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Objective: Although Leflunomide (LEF) is effective in treating rheumatoid arthritis

(RA), there are still a considerable number of patients who respond poorly to LEF

treatment. Till date, few LEF efficacy-predicting biomarkers have been identified.

Herein, we explored and developed a DNA methylation-based predictive model

for LEF-treated RA patient prognosis.

Methods: Two hundred forty-five RA patients were prospectively enrolled from

four participating study centers. A whole-genome DNAmethylation profiling was

conducted to identify LEF-related response signatures via comparison of 40

samples using Illumina 850k methylation arrays. Furthermore, differentially

methylated positions (DMPs) were validated in the 245 RA patients using a

targeted bisulfite sequencing assay. Lastly, prognostic models were developed,

which included clinical characteristics and DMPs scores, for the prediction of LEF

treatment response using machine learning algorithms.

Results: We recognized a seven-DMP signature consisting of cg17330251,

cg19814518, cg20124410, cg21109666, cg22572476, cg23403192, and

cg24432675, which was effective in predicting RA patient’s LEF response

status. In the five machine learning algorithms, the support vector machine

(SVM) algorithm provided the best predictive model, with the largest

discriminative ability, accuracy, and stability. Lastly, the AUC of the complex

model(the 7-DMP scores with the lymphocyte and the diagnostic age) was

higher than the simple model (the seven-DMP signature, AUC:0.74 vs 0.73 in

the test set).
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Conclusion: In conclusion, we constructed a prognostic model integrating a 7-

DMP scores with the clinical patient profile to predict responses to LEF treatment.

Our model will be able to effectively guide clinicians in determining whether a

patient is LEF treatment sensitive or not.
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1 Introduction

Rheumatoid arthritis (RA) is an antibody-mediated persistent

inflammatory autoimmune disease that is characterized by

inflammation and destruction of the synovial and bone tissues (1,

2). RA is estimated to affect ~ 1% of the global population, and can

develop at any age (3). The prevalence of RA in China ranges from

0.32% to 0.36%, while the prevalence of RA in Liaoning Province,

located in Northeast China, is 0.5%, ranking first in China (4). The

prognosis of RA is poor, with many comorbidities, requiring

lifelong treatment, causing significant economic burden to

patients, family members, and society (5). Currently, there is no

cure for RA internationally,among the optimal RA treatment

strategies recommended by the European League Against

Rheumatism (EULAR) are disease-modifying anti-rheumatic

drugs (DMARDs), such as, Methotrexate (MTX) or Leflunomide

(LEF) (6). If these drugs fail to satisfactorily treat disease when

employed as a single-agent or in combination therapies, then other

biologic DMARDs, including, TNF and interleukin-6 receptor

(TNFi and IL-6Ri) inhibitors may be implemented (6).

In our country, the utilization rate of the LEF, second only to

MTX, is 45.9% (7). Compared to MTX, LEF treatment is typically

accompanied by relatively low incidences of serious side effects and

compared to biological agents, LEF has a better cost-effectiveness As

such, LEF would usually be attempted prior to biologic-based

intervention (8), particularly in a developing country like

China.LEF is the first DMARD that demonstrated a marked

improvement in RA symptoms in the past decade (9). LEF activity

is mediated by metaboliteteriflunomide, which interacts with

nonspecific cytochrome P450 (CYP) and certain drugs inducers

that undergo CYP2C9-mediated metabolic processing (10).

Unfortunately, LEF treatment can also promote adverse events,

namely, hepatotoxicity, gastrointestinal discomfort, headache,

hypertension, peripheral neuropathy, and increased susceptibility to

infection (11). As such, identifying biomarkers predictive of LEF

responses is of significant value as a means of ensuring that patients

can be administered personalized therapeutic regimens that are both

safe and effective, thus, minimizing the risk of adverse treatment-

related toxicity. In the past, the clinical predictors the erythrocyte

sedimentation rate (ESR), C-reactive protein (CRP),Rheumatoid

factor (RF) and anticyclic citrullinated peptide antibody (ACPA)

are representative serological markers for RA prognosis (12).
02
As one of the main regulation modes in epigenetics, DNA

methylation is reversible, that is, demethylation. It can be

regulated by diet, drugs and other environmental factors, so it

can be used as a good therapeutic candidate. Several prior

investigations revealed that DNA methylation patterns serve as

biomarkers for estimation of RA patient therapeutic responses.

