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Background: The primary strategy for reducing the incidence of COVID-19 is

SARS-CoV-2 vaccination. Few studies have explored T cell subset differentiation

and gene expressions induced by SARS-CoV-2 vaccines. Our study aimed to

analyze T cell dynamics and transcriptome gene expression after inoculation

with an inactivated SARS-CoV-2 vaccine by using single-cell sequencing.

Methods: Single-cell sequencing was performed after peripheral blood

mononuclear cells were extracted from three participants at four time points

during the inactivated SARS-CoV-2 vaccination process. After library

preparation, raw read data analysis, quality control, dimension reduction and

clustering, single-cell T cell receptor (TCR) sequencing, TCR V(D)J sequencing,

cell differentiation trajectory inference, differentially expressed genes, and

pathway enrichment were analyzed to explore the characteristics and

mechanisms of postvaccination immunodynamics.

Results: Inactivated SARS-CoV-2 vaccination promoted T cell proliferation, TCR

clone amplification, and TCR diversity. The proliferation and differentiation of

CD8+ mucosal-associated invariant T (MAIT) cells were significantly upregulated,

as were KLRD1 gene expression and the two pathways of nuclear-transcribed

mRNA catabolic process, nonsense-mediated decay, and translational initiation.

Conclusion: Upregulation of CD8+ MAIT cell differentiation and KLRD1

expression after inactivated SARS-CoV-2 vaccination was demonstrated by

single-cell sequencing. We conclude that the inactivated SARS-CoV-2 vaccine

elicits adaptive T cell immunity to enhance early immunity and rapid response to

the targeted virus.

KEYWORDS

CD8+ MAIT cell differentiation, KLRD1 gene, single-cell sequencing, inactivated SARS-
CoV-2 vaccine, COVID-19
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Background

Coronavirus disease 2019 (COVID-19) has attracted global

attention since its emergence in December 2019 in Wuhan, China

(1–3) due to its high transmissibility and rapidly surging case

numbers (4, 5). On 30 January 2020, by which time severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) had infected

nearly 10,000 people and had caused over 200 deaths, the World

Health Organization (WHO) declared the COVID-19 outbreak a

public health emergency of international concern (6, 7). Soon

afterward, on 11 March 2020, the WHO upgraded its

classification of the COVID-19 outbreak to a global pandemic (8).

The primary strategy for reducing the incidence of COVID-19

is SARS-CoV-2 vaccination. Ongoing research on SARS-CoV-2

vaccine mechanisms of action is comprised primarily of qualitative

and quantitative studies of antibody and cytokine responses (9–13).

Only a few studies have explored T cell subset differentiation and

gene expression. Single-cell sequencing is a sensitive method for in-

depth analysis of the cellular and genetic mechanisms of vaccine

response. Single-cell sequencing has identified an antigen-specific

cellular basis of BNT 162b2 mRNA vaccine-induced immunity (14)

and cell type-specific interferon responses to an Ad5-nCoV

adenovirus vaccine that enhanced cellular immunity (15).

However, single-cell sequencing has rarely been used to explore

the mechanism of inactivated SARS-CoV-2 vaccines. In this study,

single-cell sequencing was used to analyze the dynamics of T cell-

mediated immunity and transcriptome gene expression for 3

months in three healthy Chinese adults who received three doses

of inactivated SARS-CoV-2 vaccine.
Methods

Participants

Healthy adult volunteers were recruited on 8-14 January 2021.

Inclusion criteria were an age of 18–59 years and good health

without underlying diseases. Exclusion criteria were age younger

than 18 years or older than 60 years, underlying diseases, serious

adverse reactions during vaccination, illnesses requiring

hospitalization, pregnancy, a history of miscarriage, or withdrawal

from the study for any reason during follow-up. This study was

approved by the Research Ethics Committee of the Third Affiliated

Hospital of Shenzhen University and written informed consent was

obtained before enrollment (The EC approval number: 2021-

LHQRMYY-KYLL-033).
Sample collection and preparation

A total of 1 mL blood samples were collected from each

participant at four time points: immediately before the first

SARS-CoV-2 vaccination dose, 14 and 90 days after the second

dose, and 90 days after the third dose (V0, V1, V2, and V3,

respectively). Peripheral blood mononuclear cells (PBMCs) were
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extracted by density gradient centrifugation. The whole blood

