Recruiting

NCT05330975 Phase 3 2022 Recruiting

NCT04528719 Phase 1 2020 Active

hMPV, PIV3 mRNA-1653 (Moderna) NCT03392389 Phase 1 2018-
2020

Completed

NCT04144348 Phase 1b 2019 Active

Rabies CV7201 (Curevac) NCT02241135 Phase 1 2014-
2018

Completed

CV7202 (CureVac) NCT03713086 Phase 1 2018-
2021

Completed

HSV BNT163 (BioNTech) NCT05432583 Phase 1 2022 Recruiting

TB BNT164a1 & BNT164 (BioNtech) NCT05547464 Phase 1 2022 Not yet
recruiting

(Continued)
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well as ease the production to better respond to seasonal epidemics

and pandemics. Preclinical studies showed that multitargeting

mRNA-LNP vaccines elicit broad protective immunity in animal

models against multiple Influenza virus strains (118–122). Several

influenza vaccines have reached clinical trials, and Moderna

(mRNA-1010) and Pfizer (qIRV) vaccine candidates have recently

entered phase 3 of clinical trials (Table 1).

In recent years, nucleotide-modified or unmodified IVT mRNA

vaccines formulated with lipid-based vectors have demonstrated

efficacy in animal models against various infectious diseases, such as

RSV (123), rabbies (80, 124), malaria (125), HIV (126–128), Ebola

(129), Zika virus (89) and Cytomegalovirus (130). Clinical trials,

active or completed, evaluating mRNA vaccines for infectious

diseases, to the exclusion of COVID-19, are listed in Table 1. Of

note, mRNA vaccines against RSV (mRNA-1345) and CMV

(mRNA-1647), both developed by Moderna, have also entered

phase 3 clinical trials.
Interest of mRNA vaccine technology
for TB, HIV and malaria

TB, malaria and acquired immunodeficiency syndrome (AIDS),

remain among the leading causes of death by infectious diseases,

particularly in low-income countries (WHO, top 10 causes of

death). Despite considerable efforts, the development of safe,

efficient, and cost-effective vaccine easily deployable in endemic

areas of these diseases remains a global health priority. The path

opened by COVID-19 mRNA vaccines thus raises a new hope for

the fight against these infections.
Tuberculosis

TB is caused by a pulmonary bacterium, Mycobacterium

tuberculosis (M.tb). The disease classically progresses from latent

TB infection (LTBI), where the bacteria are contained by the host

immune system inside lung granulomas, to active TB disease if the

pathogen is not eliminated and escapes immune containment.

While reactivation of LTBI is the major source of TB disease

patients, some patients develop active TB disease soon after M.tb

exposure, within months or few years (131). During active TB, the

patient is symptomatic (the main symptoms are fever, cough,

weight loss, haemoptysis) and contagious. Of note, HIV infection
Frontiers in Immunology 09
is the strongest risk factor for TB disease, accounting for around

25% of all TB-related deaths (131). An antibiotic regimen against

TB exists, which classically combines four molecules for several

months, in order to target all populations of bacteria and avoid

emergence of resistance. However, poor access to diagnostic,

treatment, and healthcare support in the regions where TB is the

most prevalent favours the emergence and rapid spread of antibiotic

resistant M.tb strains, further aggravating the situation (Global

Tuberculosis Report (132), WHO).

Thus, an efficient and cost-effective vaccination program

appears as the best strategy to face this situation. Despite BCG

being the oldest licensed vaccine still in use, with high coverage

throughout the world, TB remains the second leading cause of death

by an infectious disease after COVID-19, killing around 1.6 million

people per year essentially in low and middle-income countries

(132–134).

Macrophages, dendritic cells and T cells are implicated in the

control of bacterial growth in granulomas, preventing the spread of

bacteria in blood circulation and progression to active TB (131). Of

note, HIV/AIDS, characterised by an impairment of CD4+ T cells,

is a major risk factor for progression to active TB disease.