Glossop et al. (13) quantified DNA methylation patterns in T cells

using HumanMethylation450 BeadChips, which lead to the

identification of 21 cytosine-phosphate-guanines (CpGs) that, at

initial diagnosis, were associated with early RA patient responses

to DMARD treatment. Moreover, Nair et al. (14) conducted an

epigenome-wide association analysis (EWAS) whereby they

compared the differentially methylated positions (DMPs) of

individuals who responded well to MTX treatment and those

who did not (n=34 each). They revealed that four CpG residues

were associated with marked improvements in disease activity,

thus facilitating the development of personalized treatment for

patients at an earlier stage of disease, based on their epigenetic

profile. Whole blood DNA methylation signatures and overall

increases in DNA methylation are linked to moderate reductions

in 28-joint disease activity score (DAS28) values among MTX

non-responders (15). In addition, Plantet et al. (16) evaluated the

DNA methylation patterns among RA patients undergoing TNFi

treatment. They identified two prominent DMPs belonging to the

LRPAP1 gene. Till date, however, no studies specifically assessed

the value of DNA methylation patterns as biomarkers of LEF

therapeutic response.

Herein, to explore DNA methylation predictor and

develop a DNA methylation-based predictive model for LEF-

treated RA patient prognosis, we utilized the 850k Illumina

HumanMethylationEPIC Bead Chip as a tool for comparing

LEF nonresponders versus responders after 6 months of LEF

treatment in order to identify DMPs. Key DMPs were selected

via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses, followed by the

subsequent validation of these hub DMPs using a large-sample

LEF-treated RA patient population. Subsequently, we developed a

prognostic model capable of predicting RA patient responses to

LEF treatment. Our prognostic model can potentially assist

clinicians in making the best decision for personalized patient

therapy and pharmaceutical intervention. It can also aid in

determining RA patient prognosis.
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2 Materials and methods

2.1 Study design and patient population

To conduct this prospective investigation with an ongoing 6-

month follow-up period, 272 samples were collected from patients

diagnosed with RA undergoing LEF therapy between June 2018 and

June 2020 from four hospitals (the First Hospital of China Medical

University, Shengjing Hospital of China Medical University, First

Affiliated Hospital of Jinzhou Medical University, and Dalian

Municipal Central Hospital) located in the central, southern, and

western regions of the Liaoning Province. Of these, 21 patients were

lost to follow-up, 4 patients dropped out of treatment due to adverse

reactions, 2 patients had poor blood quality, and 245 patients were

included in the final analysis.

In the study, patients who met the following inclusion criteria

were enrolled: 1) patients were were older than 18; 2) They met the

RA diagnostic criteria proposed by the American Rheumatology

Society (ACR) and EULAR in 2010 (17). The exclusion criteria are

below: 1) was pregnant or lactating; 2) was diagnosed with serious

liver, heart, or kidney diseases or mental disorders or cancer; 3) was

diagnosed with other rheumatoid disease (e.g gout, osteoarthritis);

4) was diagnosed with other autoimmune diseases (e.g systemic

lupus erythematosus (SLE), inflammatory bowel disease, ankylosing

spondylitis, and multiple sclerosis); 5) use other DMARDs or

biologics instead of LEF alone. Finally, Prior to the LEF

treatment, baseline blood samples and clinical data were acquired

from all participants. All participants were provided with a

recommended stable LEF dosage of 20 mg/day for 6 months (18,

19). This investigation followed the Declaration of Helsinki, and

received ethical approval from the Medical Science Research

Institute of the First Affiliated Hospital, China Medical

University, with all patients providing written informed consent

(approval number: AF-SOP-07-1.0-01).

All participant demographics and clinical information were

acquired from the aforementioned four hospitals’ medical and

laboratory records, including (1) Basic information: patient’s

gender, age, and so on: (2) Behavioral factors: smoking behavior

and alcohol usage, and so on; (3) Immune and biochemical

indicators: rheumatoid factor (RF), cyclic citrulline peptide

antibody (anti-CCP), erythrocyte sedimentation rate (ESR), and

so on. Indicators were categorized, according to the standards of the

inspection equipment used by the four medical centers, and

normalized to ensure a standardized information entry. All serum

indicator values were acquired from the electronic hospital

information system of the four hospitals upon the patients’ first

blood evaluation at admission prior to LEF consumption. Following

6 months of follow-up, indicators associated with the quantity of

tender joints, quantity of swollen joints, visual analog scale(VAS),

and ESR were acquired again for the calculation of DAS28 of

RA patients.

DAS28 values were used to assess RA patient disease activity.

Following LEF treatment for 6 months, patient response status was

determined according to the current DAS28 values and

improvements in these values (DDAS28 = DAS28baseline –

DAS28current) as per EULAR criteria (20, 21). A good response
Frontiers in Immunology 03
was represented by a DAS28 improvement of > 1.2, with a final

DAS28 score ≤ 3.2, while nonresponse was defined as an

improvement in DAS28 ≤ 0.6 or 0.6 ≤ DAS28 ≤ 1.2, with a

DAS28 > 5.1 score after LEF treatment for 6 months. Patients

who were between the aforementioned criteria were classified as

moderate responders. To enhance the statistical power, patients

with a good or moderate response were combined into a group

referred to as responders for differential methylation analyses.