sample was diluted with phosphate-buffered saline (PBS, Solarbio,

Beijing, China) at a ratio of 1:1. The diluted sample was added to a

tube with 2/3 volume of Ficoll-Pague PLUS lymphocyte separation

medium (GE Healthcare, Sweden). Cells were divided into three

layers because of different sizes and densities after centrifugation at

400g for 35 min. The supernatant was removed, and the

intermediate cell suspension layer was transferred into a 15 ml

centrifuge tube, supplemented with PBS, and centrifuged at 300g for

7 min. The supernatant was again discarded, and the pellet was

washed twice and resuspended in PBS to obtain PBMCs. PBMCs

were extracted and frozen at -80°C. PMBC concentrations and

activities were measured before the study began. PBMCs were taken

from the -80°C freezer and thawed. The cell mixture sample was

stained with 0.4% Trypan blue solution (Sigma, UK), and viable

cells were counted under a microscope (ECLIPSE Ts2, Nikon,

Japan). When the final concentration was 2 × 105 cells/mL and

cell viability exceeded 85%, subsequent processing was performed.
Library preparation and single-cell T cell
receptor sequencing

Cell suspensions (2×105 cells/ml, 100µl) were loaded into

microfluidic devices (Matrix1.0.1) and the separation of single

cells was completed according to the principle of Poisson

distribution. scTCR-seq libraries were constructed following the

protocol of GEXSCOPE Single Cell Immuno-TCR Kit

(Biotechnologies). Specifically, poly(A) tails and TCR regions of

mRNA were captured by magnetic beads with molecular markers.

Cells and mRNA were labeled after the cells were lysed. The

magnetic beads in the chip were collected, and mRNAs were

reverse-transcribed into complementary DNA (cDNA) and

amplified. After local cDNAs were fragmented and spliced,

transcriptome sequencing libraries suitable for the Illumina

sequencing platform were constructed. The remaining cDNA was

enriched to the immune receptor (TCR), and TCR sequencing

libraries suitable for the Illumina sequencing platform were

constructed by PCR amplification of the enriched products.

Finally, sequencing of the libraries was performed on Illumina

Nova 6000, with a pair-end length of 150 bp.
TCR V(D)J sequencing and analysis

The Cell Ranger (v4.0.0) vdj (variable, diversity, joining region)

pipeline was used to analyze TCR clonotype, with Genome

Reference Consortium Human Genome Build 38(GRCh38) as

reference. After the analysis, a TCR diversity metric of clonotype

frequency and barcode information was acquired. For TCR, only

cells with one productive TCR a-chain (TRA) and one productive

TCR b-chain (TRB) were retained for subsequent analysis. Each

unique TRA(s)-TRB(s) pair was defined as a clonotype. If one

clonotype was present in at least two cells, cells harboring this

clonotype were considered as clonal and the number of cells with
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such pairs indicated the degree of clonality of the clonotype (16).

Clonotype diversity was calculated with Chao1.
Primary analysis of raw read data

Using an internal pipeline (a data conversion process), raw

reads from scRNA-seq were converted into gene expression

matrices. Cell barcodes and unique molecular identifiers (UMI)

were extracted by first removing low-quality data of raw reads with

FastQC v0.11.4 and fastp (17), and then trimming poly-A tails and

adapter sequences with Cutadapt (18). UMI and gene counts of

each cell were then acquired with featureCounts v1.6.2 (19) after the

reads were mapped to the reference genome GRCh38 by using

STAR v2.5.3a (20). Expression matrix files were thus generated.
Quality control, dimension-reduction,
and clustering

During the quality control process, the gene expression matrix

was filtered after excluding the following cells: cells with gene count

top 2% or < 200, cells with top 2% UMI count, cells with 50%

mitochondrial content, and cells in which genes were expressed in < 5

cells. After quality control, dimension reduction and clustering were

performed by using Seurat v3.1.2 (21). All gene expressions were then

normalized and scaled with NormalizeData and ScaleData functions,

and the top 2,000 variable genes were selected for principal

component analysis with FindVariableFeatures. Cells were

separated into multiple clusters according to the top 20 principle

components by using FindClusters. Harmony (22) was used to

remove the batch effect between samples. Finally, two-dimensional

visualization of cells was achieved by using uniform manifold

approximation and projection (UMAP).
Inference of cell differentiation trajectories

