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Adaptive immunity to respiratory pathogens
Adult humans inhale ~11,000 liters of air harboring irritants and harmful airborne

pathogens daily. Thus, the lungs forming a direct interface between the circulation and

external environment play a crucial role in eliminating or containing these pathogens while

maintaining efficient gas exchange and host survival. This is accomplished through

collaboration between innate and adaptive immune systems in the lung. Tissue resident

subsets of the adaptive arm include CD4+ and CD8+ TRM cells (1), and BRM cells (2, 3) that

are integral to immunity against respiratory pathogens.

The SARS-CoV-2 pandemic has accelerated respiratory immunology and vaccine

research. Vaccines have continued to remain effective against severe disease caused by

continuously emerging variants, pointing to the crucial roles played by T cells (4). Sieber at

al. here strengthen the evidence for this, by showing that while SARS-CoV2 infection with the

ancestral strain (D614G isolate) in children induced a robust and lasting neutralizing antibody

response (for upto 12months post infection) to the infecting strain, the ability of these D614G-

neutralizing antibodies to neutralize the omicron isolate was significantly reduced. Instead it

was predominantly the CD4+ followed by the CD8+ T cells induced by the ancestral D614

isolate that maintain broad reactivity to the omicron variant. Natural infection-induced

protection seemed to be longlasting and broadly crossprotective primarily via T lymphocytes.

It is tempting to speculate that the severity of inflammatory milieu created in a natural

infection plays a critical role in inducing such robust memory recall infections. Consistent with

this, and extending this concept to B cells, Graninger et al. demonstrate that adult individuals

that were hospitalized for severe natural infection with SARS-Co-V2 had more robust and

broadly cross-neutralizing antibodies to the ancestral D614G isolate, the beta and delta

variants, when compared to patients that were not hospitalized for their SARS-Co-V2

infection. It is likely that severe natural infection can remodel host immune landscape to

bolster cross-reactive protection. It is well known that while vaccines elicit immune responses

against primarily the epitopes in the vaccine (spike protein for most COVID-19 vaccines),

natural infection elicits responses against many viral epitopes; thus increasing the breadth of

the response. T cells target internal viral epitopes that are less prone to mutation and are thus

key to widely discussed cross-protection against mutating strains (4). These, T cell responses
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are more strongly elicited by natural infection because of the long-

lived antigen presentation induced by live infection alongwith the host

of supporting innate responses (5, 6). Lung adaptive immunity also

cannot exert its protective effects without help from local innate

immune and stromal cells. T cell immunity needs antigen

presentation by monocytes (7) and epithelial cells (8) for

establishing optimal lung residency while requiring help from

epithelial (9) and fibroblasts (10) to recruit antimicrobial effectors.

Further, stromal cells express and secrete factors to maintain the

tertiary lymphoid architectures within the lungs (11, 12). Nevertheless,

both studies reported herein consistently show that vaccination of

previously uninfected individuals induced antibodies with higher

neutralizing capacity to the ancestral isolate and the newer variants

compared to unvaccinated individuals. Moreover, protection from

vaccines comes without the lung tissue pathology caused by live

infection that can sometimes lead to hospitalization and death.

Keuning et al. here show that saliva-based antibody assays can

measure SARS-CoV-2 humoral immunity with high confidence

without the need for invasive blood sampling; a finding that can

simplify longitudinal analysis of antibody levels in human cohorts and

allow identification of vulnerable populations.

While the pandemic has provided a rare window into rapid

advancement of directly translational immunological findings, it

revealed several gaps in our knowledge about immunity to

respiratory infections and the design of ideal vaccines.
Inducing effective vaccine
derived protection

The new generation of mRNA vaccines induce strong protection

against rapidly mutating virus compared to conventional vaccines.

Graninger et al. find that healthy individuals vaccinated with two doses

of BNT162b2 consistently showed better neutralizing antibody titers

when compared to the patients that were naturally infected with SARS-

Co-V2 but did not need hospitalization. A mechanism could be that

liposomes and the RNA molecules strongly adjuvant mRNA vaccines

and present antigen for prolonged periods of time compared to

conventional protein based vaccines (13, 14). mRNA vaccines also

induce strong T cell responses [which may include TFH cells known to

provide better help to B cells (6)] and hence have long been recognized

as essential for “universal vaccines” in the influenza field (5). Intranasal

vaccines that induce local immunity in the respiratory tract, have now

garnered more attention as key to bolstering frontline immunity early

against respiratory infections including SARS-CoV-2 (15, 16). In this

issue, Hassert and Harty, and Hirai and Yoshioka comprehensively

review our current state of knowledge on CD4+ and CD8+ T cells

protection against respiratory pathogens and provide perspectives on

exploiting their cross-reactivity in rational vaccine design.
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Trade-off between protection
vs pathology

While able to provide robust protection, lung T cell responses

can perturb the delicate balance between protective immunity vs

tissue damage in a sensitive vital organ like the lung. This, again

leads us to the question – are highly potent lung localized responses

more of a detriment to protection/recovery from infection? Hirai

and Yoshioka here comprehensively review our knowledge

regarding this trade-off.
Disparities in vaccine efficacy and
infection induced hospitalizations/
death in the aged

Lower respiratory tract infections (LRTI) lead to the majority of

hospitalizations in people over the age of 65 (17). Naive T and B cell

responses in the aged wane and they predominantly depend on

previously established memory to respond to new infections and

vaccines. Thus, it is essential to understand how memory

established years ago can contribute to protection, while also

studying other causes that lead to poor immunity in the aged. In

this issue, Torrance and Haynes review how aging and senescence

in the innate and adaptive immune compartments of the lungs

(and their dysregulated intercellular crosstalk) increases acute and

chronic susceptibility of the aged to respiratory diseases, and discuss

the use of senolytics in improving the aged immune response.
Boosting waning immune responses
vs inducing original antigenic sin

As real-world questions about booster vaccines arise, it also

rekindles questions about “original antigenic sin” – the loss of our

immune system’s ability to respond to new variants because of

existing immunity to immunodominant epitopes (18). Work by

Sieber at al. published in this issue, may however contradict this

notion of OAS and strengthen current evidence in the COVID-19

field by showing that immunization of ancestral SARS-CoV2

recovered children with BNT162b2 or Ad26.COV2-S vaccines

boosted broadly neutralizing abilities of serum antibodies beyond

the original antigenic strain which in this case was the omicron

variant. Nevertheless, more studies testing the veracity and the

conditions in which OAS become relevant and understanding of the

effects of repeated vaccination not only on B- and T- cell responses,

but also on the lymphocyte niche warrants more investigation.
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