Among the 245 patients who underwent LEF treatment for 6

months, 96 were nonresponders, and 149 were responders, as per

the EULAR criteria.
2.2 Illumina 850k beadChip analysis

Overall, 20 responders were randomly selected from 149

responders identified above, following which 20 age- and sex-

matched nonresponders were selected for comparison purposes.

A QIAamp DNA Blood Mini Kit (QIAGEN) was employed for

DNA extraction from the collected blood samples, as per kit

directions. Genome-wide methylation profiles were then defined

using the Illumina HumanMethylationEPIC BeadChip (Illumina,

Inc., CA, USA) (850K array), which provided a coverage spanning

>850,000 CpG sites per sample throughout the genome.
2.3 Functional enrichment analysis

GO and KEGG enrichment analyses of the screened DMGs

were conducted using the R clusterProfiler package (22). P < 0.05

was the significance threshold. And, a network of protein-protein

interactions (PPI) was created using the Search Tool for the

Retrieval of Interacting Genes/Proteins (STRING) to illustrate the

correlation between notable DMG.
2.4 Replication using targeted bisulfite
sequencing assay

Pyrosequencing was carried out for the verification of essential

methylation variant variable methylation statuses to establish that

the 850K array analysis were, in fact, true methylation differences,

and not mere artifacts. The aforementioned DMPs were chosen for

validation using the Targeted Bisulfite Sequencing (MethylTarget)

conducted at the Genesky Biotechnologies Inc. (Shanghai, China).

DNA samples were quantified using the fluorometric method, and

DNA integrity was assessed via gel electrophoresis using a 1.3%

agarose gel. Briefly, DMPs were analyzed, sequenced, then

validated. Genomic DNA conversion employed bisulfite, which

converted unmethylated cytosine residues to uracil residues, prior

to Polymerase Chain Reaction (PCR) reaction, which, in turn,

amplified the target DNA sequences. Product sequencing was

then performed on an Illumina Hiseq seq (Illumina, CA, United

States). Differential methylation status was compared at each

position between responders (n=149) and nonresponders (n=96)
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using the t-test and logistic analysis, following which, methylated

CpG sites (P < 0.05) were selected for additional analyses.
2.5 Data analysis

2.5.1 850k BeadChip data analysis
Data preprocessing was done with the Chip Analysis

Methylation Pipeline ChAMP package (version 2.14.0) from the

R Studio (version 3.6.3) (23). Raw read data from IDAT files were

converted to b values, defined as the ratio of methylated to

unmethylated intensity for a given CpG residue (24). Probes were

removed if they did not pass the detection cut-off as follows: (P <

0.01), associated with known Single Nucleotide Polymorphism

(SNPs), associated with the X and Y chromosomes, or non-CpG

probes. The calculated b values ranged from b = 0 (unmethylated)

to b = 1 (fully methylated), and the beta-mixture quantile

normalization (BMIQ) was then employed to decrease bias

between the Type I and Type II probes (25). Subsequently, DMPs

were identified by comparing the responders and nonresponders

using the ChAMP package. Following normalization, a single value

decomposition (SVD) analysis was used to identify batch effects,

which were then eliminated with ComBat using the gene-wise linear

models from the SVA package. DMPs with a P < 0.05 and a |Db| >
0.1 were selected for subsequent analyses. LEF-related differentially

methylated genes (DMGs) were next identified, including, genes

associated with both hypo- and hypermethylation. A DMP-based

heatmap was constructed using the ComplexHeatmap (v1.6.0) and

ggplot2 R packages (26).

2.5.2 Prognostic CpG methylation-based model
construction and validation

To assess the clinical basic characteristics and potential risk

factors, we employed descriptive statistics. Continuous data,

analyzed via the t-test, are presented as mean (SD), whereas,

categorical data, analyzed via the c2 test, are provided as

frequencies and percentages. The main drug response

confounders, such as the age, gender, smoking, Hypertension,

Diabetes, alcohol-drinking and RF,Anti-CCP etc. were analyzed

by t-test and c2 test between responder group and non-responder

group. Two-tailed probabilities were employed, and correlations

were deemed when P values were <0.1. After that, the factors like

the age at diagnosis,LY, MONO, and anti-CCP which were

significantly different between two group would be put in the

complex model.

CpG unites with missing values in over 20% samples were

eliminated, as well as samples with missing values in over 20% of

CpG unites. Subsequently, the entire dataset was arbitrarily

separated into a training (156/245, 70%) and a test dataset (68/

245, 30%). To achieve an enhanced prediction of prognostability of

the selected CpGs bioindicators, five machine learning methods,

namely, logistic regression, random forest (RF), support vector

machine (SVM), adaboost, and naïve Bayes (NB) from the caret

R package (version 6.0-86) were employed for the prognostic model

generation for LEF response in RA patients, followed by the

application of a 10-fold cross-validation (27). Based on an
Frontiers in Immunology 04
optimized cutoff value, the sensitivity, specificity, accuracy, F1-

score, recall, and precision were obtained from the machine

learning model to assess the methylation scores’ ability to

differentiate between LEF responders and nonresponders. In the

end, we conducted a predictive model incorporating these DMPs

scores along with other clinical variables.