Cell differentiation trajectories were reconstructed by Monocle2

v2.22.0. Cell spatiotemporal differentiation sequencing was performed

by evaluating highly variable genes. FindVariableFeatures and

dimensional reduction were performed by DDRTree. Finally, the

trajectories were visualized by using the plot_cell_trajectory function.
Differentially expressed gene analysis

The genes expressed in > 10% of the cells in a cluster and with

an average log(fold change) value > 0.25 were selected and identified

as DEGs by using the Seurat FindMarkers function based on the

Wilcox likelihood-ratio test with default parameters. The cell type

annotation of each cluster was displayed with dot plots/violin plots

by using Seurat DotPlot/Vlnplot, according to the expression of

canonical markers found in the DEGs and knowledge from the

literature. Cells expressing markers of different cell types were
Frontiers in Immunology 03
identified as doublets and removed during subsequent

quality control.
Pathway enrichment analysis

Pathway enrichment analysis was performed by using Gene

Ontology (GO) analysis together with the clusterProfiler R package

(23), aiming to investigate the functions of DEGs. Molecular

function, biological process, and cellular component categories in

GO gene sets were used as references. Protein-protein interactions

of DEGs in each cluster were predicted according to the interactions

between the known genes and the relevant GO terms in StringDB

v1.22.0. Pathways with p_adj < 0.05 were considered

significantly enriched.
Statistical analysis

Statistical analyses and visualization were performed with the R

package (R Foundation for Statistical Computing, Vienna, Austria).

Data were presented as mean ± standard deviation. Comparisons

between the two groups were analyzed using a two-sample Student’s

t-test. P <0.05 was considered statistically significant.
Results

Participants

Three subjects were recruited, including one man and two

women, with an average age of 33.00 ± 13.08 years and an

average body mass index of 20.13 ± 2.40 kg/m2. All subjects

received three doses of inactivated SARS-CoV-2 vaccine, with a

4-week interval between the first and second dose and a 32-week

interval between the second and third dose. None of the subjects

experienced serious adverse reactions.
PBMC concentration and activity

As shown in Table 1, the final PBMC concentrations were >

2×105 cells/mL at all time points, and cell viability exceeded 85%.

All PBMCs were qualified; thus subsequent procedures

were processed.
Cell type identification

A total of 130,082 PBMCs were obtained from the 12 blood

samples taken from the three subjects at the four time points. After

clustering, the cells were classified into six cell types, including B

cells (corresponding B cell genes were MS4A1, CD79A, CD79B,

JCHAIN, MZB1, IGHG1, and IGHA1), T cells (CD2, CD3D, TRAC,

TRBC2, KLRD1, and NKG7), NK cells (KLRD1, KLRF1, NKG7,
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NCR1, XCL1, and CD3D), monocytes (CD14, FCN1, VCAN,

FCGR3A, and IFITM3), conventional dendritic cells (cDCs)

(CD1C, FCER1A, XCR1, and CLEC10A), and plasmacytoid

dendritic cells (pDCs) (IL3RA, CLEC4C, and LILRB4), as shown

in Table 2 and Figure 1. The numbers of NK and especially T cells

increased significantly after vaccination. However, no significant

expansions of B cells, monocytes, cDCs, or pDCs were observed.

Furthermore, the numbers of these cells at the V3 time point had

decreased from V0 baseline values.
Frontiers in Immunology 04
Subdivision of T cell subsets

A total of 61,599 T cells were classified into 8 T cell subsets:

naïve T cells, CD4+ effector T cells, CD8+ effector T cells, CD8+

mucosal-associated invariant T (CD8+ MAIT) cells, helper T cells,

regulatory T cells (Treg), Gamma Delta T cells (GDT cells), and

proliferating T cells, as shown in Table 3 and Figure 2.
Dimension reduction analysis of TCR-
amplified clonotypes