Furthermore, the lung and spleen protection following

vaccination of mice correlates with the magnitude and quality of

multi-functional CD4 T cells expressing IFN-g, TNF-a, and IL-2

(135). While the mechanisms of natural and BCG-induced

protective immunity against mycobacteria are incompletely

elucidated, this suggest a role for cellular immunity for the

control of infection and for vaccine-induced protection against

M.tb (136). Overall, the complexity of M.tb culture and difficulty

to establish a relevant animal model for TB infection, as well as the

lack of clearly defined correlates of protection both in preclinical

animal models and in clinical trials, are still major challenges for

researchers (131).

Mycobacteria are complex microorganisms, encoding about

4000 genes, and the identification of immunodominant and

protective antigenic targets have been a major focus for the

design of effective protein subunit or nucleic acid-based vaccine

against TB, even though whole pathogen vaccines, attenuated or

inactivated, and viral vector-based vaccines are also being

investigated (137–139). Immunopeptidomics, based on mass

spectrometry identification of MHC-bound peptides from

infected cells, has been demonstrated as a useful approach for the

identification of novel antigenic peptides for vaccine development

(140). Furthermore, Immunoinformatic approaches provide useful
TABLE 1 Continued

Application Designation (Sponsor) NCT
number

Development
phase

Date Status

NCT05537038 Phase 1a 2022 Not yet
recruiting

Nipah virus mRNA-1215 (Moderna) NCT05398796 Phase 1 2022 Recruiting

Chikungunya virus mRNA-1944 (Moderna) NCT03829384 Phase 1 2019-
2021

Completed

Malaria BNT165b1 (BioNtech) NCT05581641 Phase 1 2022 Recruiting
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tools for in silico modelling of mRNA vaccines against TB,

combining epitope identification, mRNA construction and

optimisation and immune simulation to guide further in vivo

evaluation (141–143).

Interestingly, the first proof of concept of an mRNA vaccine

against TB has been reported in 2004. The authors demonstrated

that immunisation of mice with naked IVT mRNA coding for the

immunodominant antigen MPT83 (four injections at 3-weeks

intervals) induced specific humoral and cellular responses and

conferred a modest but significant protection against TB

challenge (144). Intranasal immunisation with naked mRNA

coding for Hsp65 protein also demonstrated significant protection

against M.tb in mouse model (145). More recently, a replicating

mRNA-based vaccine coding for a fusion protein comprising 4M.tb

Antigens (Rv3619, Rv2389, Rv3478, Rv1886) formulated with a

lipid nanocarrier induced cellular immune response and protection

against M.tb and M. avium challenge in mice in a heterologous

RNA-prime and protein-boost vaccination protocol (146, 147). Of

note, a phase I clinical trial evaluating two investigational RNA-

based vaccines against TB in BCG-vaccinated volunteers have been

launched by BioNTech (Table 1).
HIV

In 2021, 650 000 persons died from HIV/AIDS-related cause,

1.5 million were newly infected, while around 38.4 million people

were living with HIV (www.unaids.org). In the absence of a licensed

vaccine, the arsenal against HIV/AIDS still relies on information

and screening campaigns and antiretroviral therapies (ART). Even

though ART have been significantly improved over the years, with

stronger efficacy and less side effects than in the past, they remain

expensive and require strict observance. Thus, poor access to

diagnostic and treatment in low and middle-income countries

with high prevalence (particularly Sub-Saharan Africa) is a major

issue (148). Despite the dedication of governments, health

organisms and the scientific community, no vaccine against HIV

has been licensed to date. Indeed, in the last decades, numerous

vaccine candidates have reached phase III efficacy trials, but none of

them demonstrated sufficient efficacy (149, 150).