The Hosmer–Lemeshow test were employed for model

calibration evaluation. The model predictive precision for

individual endpoints (discriminating ability) was assessed via

AUC. The net reclassification improvement (NRI) and integrated

discrimination improvement (IDI) are two complementary

validation methods that assess the enhanced predictive ability of a

complex model compared to a simple model (28, 29). The NRI

represented the patient population who were accurately restratified

by the newly developed model, relative to the existing or standard

model. The IDI referred to the alteration in difference between the

mean estimated possibilities between the new and existing models.

By calculating the NRI and IDI values of the simple model (the

seven-DMP signature) and the complex model(the 7-DMP scores

with other clinical variables), the differentiation ability of the

models before and after the adjustment of clinical features was

compared, and the optimal model was further figured out.

CpGs (Pearson’s correlation coefficient r > 0.5) with strong

associations were eliminated, and a 10-fold cross-validation was

conducted across all models. To maintain reproducibility, in all

random sampling analyses, we adjusted the random number seed to

100 with the set.seed function prior to any random sampling.
3 Results

3.1 Cohort characteristics

The clinical criteria used for each indicator and patient

characteristics analyzed in this investigation are summarized in

Supplementary Tables S1 and S2. At baseline, responder and

nonresponder patients were between 57.54 and 58.10 years old,

respectively, with no significant differences in baseline clinical

parameters between the two groups. However, we did observe a

significant difference in the age at diagnosis, LY, MONO, and anti-

CCP between the responder and nonresponder groups (P<0.10)
3.2 Discovery epigenome-wide
association assessment

A total of 3,478 probes were excluded from the analysis during

the quality control and normalization process due to having a

detection P-value greater than 0.01. In addition, 5,703 probes with a

beadcount of less than 3 in at least 5% of the samples were removed.

A further 2,970 probes were excluded from the analysis as they were

not CpGs, and an additional 10 multi-hit probes were filtered out.

Consequently, 16,590 probes located on chromosomes X and Y, as

well as 92,002 SNP probes, were also excluded from further

analyses. Overall, 740,429 CpG sites were screened for potential

differences in methylation status between the responder and non-
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responder samples. Based on the SVD analyses, the marked

differences between the two groups were attributable to the

samples. According to the Slide or Array analyses, DMPs did not

exhibit any significant variance (Supplementary Figure S1A).

These comparisons ultimately led to the identification of 81 DMPs

(P < 0.05; |Db| > 0.1) between the responders to nonresponders, with 58
and 23 of these DMPs being hypermethylated and hypomethylated,

respectively (Figure 1A; Supplementary Figure S1B).

Next, we mapped DMP distributions on human chromosomes

usingManhattan plots, which revealed wide distribution across all non-

sex chromosomes (Supplementary Figure S1C). Global methylation

level comparison between these two patient subsets revealed that the
Frontiers in Immunology 05
mean b values of the CpG sites in the first Exon, body, Intergenic

regions (IGR), and Transcription start sites(TSS1500) regions, as well

as the overall methylation level, was significantly enhanced in

responders versus nonresponders. Conversely, the methylation levels

in the three prime untranslated region (3’-UTR), five prime

untranslated region(5’-UTR), and TSS200 regions were augmented

in the nonresponders versus responders, although the difference did

not reach significance (Figure 1B). Consistently, the majority of CpG

sites located in the first Exon, body, IGR, and TSS1500 are

hypermethylated, but in contrast, the other regions showed the

opposite trend. (Figure 1C). Moreover, the CpG sites within the

Island, N_Shelf, N_Shore, opensea, S_Shelf, S Shore were more
B

C D

A

FIGURE 1

The distribution feature of DMCpGs. (A) Volcano plot of DMCpGs. (B) Comparisons of mean b value of DMCpGs by locations of CpG sites relative to
gene structure. ns=not significant; * = P < 0.05; ** = P < 0.01; *** = P < 0.001; **** = P < 0.0001, by Wilcoxon tests. (C) Distribution of DMCpGs in
relation to the gene region features. 1st Exon, the first exon of gene; 3’UTR = 3’-untranslated region; 5’UTR = 5’-untranslated region; IGR =
intergenic region; TSS1500 = 1500nt upstream of TSS; TSS200 = 200nt upstream of TSS. (D) Distribution of DMCpGs in relation to the area related
to CpG island. Island = CpG island; N_Shelf=2 kb upstream of corresponding N Shore; N_Shore=2 kb upstream of corresponding CpG island;
opensea = the rest of the area; S_Shelf=2 kb downstream of corresponding S Shore; S Shore=2 kb downstream of corresponding CpG island.
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susceptible to hypermethylation (Figure 1D). Hence, in terms of

epigenetics, we demonstrated a distinguishable methylation profile

between responders and nonresponders, indicating that epigenetics

potentially modulates LEF response.
3.3 Functional clustering analyses of
significant DMGs

To elucidate the potential physiological roles and signaling

networks associated with the aforementioned DMGs, we conducted

GO and KEGG pathway enrichment analyses (Supplement Table S3).

