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Multiple factors, including vaccine platform and prior vaccinations, influence

vaccine responses. We compared antibody responses to CoronaVac (Sinovac)

and ChAdOx1-S (AstraZeneca-Oxford) vaccination in 874 healthcare workers in

Brazil. As participants were randomised to BCG vaccination or placebo in the

preceding 0-6 months as part of the BCG vaccination to reduce the impact of

COVID-19 in healthcare workers (BRACE) trial, we also investigated the influence

of recent BCG vaccination on antibody responses to these COVID-19 vaccines.

Twenty-eight days after the second dose of each vaccine, ChAdOx1-S induced a

stronger anti-spike IgG response than CoronaVac vaccination. Recent BCG

vaccination did not impact IgG antibody responses to ChAdOx1-S or CoronaVac.
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1 Introduction

SARS-CoV-2, the causative pathogen of COVID-19, spreads

through the respiratory tract and contact, posing a significant

challenge to the healthcare system due to the potential transmission

via aerosol and droplets (1). The risk of infection is particularly high for

healthcare workers, particularly those in urgent care settings, where

infection control measures and personal protective equipment may be

insufficient (2).

To combat the COVID-19 pandemic, vaccines based on different

platforms were developed in parallel. Initially, these included

replication deficient adenovirus, mRNA and whole-inactivated virus-

based vaccines, with protein sub-unit vaccines being available later in

the pandemic. Prior to the COVID-19 pandemic, mRNA and

adenovirus-based vaccines had limited use in human and animal

models and therefore differences in immune responses to these, and

vaccines based on more established platforms (e.g. whole-inactivated,

protein subunit) are under investigation.

Due to global demand and limited supply, access to vaccines

was limited. Given the increased SARS-CoV-2 exposure in

healthcare settings, healthcare workers (along with the elderly)

were prioritized for access to COVID-19 vaccinations. In Brazil,

the predominant COVID-19 vaccines used for primary vaccination

have been ChAdOx1-S (AstraZeneca-Oxford, AZD1222),

BNT162b2 (Pfizer-BioNTech), and CoronaVac (Sinovac).

ChAdOx1-S, a replication deficient adenovirus-based vaccine, and

BNT162b2, an mRNA-based vaccine, induce both humoral and T

cell responses to the SARS-CoV-2 spike protein and receptor

binding domain (RBD) (3–5). In contrast, CoronaVac, which

contains a whole inactivated virus (CN2 strain), primarily

provokes a humoral response (6, 7). The primary series schedule

for these COVID-19 vaccines is two doses (1, 8), with different

intervals depending on the vaccine (9). All three vaccines protect

against COVID-19, however reported efficacy is variable with 91-

95% reported for BNT162b2 (10, 11), 70-81% for ChAdOx1-S (6,

10, 12) and 50-67% for CoronaVac (6, 10, 11).

Several factors influence the magnitude and persistence of

immune responses to COVID-19 vaccines including prior SARS-

CoV-2 infection, age and sex (13–16). The immunomodulatory

effects of the Bacillus Calmette-Guérin (BCG) vaccine include

altering in vitro immune responses to SARS-CoV-2 and antibody

response to unrelated vaccines, therefore BCG vaccination may also

influence immune responses to COVID-19 vaccines (2, 17–23).

This study aimed to compare ChAdOx1-S (AstraZeneca-Oxford)

and CoronaVac (Sinovac) antibody responses and evaluate the

impact of BCG vaccination on the vaccine responses.
2 Methods

2.1 Participants and sample collection

Participants were recruited as part of the ‘BRACE COVID-19-

specific’ (BCOS) sub-study of the BCG vaccination to reduce the

impact of COVID-19 in healthcare workers (BRACE) trial (24)
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(human research ethics committee approvals: Royal Children’s

Hospital (RCH) approval no. 62586;

Brazilian National Commission of Ethics in Research

(CONEP): approval no. 4.572.593). BRACE trial participants in

Brazil (recruited from BRACE trial sites in Mato Grosso do Sul, Rio

de Janeiro and Amazonas) were eligible for inclusion if: (i) they

consented to be contacted for future ethically approved projects; (ii)

had a post-vaccination serum sample taken 28 (± 2 days) after the

first or second dose of a COVID-19 vaccine.
2.2 Vaccination and randomisation

Participants received COVID-19 vaccinations through the

Brazilian healthcare system and as per guidelines from the

Brazilian Ministry of Health, no treatment was provided for

symptoms resulting from COVID-19 vaccination.