After dimension reduction analysis, TCR clonotypes were

classified into large, medium, and single groups according to the

frequency of amplified clonotypes. Large, medium, and single

clonotype frequencies were defined as >10, >1 and ≤10, and 1,

respectively. The results are shown in Figure 3. In Figure 3A, red

and gray dots indicate T cells with or without clonotype expansion,

respectively. Figure 3B shows the overall dynamic proportion of

TCR clonotype amplification at different time points. Figure 3C

shows the proportion of TCR clonotype large, medium, and single

frequencies at different time points. Figure 3D shows the TCR

clonotype amplification of different T cell subsets at different time

points. Figure 3E illustrates the TCR diversity analysis results. T cell

subsets with significant TCR clonotype amplification were CD4+

effector T cells, CD8+ effector T cells, and CD8+ MAIT cells. The

proportion of large clone amplification in these three T cell subsets

was higher after inoculation. As shown in Figure 3E, TCR diversity

was higher at V2 and V3 than before inoculation (although P

>0.05), with the highest value at V3, suggesting that TCR diversity

increased after inactivated SARS-CoV-2 vaccination.
TABLE 2 Quantities of six cell types obtained by clustering from 130,082 cells of three individuals at different time points after SARS-CoV-2 vaccine
inoculation.

B cells T cells NK cells Monocytes cDCs pDCs

S1_V0 791 4837 296 2061 47 44

S2_V0 1196 1183 1272 5298 443 97

S3_V0 642 1034 606 2975 143 69

S1_V1 575 5483 1498 2775 115 76

S2_V1 650 1254 1316 5382 596 231

S3_V1 864 2875 1578 4962 203 230

S1_V2 1111 11036 2033 2167 156 99

S2_V2 725 5711 925 1787 195 65

S3_V2 1396 11292 1846 2069 136 73

S1_V3 576 4976 915 2522 161 71

S2_V3 785 6472 2045 3182 199 61

S3_V3 715 6838 723 3093 173 56
frontie
TABLE 1 PMBC concentrations and activities of each subject at each
time point.

Each study time point of
each subject

Cell concentration
(cells/mL)

Cell activity
(%)

S1_V0 1.55×106 90.41

S1_V1 1.75×106 94.60

S1_V2 5.51×105 95.50

S1_V3 1.03×106 90.40

S2_V0 1.11×106 90.56

S2_V1 9.48×105 85.87

S2_V2 1.20×106 93.91

S2_V3 1.47×106 96.40

S3_V0 1.62×106 91.11

S3_V1 5.87×105 94.79

S3_V2 1.63×106 93.94

S3_V3 1.14×106 96.10
S1, S2, and S3 refer to the three study subjects.
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CD8+ MAIT cell differentiation trajectories

The results of the pseudo-time sequence analysis of CD8+

MAIT cells are shown in Figure 4. Figure 4A shows the overall

trajectory of CD8+ MAIT cell differentiation. Figure 4B shows the

three stages of CD8+ MAIT cell differentiation. Figure 4C shows the

trajectory analysis of CD8+ MAIT cells from different time points

V0, V1, V2, and V3. Figure 4D (spindle diagram) shows the CD8+

MAIT cell differentiation process at each time point. CD8+ MAIT

cells were typically within a relatively late stage of differentiation at

V0. However, these cells differentiated significantly after

vaccination. A large proportion of CD8+ MAIT cells with

relatively advanced differentiation appeared at V1. At V2, CD8+

MAIT cells continued to differentiate. At the final V3 time point,

after the third dose, many CD8+ MAIT cells had reached the

differentiation endpoint.
DEG analysis

The results of the DEG analysis are shown in Figure 5. DEGs

included TSC22D3, GZMB, PRF1, KLRD1, DUSP2, TNFAIP3, and

PER1 (Figure 5A). Average expressions of KLRD1 in NK cells, CD8+
Frontiers in Immunology 05
effector T cells, and CD8+ MAIT cells were significantly increased

after vaccination when compared with V0 baselines. The average

expressions of GZMB and PRF1 in NK cells, CD8+ effector T cells,

and CD8+ MAIT cells were also significantly increased after

vaccination (*P<0.05).
Enrichment pathway analysis

Pathways that were significantly enriched at V1, V2, and V3

were selected (Figure 6). The Y-axis shows pathways that were

significantly enriched at the postvaccination time points when

compared with V0 baselines, and the X-axis shows the P_adjust

value compared between pathways. The larger the P_adjust value,

the more significant the statistical difference. In the T cell biological

process pathways (Figure 6A), we found that meaningful

enrichment pathways were significantly upregulated. These

included the nuclear-transcribed mRNA catabolic process,

nonsense-mediated decay, and translational initiation pathways,

which play important roles in limiting viral replication and

regulating post-vaccination immunity. Furthermore, in the B-cell

biological process pathways (Figure 6B), several B-cell and B-cell

receptor enrichment pathways, which included B cell receptor
TABLE 3 Quantities of eight T cell subsets obtained by clustering from 61,599 T cells of three individuals at different time points after SARS-CoV-2
vaccine inoculation.