Based on our analyses, the aforementioned DMGs were significantly

enriched in GO terms associated with hydrolase activity, actin

filament, muscle cell proliferation, and antigen receptor-mediated

signaling pathway, as well as KEGG pathways, such as, viral

carcinogenesis, rheumatoid arthritis, Pl3k-Akt signaling, and

MAPK signaling (Figures 2A–D). These DMGs are thus likely to

be associated with the RA-related metabolic processes. In order to

investigate the interactions among the DMGs, a PPI network was

constructed using STRING, a useful tool for evaluating the molecular

functions of proteins. We identified 30 prominent proteins and

selected six significant modules (Figure 2E).
3.4 Replication of epigenome-wide
findings using Targeted
Bisulfite Sequencing

We then performed bisulfite pyrosequencing (MethylTarget),

another approach to evaluating DNA methylation, to confirm our

earlier findings regarding the 81 DMPs. We validated seven DMPs

between the 96 nonresponders and 149 responders. As expected, all

seven DMPs exhibited consistent regulation within the samples, and

the methylation values from MethylTarget were also consistent with

the EPIC array (Supplementary Figure S2). The gene location and

biological process (identified by the GO pathway enrichment

analyses) of the seven aforementioned DMPs are summarized in

Table 1. Based on our results, two hypomethylated DMPs

(cg17330251, cg23403192) were located at the PON1 and USP16

promoters; another hypomethylated DMP (cg24432675) resided in

the gene body of ADARB2; one hypermethylated DMP (cg19814518)

was located at the UHMK1 promoter; and one hypermethylated

DMP (cg21109666) resided in the gene body of DISC1.

Unfortunately, no corresponding genes were annotated to the other

two hypermethylated DMPs (cg22572476 and cg20124410).
3.5 Prognostic models development
and validation

In light of the observed differences in DNA methylation

between the LEF responders and non-responders at 6 months

after baseline assessment, we sought to explore the predictability

of DNA methylation profiles to estimate LEF therapeutic responses.

As such, cg17330251, cg24432675, cg23403192, cg19814518,
Frontiers in Immunology 06
cg21109666, cg22572476, and cg20124410 were selected for use in

machine learning models (a binomial model, 10-fold cross-

validation) to generate a prognostic score.

We revealed that, in the training data, all model sensitivities

were between 0.79-1.00, whereas, specificities were between 0.40-

1.00. The SVM model performed well in terms of accuracy,

compared to the other machine learning models. In the Testing

data, all model sensitivities and specificities were between 0.72-0.86

and 0.36-0.60, respectively. Thus, the SVM model again showed

high precision, suggesting great strength and accuracy of the

models. Moreover, we revealed that the prognostability was

comparable between the training, testing, and the entire dataset in

all models, indicating that our results were both robust and reliable

(Figure 3; Supplementary Table S4).
3.6 Development of a prognostic classifier
based on the methylation biomarkers and
clinical factors

To better elucidate the prognostic value of the selected

bioindicators, we employed both methylation and patient clinical

profiles to construct prognostic models for LEF response

stratification. The age at diagnosis, LY, MONO, anti-CCP, were

identified as independent predictors of patient response status (P<

0.1; Supplementary Table S1). The predicted values from the DNA

methylation models, which serve as independent variables in the

subsequent model, can be referred to as “7-DMP scores”. Since the 7-

DMP scores were the strongest univariate predictors, we next

generated the SVM models using the 7-DMP scores as well as each

of the remaining significant clinical factors as complex models. All

models based on the 7-DMPs (simple model) and any of the clinical

signatures (complex model) exhibited similar predictive

performance. However, the complex model based on 7-DMP

scores, the age at diagnosis, and LY provided the most accurate

predictions, confirming that these were independent predictive

factors. The Hosmer–Lemeshow test exhibited no significant

deviation from perfect fit in simple or complex models (P >0.05),

suggesting good agreements between the estimated and actual

outcomes. In the test set, we computed the AUC of the simple

model (the seven-DMP signature) is 0.73, and the AUC of the

complex model(the 7-DMP scores with clinical factors) is 0.74. The

AUC revealed that the complex model (AUC=0.94) exhibited

enhanced diagnostability, relative to the simple model (AUC=0.91)

in the total set (Figure 4).