Prior to consent to this sub-study and COVID-19 vaccination,

participants had been randomised at a 1:1 ratio to receive a 0.1 ml

intradermal injection with BCG-Denmark (AJ Vaccines – Batch:

1198019D/119053A) or placebo (0.9% saline solution) as part of the

BRACE trial. Eighteen participants consented to this sub-study

received BNT162b2, and due to this low number were excluded

from statistical analyses.
2.3 Sample collection

Serum samples were collected between 19th March 2021 and

10th September 2021. Peripheral blood was collected in serum tubes

(BD Vacutainer SS II Advanced, United Kingdom, Cat #456010) at

study visits 28 (± 2) days following the first (ChAdOx1-S,

BNT162b2) or second (ChAdOx1-S, BNT162b2, CoronaVac)

COVID-19 vaccine dose. The recommended 21-day window

between the first and second dose of CoronaVac precluded

assessment of antibody responses 28 days after the first dose of

CoronaVac. Peripheral blood collected in serum tubes was

centrifuged and serum samples were stored at -80°C prior to testing.

For plasma samples, peripheral blood was collected into lithium

heparin tubes (Greiner BioOne – Austria, Cat #455084), at baseline,

3 months or 6-months after randomisation as part of the BRACE

trial. Peripheral blood was centrifuged, and plasma samples were

stored at -80°C. The participant’s most recent plasma sample

available prior to COVID-19 vaccination was used in this study.
2.4 Antibody measurement

Plasma and serum samples were tested for antibodies against the

spike receptor-binding domain of SARS-CoV-2 at Unidade de Apoio

ao Diagnóstico do COVID-19 (UNADIG-RJ) using the SARS-CoV-2

IgG (Abbott, United States of America) chemiluminescent

microparticle immunoassays (CMIA). Seroconversion was defined as

a positive anti-SARS-CoV-2 spike antibody result in the post-

vaccination sample following a negative anti-SARS-CoV-2 spike

antibody result in the pre-vaccination sample. A positive anti-SARS-
frontiersin.org
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CoV-2 spike antibody result was defined as per the manufacturer’s

defined cut-off. Researchers involved in sample processing, selection

and testing were blinded to the participants randomisation group and

were unaware of which COVID-19 vaccine they had received.
2.5 Interferon gamma release assay

Peripheral blood collected on the day of randomisation in the

BRACE trial was used for IGRA to identify Mycobacterium

tuberculosis infection. The QuantiFERON-TB Gold Plus (QFT-

Plus) assay (Qiagen, Hilden, Germany) was done as per

manufacturers instructions. Results of IGRA testing were assessed

according to the manufacturer’s criteria, using Qiagen software

version 2.71.2.
2.6 Statistical analysis

For seroconversion analysis, 850 (99.3%) participants had a pre-

vaccination plasma sample available for analysis. Differences in

proportion were determined using the z-test for independent

proportions.

For assessment of antibody concentrations, values below the

lower limit of detection/extrapolation were assigned a value of half

of the lowest detected/extrapolated value, values above the upper

limit of detection/extrapolation were assigned a value of 1.5 times

the highest detected/extrapolated value. Differences between

COVID-19 vaccines were assessed using linear regression of log-

transformed antibody data adjusted for region (Mato Grosso do

Sul/Rio de Janeiro/Amazonas), age (<40 years; 40 to 59 years; ≥60

years), sex (male/female), presence of cardiovascular disease,

diabetes, chronic respiratory disease, workplace COVID-19

direct contact at baseline (yes/no), SARS-CoV-2 PCR result at

baseline (detected/not detected/not performed). Differences

between randomisation groups were assessed using linear

regression of log-transformed antibody data. Sensitivity analysis

for differences between BCG- and placebo-vaccinated participants

was done adjusting for time between most recent COVID-19

vaccination and blood collection (continuous), age (<40 years; 40

to 59 years; ≥60 years), sex (male/female) and region (Mato Grosso

do Sul; Rio de Janeiro; Amazonas). Data analysis was done using

Stata version 17.0 (StataCorp LLC, USA)