T cell subsets V0 V1 V2 V3

Naïve T cells 3655 3665 14236 8548

CD4+ effector T cells 218 500 1010 837

CD8+ effector T cells 1440 3232 5935 3769

D8+ MAIT cell 331 443 1429 911

Helper T cell 820 846 3002 2246

Treg 179 151 563 461

GDT cells 286 445 1074 657

Proliferating T cells 64 138 250 258
frontiers
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FIGURE 1

(A) UMAP Clustered by cell type coloring for all cells. (B) Heatmap of the top 10 differential genes of each cell type.
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A B

DC

E

FIGURE 3

(A) Dimensional reduction analysis of TCR-amplified clonotypes (red dots indicate T cells with clonotype expansion and gray dots indicate T cells
without clonotype expansion); (B) Overall dynamic proportion of TCR clonotype amplification at different time points; (C) Proportion of TCR
clonotype frequencies (large, medium and single) at time points V0, V1, V2, and V3 (green: clonotype frequency ≥10; blue: clonotype frequency 5-9;
yellow: clonotype frequency 2-4; and white: clonotype frequency single); (D) TCR clonotype amplification of different T cell subsets at four time
points: V0, V1, V2, and V3 (green: single, blue: medium, and yellow: large). The area of each circle represents the number of cells; the larger the
circle, the greater the number of T cell subsets with TCR-amplified clonotypes; and (E) TCR diversity analysis (V0: blue, V1: yellow, V2: green, and
V3: red).
A B

FIGURE 2

(A) UMAP clustering of T cell subsets. (B) Heatmap of the top 10 differential genes of each T cell subset.
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signaling pathway, positive regulation of B cell activation, B cell

activation, and humoral immune response pathways, were all

significantly enhanced.
Discussion

The deployment of SARS-CoV-2 vaccines marked an important

milestone in the COVID-19 pandemic (24–26). To date, the WHO

reported that more than 100 vaccine candidates have been in

development globally and 26 have been evaluated in phase III

clinical trials. Although SARS-CoV-2 vaccines prevent COVID-19

(27–33), vaccine-breakthrough cases still occur in fully vaccinated

individuals (34–38). Several variants of concern have emerged,

which include Alpha (501Y.V1 with GISAID nomenclature or

B.1.1.7 with PANGO nomenclature), Beta (501Y.V2 or B.1.351),

Gamma (501Y.V3 or P1),and Delta (G/478K.V1 or B.1.617.2).

Variants of concern are generally associated with higher

transmission, mortality, and breakthrough infections than the

original strain or D614G variant.

Different SARS-CoV-2 vaccines have demonstrated varying

protective efficacies. A meta-analysis (39) showed that after full

vaccination, mRNA vaccine efficacy against symptomatic SARS-

CoV-2 infection was 89-100% against unsequenced strains, 88-
Frontiers in Immunology 07
100% against Alpha, 76-100% against Beta/Gamma, and only 47.3-

88% against Delta; while the adenovirus-vectored vaccine AZD1222

was 74.5% protective against Alpha and 67% against Delta. These

results suggest that mRNA vaccines and AZD1222 are effective in

preventing symptomatic SARS-CoV-2 infection against the original

strain and Alpha and Beta variants, but less effective against the

Delta strain. Meanwhile, vaccine efficacy decays after completion of

the immunization series. Antibody levels after BNT162b2, mRNA-

1273, and Ad26.COV2.S vaccinations were sustained for at least 6

months but then decreased over time. At 6 months, neutralizing

antibody activities against Alpha, Gamma, Delta, and Epsilon were

maintained, but declined against Beta in half of the participants of

mRNA-1273 vaccination. Observa- tional studies stratified by time

since vaccination showed that the efficacy of mRNA vaccine and

AZD1222 vaccine in preventing Delta infection decreased

significantly at 4-6 months after inoculation (42-57% and 47.3%,

respectively). In the USA, mRNA vaccine efficacy against

symptomatic SARS-CoV-2 infection decreased from 94.3% in

June to 65.5% in July 2021.