Based on our results of the NRI and IDI, both simple and

complex models accurately restratified the RA patient’s response to

LEF (Table 2). In summary, RA patients with reduced 7-DMPs

scores, younger age at diagnosis, and negative LY experienced worse

LEF responses, compared to their counterparts.
4 Discussion

This study employed Illumina 850k methylation arrays to assess

DNAmethylation profiles in whole blood samples from RA patients
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undergoing LEF treatment. We established a DMP-based

prognostic signature that incorporated cg17330251, cg19814518,

cg20124410, cg21109666, cg22572476, cg23403192, and

cg24432675 that were sufficient to predict RA patient response to

LEF following a 6-month treatment period. To our knowledge, this

is the first study that identified LEF response-related DNA

methylation biomarkers using Illumina 850k methylation arrays.

This investigation provides a valuable foundation for efforts to

support future personalized RA patient treatment.

Recently, LEF was recommended as a second-line DMARD

following MTX by EULAR owing to its marked enhancement in

functional disability and health-related quality of life (6). Clinical

trials involving LEF demonstrated clearly that LEF treatment
Frontiers in Immunology 07
effectively reduced the signs and symptoms of disease, as well as

radiographic progression (30, 31). However, LEF treatment

withdrawal is a common challenge due to patient intolerance of

adverse reactions, particularly upon the administration of loading

doses (32). Prevention of LEF-induced undesirable effects still

remains a challenging issue for the improvement of the clinical

outcome of LEF-treated RA patients. As we mentioned before, in

our study, DNA methylation was selected as biomarkers for predict

the drug reaction because it is reversible and can be regulated by

diet, drugs and other environmental factors, different from SNP and

other gene mutations. Furthermore, another benefit of DNA

methylation analysis is its ability to be conducted on non-invasive

samples, such as blood, making it a more convenient and less
B

C

D

E

A

FIGURE 2

The analysis of DMGs. Three major GO enrichment analysis are shown in (A) biological process, (B) molecular function, and (C) cellular component,
respectively. The right half-circle was the enriched GO terms, which were presented in different colors. The left half-circle was the gene enriched in
these terms. (D), KEGG pathways enriched by the DMGs associated with LEF response. The dot size represented the count of DMGs, and the color
depth represented the p-value. (E), The PPI network constructed with the DMGs.
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invasive prognostic method than those requiring tissue

biopsies (33).

Through analysis using an the 850k Illumina Human

MethylationEPIC Bead Chip, we identified 81 DMPs. According to

Manhattan maps, DMPs sites were widely distributed on non-sex

chromosomes. it suggests that DNA methylation alterations are not

limited to specific genomic regions or chromosomes, but rather occur

globally throughout the genome in RA patients. This implies that DNA

methylation may play a widespread role in the development and

progression of RA, and highlights the need for a comprehensive

investigation of DNA methylation patterns in this disease. We

observed that methylation levels of responders were higher in the

promoter region such as the first Exon and TSS1500 than the non-

responders. DNA methylation in promoter regions generally

suppresses transcription or serves as a marker of a silenced gene

(34). This is due to the strong binding of transcription factors or the

recruitment of transcriptional repressors (35) and its dysregulation

plays a crucial role in oncogenesis, tumor progression, and

autoimmune diseases. Therefore, CpG islands located in promoter
Frontiers in Immunology 08
regions have always been of great interest to us, which is non-dynamic

and less variant (36). Besides, methylation is more variable along the

CpG shores, CpG shelves, and open sea (37). Therefore, it is more

challenging and complicated to study methylation changes in CpG

shores, CpG shelves and open sea in disease.

Based on our functional enrichment analyses of identified DMGs,

we observed marked enrichments in GO terms, namely, hydrolase

activity, actin filament, muscle cell proliferation, and the antigen

receptor-mediated axis, all of which are closely related to RA

progression (38–40). Based on the KEGG pathway analyses of these

DMGs, the PI3K-Akt network was associated with key cellular

functions, namely, survival, autophagy, differentiation, proliferation,

and angiogenesis, and is a strong modulator of RA development and

severity (41). Multiple reports suggested that MAPK signaling proteins

control cellular responses to stressors and mitogenic stimuli, and that

proinflammatory cytokines activate MAPK signaling in human

fibroblast-like synoviocytes (FLS) in RA patients (42, 43). MAPK is

therefore a critical modulator of RA progression, as well as a promising

target for therapeutic intervention.
TABLE 1 the location and biological process of the validated methylated CpG sites.