The authors declare that the data supporting the findings of this

study are available within the paper and its supplementary

information files.
3 Results

Of participants who consented to this sub-study, 874 completed

COVID-19 vaccination courses before 9th August 2021 and provided

post-vaccination blood samples (Figure 1). Blood samples were taken

a median of 28 (IQR 27-29) days after the first (ChAdOx1-S,

BNT162b2) and 28 (IQR 27-30) days after the second COVID-19

(ChAdOx1-S, BNT162b2 or CoronaVac) vaccination. The
Frontiers in Immunology 03
demographics of participants are detailed in Supplementary

Tables 1, 2. The mean time between randomisation in the BRACE

trial and the first and second doses of SARS-CoV-2 vaccines was 80

(standard deviation, SD, 25) days and 145 (SD 26) days, respectively

(Supplementary Table 2). Only 4% of individuals in the BCG arm and

2% in the placebo arm had another vaccination between

randomisation and the first dose of a COVID-19 vaccine. For both

randomisation arms, 18% of participants received another

vaccination between randomisation and the second dose of a

COVID-19 vaccine. SARS-CoV-2 infection at the time of

randomisation (as determined by respiratory swab SARS-CoV-2

PCR test) and M. tuberculosis infection (determined by IGRA), was

similar between randomisation arms and between ChAdOx1-S and

CoronaVac recipients (Supplementary Tables 1, 2).
3.1 Level of anti-spike IgG between
COVID-19 vaccines

The concentration of anti-spike IgG antibodies induced by a

single dose of ChAdOx1-S was similar to that induced by two doses

of CoronaVac (adjusted geometric mean ratio (aGRM) 0.99, 95% CI

0.76-1.30) (Table 1). Anti-spike IgG antibody levels were more than

two times greater following two doses of ChAdOx1-S than two

doses of CoronaVac (aGMR 2.58, 95% CI 2.19-3.03).
3.2 Impact of recent BCG vaccination on
level of anti-spike IgG

Prior to receiving COVID-19 vaccinations, participants were

randomised to receive vaccination with BCG-Denmark (n=435) or

saline placebo (n=439) as part of the BRACE trial (24). Amongst

ChAdOx1-S and CoronaVac recipients, there was no difference in

the anti-spike IgG seroconversion rate or geometric mean anti-

spike IgG responses between BCG-vaccinated and placebo-

vaccinated participants (Table 2; Supplementary Table 3, 4).

Adjustment for time between the most recent COVID-19

vaccination and post-vaccination blood collection, age, sex, and

region did not impact these findings (Supplementary Table 4).
4 Discussion

4.1 Effect of COVID-19 vaccine platform

Our finding that ChAdOx1-S induced higher anti-spike IgG

levels compared to CoronaVac may be explained by the fact that

this vaccine is an attenuated virus vector, which activates a broader

range of T cells and induces a stronger cytokine production (3),

ultimately associated with a higher efficacy (13).

COVID-19 vaccines are a vital tool in protecting against the disease

and particularly severe forms. Randomised control trials (RCTs) of

ChAdOx1-S have reported an overall protective efficacy of 81% (25)

against symptomatic COVID-19, with lower protection associated with

COVID-19 caused by the variant of concerns (26, 27) Previous studies
frontiersin.org
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have shown that levels of neutralizing antibodies correlate with vaccine

efficacy (28).

Phase III RCTs of CoronaVac have reported protective efficacy

varying between 51% in Brazil (29) and 84% in Turkey (30). More

recently, a national cohort study on over 10 million persons in Chile

reported an efficacy of 65.9% (31). The difference we observed in the

anti-spike IgG responses is consistent with the observed higher

protective efficacy of ChAdOx1-S against symptomatic COVID-19

than CoronaVac, and the observed magnitude is consistent with

reported differences in neutralizing antibodies between these

vaccines (32).

Used in an emergency, CoronaVac was approved for vaccination

in healthcare workers due to direct contact with COVID-19 patients,
Frontiers in Immunology 04
leading to higher SARS-CoV-2 exposure than the general population.

In a recent cohort study of healthcare workers in Brazil, seropositivity

for anti-spike IgG was 99.8% 30 days after the second dose of

CoronaVac, and decreased to 97.9% six months after the second

doses was 97.0-100% (33). Antibody positivity as well as antibody

titre were higher in females compared to males, with this sex effect

maintained across a range of ages.