Because the efficacies and durations of protection of different

COVID-19 vaccines against particular SARS-CoV-2 strains have

varied, vaccine targets, mechanisms, and duration of protection

must be explored further. In this study, we used single-cell

sequencing to track the immune status after three doses of
A B

D

C

FIGURE 4

Differentiation trajectory of CD8+ MAIT cells (A) Pseudotime trajectory of CD8+ MAIT cells; (B) Three stages of CD8+ MAIT cells differentiation;
(C) Trajectory analysis of CD8+ MAIT cells from different time points V0, V1, V2, and V3; and (D) Differentiation process of CD8+ MAIT cells at
different inoculation time points.
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inactivated SARS-CoV-2 vaccine. Results revealed the T cell

dynamics, characteristics , and mechanisms of human

immune dynamics.

Our previous research work (40) showed that serum IgM, IgG,

and neutralizing antibody titers peaked on the 14th day after the

second dose of inactivated SARS-CoV-2 vaccine and decreased
Frontiers in Immunology 08
gradually thereafter. Therefore, in the present study, we chose four

time points: V0 (pre-vaccination), V1(14 days after 2nd

inoculation), V2 (90 days after the 2nd inoculation), and V3 (90

days after the 3rd inoculation) to explore the changes of immune

statuses of healthy adults during the course of three doses of SARS-

CoV-2 inactivated vaccine.
A

B D

E F G

IH J

C

FIGURE 5

Average expression levels of DEGs. (A) Dotplot expressing the average expression of TSC22D3, GZMB, PRF1, KLRD1, DUSP2, TNFAIP3, and PER1 in T
cell subsets. The X-axis indicates the DEGs and the Y-axis shows different T cell subsets at each time point. V0: purple, V1: green, V2: blue, and V3:
red. The size of the dot indicates the proportion of cells that expressed the genes in its cell subset, and the shade of the color of the dot indicates
the average level of gene expression in all cells. (B) Vlnplot of the average KLRD1 expression in NK cells. (C) Vlnplot of the average KLRD1 expression
in CD8+ effector cells. (D) Vlnplot of the average KLRD1 expression in CD8+ MAIT cells. (E) Vlnplot of the average GZMB expression in NK cells.
(F) Vlnplot of the average GZMB expression in CD8+ effector cells. (G) Vlnplot of the average GZMB expression in CD8+ MAIT cells. (H) Vlnplot of the
average PRF1 expression in NK cells. (I) Vlnplot of the average PRF1 expression in CD8+ effector cells. (J) Vlnplot of the average PRF1 expression in
CD8+ MAIT cells. In panels (B-J), the X-axis shows the four time points and the Y-axis shows the average expression levels of the corresponding
gene. V0: green, V1: yellow, V2: purple, and V3: red. *P<0.05.
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Single-cell RNA sequencing is a powerful tool for elucidating

transcriptome gene expression and dynamics of cell subsets (41).

Changes in the immune landscape at different time points after

inactivated SARS-CoV-2 vaccination were analyzed by first

determining the different proportions of cell subsets, then

tracking cell differentiation trajectories through pseudo-time

sequence analyses, and, finally, by analyzing DEGs and pathway

enrichment between cells of amplified and unamplified clonotypes,

thereby exploring the dynamics of transcriptome gene expression.

The serum-neutralizing antibody titer is usually taken as an

important marker of the immunogenicity of an anti-viral vaccine.

Zhang et al. (42) found that transcription levels of PBMC were

changed 14 days after the first dose of inactivated SARS-CoV-2

vaccine in 13 healthy participants while serum-neutralizing

antibody concentrations remained very low. On day 28, upon the

second vaccine dose, the subjects’ PBMC transcriptomics achieved

an immune status similar to natural immunity, suggesting that

PBMC single-cell sequencing is more sensitive than classical

neutralizing antibody assays. Horns et al. (43) studied influenza

vaccine response and found that single-cell transcriptional profiling

reveals a program of memory B cell activation characterized by

CD11c and T-bet expression associated with clonal expansion

and differentiation toward effector function. Kong et al. (44) used

single-cell transcriptomic measurements to demonstrate that

Bacillus Calmette-Guérin vaccination (BCG) reduces systemic

inflammation and to identify a group of genes that are putatively

responsible for the non-specific protection conferred by the Bacillus

Calmette-Guérin (BCG) vaccination. Because single-cell sequencing

is not only more sensitive in evaluating immunogenicity and can

further explore the molecular and cellular characteristics and

mechanisms of the immune response, we chose single-cell

sequencing as our research method.