The proposed correlates of protection, identified in animal

models and clinical studies, are neutralizing antibodies targeting

HIV envelope (Env) glycoprotein epitopes, preventing the entry of

virions in CD4+ T cells, and antibody-dependent cellular

cytotoxicity (ADCC) (relying on Fc-mediated effector functions of

non-neutralising antibodies), to eliminate infected cells and prevent

virus reactivation from reservoir cells (151–153). However,

targeting the highly glycosylated Env glycoprotein is hampered by

the high mutation rate of the virus, resulting in high viral diversity

(pseudoviruses), while broad neutralizing B cell precursor

development is difficult to elicit and limited by immune tolerance

mechanisms such as auto- or polyreactivity (150, 152, 154). Thus,

vaccine design needs to be optimized to target a combination of

multiple conserved epitopes from Env glycoprotein, eliciting broad

neutralizing antibodies, as well as T cell epitopes on other viral

proteins, such as Gag, Pol and Nef, to elicit CD8+ T cell-mediated
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responses (148, 153, 155). mRNA technology, combined with

efficient delivery system, may hold the potential to overcome the

challenges faced in HIV vaccine development.

Recent preclinical studies of mRNA-based vaccines in mouse

and non-human primate models are indeed encouraging.

Intradermal immunization of rabbits and rhesus macaques with

mRNA-lipid nanoparticle (mRNA-LNP) vaccines encoding the

clade C transmitted/founder HIV-1 Env 1086C elicited high levels

of gp120-specific antibodies, with significant but transient

neutralising activity, as well as ADCC activity in serum (126). In

macaques, an HIV-1 Env-encoding mRNA-LNP elicited

comparable titres and functions of neutralising and non-

neutralising antibody than adjuvanted Env recombinant protein

(156). In addition, Immunisation with polymer-formulated self-

amplifying mRNA encoding mosaic Gag-Pol epitopes induced

potent specific CD8+ T cell response in mice (17). Furthermore,

an mRNA-LNP vaccine encoding Gag conserved elements induced

potent humoral and cellular responses in macaques in a prime-

boost protocol with Gag DNA vaccine (128). Interestingly, the

authors report that higher dose of mRNA vaccine increased T cell,

but not humoral response. In another study, mRNA-LNP vaccine

encoding HIV-1 Env and simian immunodeficiency virus (SIV)

Gag proteins to generate virus-like particles, induced broad

neutralising antibodies and reduced the risk of infection in rhesus

macaques immunized through a prime-boosts protocol with

autologous and mixed heterologous Env challenged with repeated

low doses of heterologous SHIV (127).

The HIV mRNA vaccine eOD-GT8 60mer (mRNA-1644),

developed by the International AIDS Vaccine Initiative (IAVI), in

collaboration with Moderna, is in phase I clinical trial to evaluate

the safety and immunogenicity in healthy adult volunteers

(Table 1). This promising candidate vaccine was designed to

target germinal centre’s naïve progenitor naive B cells to produce

broad neutralising antibodies (press release, First-in-human clinical

trial confirms novel HIV vaccine approach (iavi.org)). The National

Institute of Allergy and Infectious Diseases (NIAID) is also

evaluating the safety and immunogenicity of three HIV trimer

mRNA vaccines (BG505 MD39.3, BG505 MD39.3 gp151, and

BG505 MD39.3 gp151 CD4KO) in healthy individuals (Table 1).
Malaria

Malaria, caused by Plasmodium falciparum parasites

transmitted by female anopheline mosquitoes, is responsible for

200 million infections and 400 000 deaths per year, particularly in

young infants in endemic areas, such as sub-Saharan Africa (157).

Anti-malaria drugs, while effective to prevent and treat the

infection, are poorly accessible to populations living in endemic

areas in LMIC, and the progression of parasitic resistance to

available molecules compromises their efficacy. In this context,

the development of a cost-effective vaccine is a highly relevant

strategy to reduce the global burden of the disease.