Prior SARS-CoV-2 infection is associated with stronger

responses to COVID-19 vaccines (14, 15, 34). In our study,

workplace and household exposure, as well as study region were

evenly distributed between the BCG and placebo groups but were

unbalanced between participants with samples 28 days after the

second dose of ChAdOx1-S and CoronaVac. Due to differences in
FIGURE 1

Participant flow chart. Participants in the BRACE COVID-19-Specfic vaccine (BCOS) sub-study were a subset of participants from the BRACE trial.
BRACE trial participants in Brazil who received (or were due to receive) two doses of COVID-19-specific vaccines prior to August 9th 2021 and
provided at least 1 BCOS-post-vaccination serum sample were eligible for inclusion. Participants were randomised to BCG or placebo vaccination in
the BRACE trial a mean of 80 (standard deviation 41 days) prior to their first COVID-19 vaccination. ‡266 participants were included for dose 1 and
dose 2 of ChAdOx1-S.
TABLE 1 Comparison of anti-spike IgG antibody concentration following ChAdOx1-S or CoronaVac vaccination among healthcare workers in Brazil.

ChAdOx1-S (n=592) CoronaVac (n=264) aGMR*
(95% CI)

P-value*

1st dose 2nd dose

No. of available samples 273 264 0.99
(0.76, 1.30)

0.97

Geometric mean (95% CI) 970.4
(789.6, 1192.6)

972.3
(869.4, 1087.4)

2nd dose 2nd dose

No. of available samples 585 264 2.58
(2.19, 3.03)

<0.001

Geometric mean (95% CI) 2439.3
(2225.4, 2673.9)

972.30
(869.4, 1087.4)
fro
*Adjusted for region, age, sex, presence of cardiovascular disease, diabetes, chronic respiratory disease, workplace COVID-19 direct contact at baseline, SARS-CoV-2 PCR result at baseline
95% CI, 95% confidence interval; aGMR, adjusted geometric mean ratio; Ig, immunoglobulin; No., number
ntiersin.org
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SARS-CoV-2 prevalence across the regions over time, the risk of

SARS-CoV-2 infections among participants will have varied

between regions (35, 36). Higher workplace patient- and

household-COVID-19 contact for participants who received

CoronaVac, might also have influenced our findings.
4.2 Effect of recent BCG vaccination

Due to its beneficial off-target effects in protecting against

unrelated infections (20, 37–39), BCG vaccination has been

investigated for its potential to protect against COVID-19.

Ecological studies have reported variable effects of BCG with

some studies showing that countries with BCG vaccination

programs had fewer COVID-19 cases, while others found effect of

BCG vaccination (19). RCTs of BCG vaccination to protect against

COVID-19 are ongoing, however thus far results have also been

variable (40). One such study, the Dutch BCG-Corona study, found

that BCG-Denmark vaccination did not reduce COVID-19

incidence, duration or severity in healthcare workers (2). This

study did however report a transient effect of BCG vaccination on

antibody responses to SARS-CoV-2. In the first three months after

randomisation, participants in the BCG-vaccinated group had

higher rates of seroconversion and anti-spike antibody titres

compared to the placebo group, although this effect was not

maintained at later time points (2). It remains unclear whether

this was a direct effect of BCG vaccination on humoral responses to

SARS-CoV-2 or an indirect effect such as being the result of

differences in SARS-CoV-2 clearance and viral load.

Our findings, that recent BCG vaccination did not alter IgG

responses to CoronaVac or ChAdOx1-S, are consistent with a study

that reported the lack of an increase in B cell responses to SARS-CoV-2
Frontiers in Immunology 05
in vitro in BCG-vaccinated participants compared to placebo controls

(22). Similarly, a Polish phase III RCT also found that mycobacterial

exposure (positive tuberculin skin test or those BCG-Moreau

vaccination) did not affect anti-spike IgG responses to BNT162b2

compared to the placebo (41). BCG-induced trained immunity occurs

rapidly and persists for at least 1 year following neonatal BCG

vaccination (42–45), therefore it is unlikely that the lack of an

observed effect of BCG is due to waning of its immunomodulatory

effects in the months between randomisation and COVID-19

vaccinations. Although BCG vaccination did not impact antibody

responses in this study, prior BCG vaccination may alter innate or T

cell responses to COVID-19 vaccines and may be a viable adjuvant for

novel COVID-19 vaccines (20, 37, 46, 47).