Our study showed that the numbers of NK and especially T cells

increased significantly after vaccination. However, the numbers of B

cells, monocytes, cDCs, and pDCs were not increased. Moreover,
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the numbers of these cells at the V3 time point were reduced when

compared with pre-inoculation baselines.

Our study showed that the number of T cell subsets increased

significantly on the 14th day after the 2nd dose, 90 days after the

2nd dose, and 90 days after the 3rd dose of inactivated SARS-CoV-2

vaccination. Subsets included naïve T cells, CD4+ effector T cells,

CD8+ effector T cells, CD8+MAIT cells, helper T cells, Tregs, GDT

cells, and proliferating T cells (Table 3 and Figure 2). Similar to our

study, Mateus et al. (45) evaluated subjects in multiple age groups

who received low-dose (25ug) mRNA-1273 COVID-19 vaccine and

found that vaccine-generated spike-specific CD4+ and CD8+ T cell

immune memory 6 months after the second dose of the vaccine was

comparable in quantity and quality to natural immunity.

We further performed dimension reduction analysis of TCR-

amplified clonotypes and found significant amplification of TCR

clonotypes after inactivated SARS-CoV-2 vaccination, especially in

CD4+ effector T cells, CD8+ effector T cells, and CD8+ MAIT cells.

We observed a trend toward increased TCR diversity at 90 days

after the second inoculation and 90 days after the third inoculation

when compared to the pre-vaccination baseline (Figure 3). TCR is

the characteristic surface marker of T cells, whose function is

antigen recognition. TCR is a heterodimer composed of a and b
peptide chains. Each peptide chain contains variable (V) and

constant (C) regions. The antigen specificity of TCR is conferred

by the V region, in which there are three highly variable regions,

namely, complementarity determining regions (CDR) 1, CDR2, and

CDR3. When TCR recognizes a peptide-MHC complex, CDR1 and

CDR2 bind to the lateral wall of the MHC molecular antigen-

binding slot, while CDR3 binds directly to the antigen-binding

peptide, determining the antigen-binding specificity of TCR.

Crucial to immune function is the ability to recognize the

millions of antigens that may be presented via MHC complexes

on the surfaces of antigen-presenting cells. This is achieved by the

enormous clonal diversity of TCRs generated by combining

different CDRs within a and b TCR chains and by the pairing of
A B

FIGURE 6

(A)T cell enriched upregulated pathways (V1V2V3 vs. V0). (B) B-cell enriched upregulated pathways (V1V2V3 vs. V0). The Y-axis shows pathways that
were significantly enriched at V1, V2, and V3 time points compared with V0 baselines and the X-axis shows the P_adjust value compared between
pathways. The larger the P_adjust value, the more significant the statistical difference. BP, biological processes; CC, cellular component;
MF:,molecular function.
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differently combined a and b TCR chains (46). Carreno et al.

showed that a dendritic cell vaccine increased naturally occurring

neoantigen-specific immunity and promoted a diverse neoantigen-

specific TCR repertoire in terms of both TCR-b usage and clonal

composition, thus broadening the antigenic breadth and clonal

diversity of antitumor immunity (47). To elucidate the molecular

basis of the 5~10% failure rate of the hepatitis B vaccine, Yang et al.

(48) conducted high-throughput sequencing and bioinformatics

analysis of TRB CDR3 repertoires and found that the diversity of

TRB CDR3 was significantly increased in responders compared to

non-responders, which suggested that individuals with increased

TCR diversity had better vaccine responses. Our results showed an

increased TCR diversity after vaccination, suggesting that the

SARS-CoV-2 inactivated vaccine elicits adaptive T cell immunity

that can facilitate the recognition of multiple antigens.

Our study showed that the number of CD8+ MAIT cells was

significantly increased in inactivated SARS-CoV-2 vaccine

recipients. Furthermore, TCRs also underwent significant clone

amplification. MAIT cells are unconventional innate-like T cells.