CpG ID Chromosome Position Gene CpG Location Type Biological process P.Value

cg17330251 7 94953956 PON1 TSS200-Island Hypo lipoxygenase pathway 0.030

cg24432675 10 1505472 ADARB2 Body-N_shore Hypo base conversion or substitution editing 0.006

cg23403192 21 30396327 USP16 TSS1500-N_Shore Hypo positive regulation of cellular amide metabolic
process

0.039

cg19814518 1 162467080 UHMK1 TSS1500-N_Shore Hyper positive regulation of cellular amide metabolic
process

0.002

cg21109666 1 232007841 DISC1 Body-opensea Hyper cerebral cortex radially oriented cell migration 0.005

cg22572476 6 28601324 IGR-N_Shore Hyper No found 0.002

cg20124410 13 107333224 IGR-opensea Hyper No found 0.008
fro
B

A

FIGURE 3

Model evaluation (F1-score and accuracy) results based on the seven DMPs across five machine learning. (A) F1-score; (B) Accuracy. RF, random
forest; SVM, support vector machine; NB, naïve Bayes.
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RA is generally marked with enhanced heterogeneity in patient

prognosis, joint damage, and therapeutic response. For a majority of

these factors, the mechanistic causality is yet undertermined (44).

Therefore, currently, employing highthroughput technologies to

develop computational methods to process patient -omic

information to identify new and and precise conclusions is ever

more important (45). For example, implementing machine learning

algorithms in high-dimensional data analysis is a well-established

approach to enhancing patient classification (46–48) or in

predicting disease activity (49) in RA. Herein, we employed five

machine learning approaches to analyze DNA methylation

patterns, along with patient clinical information, to fine-tune the

estimation of previously available stratifiers in an independent

testing dataset.

The 81 DMPs were chosen for validation using the

pyrosequencing, which accurately detected differential CpG sites

compared to the 850k methylation array. Our study explored

suitable CpG biomarkers for RA response to LEF by both 850k

DNA methylation microarray and a targeted bisulfite sequencing

assay. After that, the 7 DMPs were identified to be predictors for RA
Frontiers in Immunology 09
response to LEF by developing prognostic models through several

machine learning algorithms. Intriguingly, five of the seven DMPs

were located at promoter sites or gene bodies of the annotated

genes. Altered DNAmethylation of genes, such as, PON1, ADARB2,

USP16, UHMK1, and DISC1, was previously reported to be related

to cancer or autoimmune diseases (Figure 5).

We identified hypomethylated cg17330251 located at the PON1

promoter, and using GO analysis, we revealed that PON1 was

involved in the biological process of lipoxygenase pathway, which

is a significant differentially modulated pathway in the GO

categories. The lipoxygenase pathway may modulate eicosanoids

generation, which, in turn, may impact cancer development,

progression, and immune response (50). Additionally, the

activation of the cyclooxygenase and lipoxygenase networks of

arachidonic acid is speculated to contribute to rheumatic disease

development (51). Therefore, we assumed that hypomethylated

PON1 promoters resulted in the high PON1 mRNA expression,

which, in turn enhanced the RA patient response to LEF treatment.

A recent study suggested that ADARB2 harbors the genetic MTX

response variants, and demonstrated enhanced DNA methylation

following MTX treatment in RA patients, compared to baseline

(52). Similarly , the ADARB2 gene body is extremely

hypomethylated in HCC tumor, relative to adjacent tissues (53).

This investigation suggested that the hypomethylated cg24432675

sites located at the ADARB2 body may result in worse prognosis of

LEF-treated RA patients. GO categories in both USP16 and

UHMK1 were primarily related to the positive regulation of the

cellular amide metabolic process, which may facilitate the metabolic

regulation of the T cell response in RA (54). USP16 is a critical

deubiquitinase (DUB) for chromosomal segregation during mitosis

(55). USP16 also functions as a modulator of mature T cell

activation, and may, therefore, serve as a new therapeutic target

for T cell–mediated autoimmune disease treatment (56). In

addition, UHMK1 upregulation significantly promotes gastric

cancer growth and metastasis possibly via metabolic networks

(57). In contrast, impaired metabolism heavily modulates the

origin and progression of autoimmune disease (58). We boldly

speculated that the USP16 and UHMK1 may influence LEF

response in RA patients via the metabolic network. DISC1, which
BA

FIGURE 4

The ROC plots of models. (A) simple model (B) complex model.
TABLE 2 Performance and internal validation of LEF nomogram.

Simple model Complex model

Hosmer-Lemeshow test

c² 1.97 1.99

P 0.85 0.86

Accuracy 0.875 0.9062

F1-score 0.9028 0.9231

Recall 0.9489 0.9197

Precision 0.8609 0.9265

AUC 0.91 0.94

NRI ref. 0.09

IDI ref. 0.09
AUC, area under the receiver operating characteristic curve; NRI, net reclassification index;
IDI, integrated discrimination improvement; ref., reference level.
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encodes a scaffold protein, promotes hemoglobin synthesis in the

peripheral blood (59). Several studies assessed the DISC1 contents

in PBMCs of BD patients. Based on their results, the DISC1

expression was correlated with an enhanced bipolar disorder

(BD) risk, which may be due to DNA methylation, and it may be

associated with BD neurobiology (60). In terms of the relevant

DMPs in CD4 memory T cells, no studies till date, examined

associations between their methylation status and RA patient

responses to LEF treatment. Thus, further functional studies are

warranted to validate these 7 DMPs role in modulating RA patients’

response to LEF.