Prior mycobacterial exposure among placebo-vaccinated

participants may have reduced the observed effects of recent BCG

vaccination in our study. In animal models, exposure to environmental

mycobacteria, such asMycobacterium avium, can reduce BCG-induced

protective immunity against TB (48, 49). However, these effects have

been shown to be variable, depending on factors such as

mycobacterium species and route of exposure (50). In human trials,

stringent tuberculin testing and younger age at BCG vaccination, both

of which reduce the likelihood of prior M. tuberculosis and

environmental mycobacterial exposure, are also associated with

greater BCG efficacy (51). The effects of environmental mycobacterial

exposure on the off-target effects of BCG vaccination are unknown.

Being based in a high-tuberculosis (TB) prevalence setting, most

study participants had received prior BCG vaccination, over 95% of

which was more than 5 years prior, likely as part of routine infant

BCG vaccination programmes. Infants whose mothers had also

been BCG-vaccinated in the past have been reported to have

stronger clinical and immunological off-target effects of BCG

vaccination (44, 52, 53). BCG revaccination later in life may
TABLE 2 Comparison of anti-spike IgG antibody concentration following ChAdOx1-S or CoronaVac vaccination among healthcare workers in Brazil
by BCG randomisation group.

Placebo
(N=439)

BCG
(N=435)

GMR
(95% CI)

P-value

1st dose of ChAdOx1-S

No. of available samples 129 144 1.01
(0.67, 1.52)

0.97

Geometric mean (95% CI) 965.8
(718.9, 1297.4)

974.5
(730.1, 1300.8)

2nd dose of ChAdOx1-S

No. of available samples 292 293 0.92
(0.77, 1.11)

0.38

Geometric mean (95% CI) 2540.8
(2254.3, 2863.8)

2342.2
(2037.7, 2692.2)

2nd dose of CoronaVac

No. of available samples 138 126 1.03
(0.83, 1.30)

0.76

Geometric mean (95% CI) 956.5
(819.7, 1116.2)

989.9
(841.1, 1165.1)
fron
95% CI, 95% confidence interval; GMR, geometric mean ratio; Ig, immunoglobulin; No., number.
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provide limited additional effect (54–56). Therefore, the lack of an

observed boosting effect of recent BCG vaccination may be

attributable, at least in part, to prior mycobacterial exposure.
4.3 Limitations

The study’s limitations include that participants were not

randomised to the different COVID-19 vaccines, and there were

some differences in baseline demographics between the groups.

However, factors previously associated with antibody responses to

COVID-19 vaccines, such as sex, age and comorbidities (13–16), were

evenly distributed between the groups and we tried to account for the

impact of any differences in demographics in the analysis. As the study

was done in a high COVID-19 prevalence setting and pre-vaccination

samples were taken up to six months before the post-COVID-19

vaccination samples, seroconversion and vaccine-induced antibody

titres may have been overestimated due to COVID-19 infections

between pre and post-vaccination sample collections. This may be

due to measurement of SARS-CoV-2-induced antibody responses

directly, as well as the increased antibody responses to COVID-19

vaccine among previously SARS-CoV-2-infected participants (14, 15,

34). Other factors that can influence antibody responses to COVID-19

vaccines, including participant health, self-administration of

antipyretics, immune-stimulants and immune suppressants by

participants was not recorded and therefore their potential impact on

the effects of BCG or COVID-19 vaccine-induced antibody responses

could not be determined (57, 58). As a sub-study of an RCT in

healthcare workers, the participants included were predominantly

females under 60 years of age. As sex and age are factors that

influence vaccine responses (13–16), it is plausible that antibody

titres in response to ChAdOx1-S and CoronaVac, and the effects of

BCG may be different among different subgroups.
4.4 Conclusions

In conclusion, in healthcare workers in Brazil, vaccination with

the adenovirus-based ChAdOx1-S vaccine induced greater anti-

spike IgG responses than whole-inactivated virus CoronaVac

vaccine, and recent BCG vaccination had no effect on anti-spike

antibody vaccine responses.
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