The parasite has a complex life cycle with multiple development

stages in human and mosquitoes. The sexual cycle occurs in the

mosquito, which transmits the sporozoites through the skin.
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Sporozoites then migrate to the liver, where they invade hepatocytes

and develop into merozoites, that are released in the blood

circulation and invade erythrocytes, causing repeated cycles of

erythrocytes invasion and lysis, responsible for the fever

characteristic of malaria. Some merozoites develop into

gametocytes, which are transmitted to the mosquito during the

blood meal.

One of the first vaccination strategies investigated, consisted of

the administration of attenuated sporozoites, the infective form of

the parasite (158). However, injection of purified, radiation-

attenuated whole sporozoites (PfSPZ), despite excellent protection

in non-human primates and rodents, as well as in naïve adults when

administered intravenously (but not via subcutaneous or

intramuscular route) (159, 160), failed to efficiently protect

previously exposed adults and infants (161, 162).

The immune mechanisms underlying protection are not

completely elucidated, but the role of liver CD8+ T cells have been

demonstrated in animal models, and a role for gdT cell priming and

Fc-dependent antibody effector functions have been suggested (157,

163). Of note, the circumsporozoite protein (CSP), expressed at the

surface of sporozoites of different Plasmodium species, has been

identified as a major immunogen eliciting binding antibodies that

prevent infection of hepatocytes, leading to the development of

vaccines targeting the CSP (164, 165). Among those, the adjuvanted

subunit vaccine RTS,S/AS01 (Mosquirix™) developed by GSK,

composed of CSP repeats (R) and C-terminal T-cell epitopes (T)

recombinantly fused to HBsAg, demonstrated modest but significant

protection against P. falciparum infection in children in endemic areas

(but not in adults), and the World Health Organization (WHO) has

recommended its widespread use among children living in malaria

endemic areas (164). However, the protection wanes over time,

correlating with decreased anti-CSP antibody levels, and the vaccine

does not prevent the infection of mosquitoes by gametocytes from

infected individuals, and thus does not decrease the circulation and

transmission of the parasite (164). Of note, the next generation R21-

matrix M vaccine, composed of a fusion of CPS and HBsAg that

aggregates as virus-like particles and formulated with matrix M

adjuvant, demonstrated 77% efficacy in children aged 5-17 months

in a phase 1/2b clinical trial in Burkina Faso over 6 months after 3

doses, and a booster dose 1 year after initial vaccination allow to

maintain high protection efficacy in those children (165–167). Despite

these encouraging results, a malaria vaccine eliciting long-lasting,

high-level protection in all subgroups and which could block the

transmission in endemic areas has yet to be developed.

So far, preclinical studies on mRNA vaccines against malaria are

still scarce. A mRNA-LNP vaccine coding for the major sporozoite-

targeting antigen PfCSP demonstrated potent antibody and

cytokine responses in mice, and protected the animals in a dose-

dependent manner against P. burghei infection (168). In another

study, the authors evaluated two mRNA-LNP vaccine candidates

encoding PfCSP and Pfs25, a protein expressed by ookinetes,

essential for oocyst development (125). These vaccines thus block

different stages of the parasite cycle, i.e the liver stage (prevention of

hepatocyte invasion by sporozoites), and sexual stage (disruption of

sexual cycle and transmission by mosquitoes), respectively. Both
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vaccines were highly immunogenic following single or co-