In light of the above findings, we specifically constructed a

biomarker signature, based on these seven candidates CpG sites,

identified by the SVM model, We demonstrated that this signature

was able to readily stratify patients into low- and high-risk response

groups, with a great degree of accuracy (AUC=0.91). Furthermore,

when the clinical data, such as, LY and age at diagnosis were

included in this model, its predictive accuracy was further enhanced

(AUC=0.94). Hence, we demonstrated that the simplified models

with 7-DMPs was preferable since there was no significant

improvement in NRI, relative to the complex model. Moreover,

there was benefit owing to the use of less independent variables,

which can reduce the burden on both doctors and patients, and

minimize the overwhelming cost of medical diagnosis. However, in

other cases of clinical usage, a medical doctor can opt for the

complex model to minimize false positives, and gain

accurate prognosis.

Our findings highlighted the convenience of synergistically

employing both clinical and basic research information to obtain

a complete and robust patient prognosis and therapeutic evaluation.

In this study, the use of a prospective design in this study may have
Frontiers in Immunology 10
enabled the researchers to carefully screen and recruit participants,

as well as gather data using standardized methods, thereby

minimizing the likelihood of bias and confounding factors. No

any other study had explored the DNA methylation as predictors

for LEF-taking of RA patients, our conclusion highlights the

potential of early treatment bioindicator monitoring in RA, and it

raises the essential questions revolving prognosis of LEF responses.

Assessing the efficiency of suitable stratification methods in the

relevant context is crucial, as it can aid in predicting patient

outcomes and improving therapeutic decision-making.

This study also had certain limitations. First, although our

results from the 850k BeadChip array and targeted Bisulfite

Sequencing Assay may be more representative and meaningful for

future validation studies, futher experiments in vitro and in vivo

should be performed to confirm and expand upon the

aforementioned findings. Second, the short time of cohort

analysis and the limited number of patients with DNA

methylation data. Adequate follow-up time and multi-omics data

in future studies would be valuable in further elucidating the

prognostic significance of LEF response in RA patients. Third,

although our samples were selected from four different hospital,

all the four participating study centers were Third Class A hospical

which may limit the generalizability of the findings to other

populations or settings. The applicability of the identified DNA

methylation profiles may be limited to the specific sample of

patients enrolled, and replication of the findings in an

independent sample is necessary to confirm their generalizability.

In the whole, the future work includes, on the one hand,

conducting prospective studies in multiple clinical centers at

different levels hospitals to perform prospective validation of our

predictive model. On the other hand, conducting functional
FIGURE 5

The mechanism figure of the main findings.
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identification in vivo experiments at the cellular and animal models

to determine the molecular mechanism underlying the results of

this study
5 Conclusion

In summary, herein, we established a predictive prognosis

model (the 7-DMP scores with the lymphocyte and the diagnostic

age) to estimate RA patient LEF responses, and help to benefit RA

patients’ LEF drug choice and nonresponders’ recognition. Our

model showed much promise in guiding personalized

patient treatment.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: PRJNA946946 (SRA) and

GSE228104 (GEO).
Ethics statement

This investigation followed the Declaration of Helsinki, and

received ethical approval from the Medical Science Research

Institute of the First Affiliated Hospital, China Medical

University, with all patients providing written informed consent

(approval number: AF-SOP-07-1.0-01). The studies were

conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study.
Author contributions

LF and YC conceived of the study. The data analysis was

completed by YC, QW, HL, LJ, XF, BD, MC, FX, TW, BB and

ZF, JL, YY, RL, JZ, XJ and LF helped to interpret the findings. The

manuscript was written by LF and YC and content expertise was

provided by all authors. All authors contributed to the article and

approved the submitted version.
Frontiers in Immunology 11
Funding

This work was supported by the Program of the National

Natural Science Foundation of China (82173604).
Acknowledgments

We thank Dr. Jianming Zeng (University of Macau) and all the

members of his bioinformatics team, biotrainee, for generously

sharing their experience and codes. We are grateful to all of the

patients who participated in this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1173187/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

(A) SVD plot of batch effects. (B) Heatmaps showing the top 81 CpGs from

responders versus nonresponders to LEF. (C) Manhattan plots showing the

−log10-transformed P values for CpG sites in the DNA methylation profiling
for response to LEF.

SUPPLEMENTARY FIGURE 2

The relationship of the methylation values between from MethylTarget and
the EPIC array.
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