immunisation, eliciting high, dose-dependent antibody titres and

B and T cell responses in mice. The Pfs25 mRNA-LNP elicited

potent mosquito transmission-blocking activity, while PfCPS

mRNA-LNP alone or in combination with Pfs25 mRNA-LNP

conferred significant protection against sporozoite infection

challenge (125). This study supports the evidence that multiple

stage targeting mRNA vaccine platforms may provide an effective

strategy to contribute to decrease malaria transmission. Additional

potential antigenic targets for vaccines were identified in preclinical

studies, such as the protein PfGARP, expressed on the exofacial

surface of erythrocytes infected by early-to-late-trophozoite-stage

parasites. Cohort studies on Tanzanian children and male adults

showed that detection of naturally-acquired anti-PfGARP-A

antibodies in the blood was associated with a significantly lower

risk of severe malaria and lower parasitemia (169). Anti-PfGARP

antibodies demonstrated potent parasite killing activity in vitro, and

immunisation with PfGARP-A-mRNA LNPs of Aotus monkeys

challenged with P. falciparum resulted in significantly lower

parasitemia than control monkeys (169). The Cell-Traversal

protein for Ookinetes and Sporozoites (CelTOS), a secreted

protein playing a role both in mosquito transmission and

hepatocyte invasion, has also been identified as a potent vaccine

target in preclinical settings (170). The authors demonstrated that

CelTOS-targeting mRNA vaccine can induce potent humoral and

cellular response in mice and highlighted the importance of careful

vaccine design. However, further investigations are required to state

on the protective efficacy of this vaccine platform and the roles of

humoral and cellular responses in the protection. Of note, a phase 1

clinical trial is evaluating the safety and immune response of an

mRNA-based vaccine target ing PfCSP, developed by

BioNTech (Table 1).
Conclusions

The success of mRNA vaccines against COVD-19 inspired

scientist throughout the world to develop new mRNA vaccines

against transmissible and non-transmissible diseases. Twenty-seven

mRNA vaccine candidates against infectious diseases are in clinical

trials and hundreds are currently being developed in pre-clinical

studies. The number of mRNA vaccine candidates in clinical trials is

expected to increase in the coming years. Moreover, the mRNA

vaccine technology is being improved with new discoveries and

developments at a daily basis.

Many complex diseases, particularly those that depend heavily

on T cells for protection, lack the identification of the most

protective antigens and the corresponding correlates of

protection. In recent years, immunopeptidomics has been applied

to identify antigens presented by MHC-I and MHC-II in an

unbiased way, leading to the identification of antigens for vaccine

development (140, 171). The combination of the most relevant

antigenic targets identified by immunopeptidomics with the

simplicity of the mRNA vaccine technology, allows for the
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1172691
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Matarazzo and Bettencourt 10.3389/fimmu.2023.1172691
development of vaccines encoding multiple antigens, or antigens to

prevent multiple diseases, and paves the way for a new generation of

more efficacious and effective vaccines against some of the most

dramatic infectious diseases that depend on T cells for protection,

such as malaria, TB and HIV.

The challenges faced by the mRNA vaccine technology includes

the cost of raw materials, the lack of standardization, and delivery

optimization. The high cost of raw materials and the cold-chain

requirements for mRNA vaccines since manufacture to the moment

of vaccination, will have an important impact on the vaccine cost-

effectiveness. Moreover, the mRNA purity can vary significantly

between different purification processes, which may contribute to

the lack of process standardization. Importantly, the Intellectual

Property landscape and the difficulty of access to methods and

technologies, particularly to reagents and manufacturing processes

required for vaccine formulation development, may delay the

progress of new mRNA vaccines against the deadliest hard-to-

treat infectious diseases malaria, TB and HIV.

Thus, we should expect future mRNA vaccines designed and

optimised to induce the right type of immune response against

each disease for maximal efficacy, improved stability of

formulations, as well as formulations adapted to long term

storage at room temperature, leading to a reduction and

eventual elimination of cold-chain supply, ease of distribution,

and above all, reduced cost. Of particular relevance is the difficulty

of equitable distribution of mRNA vaccines to LMICs and remote

regions. To overcome this difficulty, BioNtech have implemented

modular mRNA manufacturing facilities to produce vaccines

locally, being already installed in Rwanda (press release,

BioNTech Starts Construction of First mRNA Vaccine

Manufacturing Facility in Africa | BioNTech).

The mRNA vaccines represent a new generation of vaccines

against transmissible and non-transmissible diseases. We are

witnessing a scientific revolution, with direct consequences to
Frontiers in Immunology 12
improving global health. The success of the mRNA vaccines will

change the history of medicine.
Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work, and approved it

for publication.
Funding

This work was supported by internal funding of the Faculty of
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