They recognize antigens derived from the riboflavin biosynthetic

pathway produced by a wide range of microbes and presented by

the MHC class-I related (MR1) protein (49–51). Following

activation, MAIT cells rapidly produce cytokines that include

IFN-g, TNF, IL-17, and IL-22 and mediate the cytolysis of

infected cells, leading to the control of various infections. Innate

cytokines, such as IL-12 and IL-18, can activate some MAIT cellular

functions in an MR1-independent fashion, and enhance MAIT cell

TCR-dependent activation. MR1-independent responses are likely

important in MAIT cell responses to viral infections and in diseases

driven by cytokine storms provoked by bacterial exotoxins. Human

MAIT cells predominantly express the CD8a coreceptor (CD8+),

with a smaller subset lacking both CD4 and CD8 (double-negative,

DN). CD8+ MAIT cells have higher levels of IL-12 and IL-18

receptors. CD8+ MAIT cells display a higher diversity of T cell

receptor repertoires than DN MAIT cells. Furthermore,

CD8+ MAIT cells had significantly higher GZMB, PRF1, and

granulysin levels than DN MAIT cells. These data indicate that

peripheral blood CD8+ MAIT cells display higher baseline

expression of coactivating receptors and cytotoxic effector

molecules than DN MAIT cells (52). Provine et al. (53) showed

that ChAdOx1 (chimpanzee adenovirus Ox1) immunization

activated MAIT cells robustly. Activation of MAIT cells

correlated with vaccine-induced T cell responses in human

volunteers. MAIT cell-deficient mice displayed impaired CD8+ T

cell responses to multiple vaccine-encoded antigens, suggesting that

MAIT cells contribute to the immunogenicity of adenovirus-

vectored vaccines. Boulouis et al. (54) found that pre-and

postvaccination levels of MAIT cells correlated positively with the

magnitude of SARS-CoV-2 spike protein-specific CD4+T cell and

antibody responses in healthy vaccinees and that the MAIT cell

compartment is involved in the early stages of priming of adaptive

immune responses, which may be important for vaccine-induced

immunity. Khaitan et al. (55) showed that HIV-infected children

between the ages of 3 to 18 years have significantly decreased CD8+

MAIT cell populations compared to uninfected healthy children.

CD8+ MAIT levels gradually increased with antiretroviral therapy,
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age. Diminished CD8+ MAIT cell frequencies are associated with

low CD4:CD8 ratios and elevated sCD14, suggesting a link with

HIV disease progression. Moreover, CD8+ MAIT cell levels

correlate tightly with other antibacterial and mucosa-protective

immune subsets, namely, neutrophils, innate-like T cells, and

Th17 and Th22 cells. These findings suggested that decreased

MAIT cell populations in HIV-infected children are part of a

concerted disruption of the innate and adaptive immune

compartments specialized in sensing and responding to

pathogenic or commensal bacteria.

Our study also showed that the differentiation as well as the

number of CD8+ MAIT cells was promoted after inactivated SARS-

CoV-2 vaccination. As shown in Figure 4, during the vaccination

timeline, CD8+ MAIT cells advanced toward full differentiation.

After the third injection, a large number of CD8+ MAIT cells were

located at the endpoint of differentiation, indicating that three doses

of inactivated SARS-CoV-2 vaccine significantly enhanced CD8+

MAIT cell differentiation, with the most enhancement after the

third inoculation. Walker et al. (56) indicated that CD8+ MAIT cells

are important tissue-homing cell populations, characterized by high

expression of CD161 (++) and type-17 differentiation. By

transcriptional and functional analyses, a pool of polyclonal, pre-

committed type-17 CD161(++)CD8ab(+) T cells circulate in cord

blood, from which a prominent MAIT cell (TCR+) population

emerges after postnatal antigen exposures and readily transitions to

a CD8aa status in peripheral blood or at tissue sites. The potent

cytokine secretion and homing pattern of expanded CD8+ MAIT-

cell populations studied here suggest a central role in host defense

and tissue inflammation in health and disease. To examine

circulating MAIT cell levels and function in a healthy population,

Lee et al. (57) enrolled 133 healthy subjects and measured MAIT

cells and their subsets by flow cytometry. Circulating MAIT cell

levels varied widely (0.19% to 21.7%) and were significantly lower in

older individuals (age 61-92 years) than in young subjects (age 21-

40 years). Although circulating MAIT cell levels were similar

between male and female subjects, linear regression revealed that

levels declined annually by 3.2% among men and 1.8% among

women. Notably, the proportion of CD4+ MAIT cells increased,

whereas that of CD8+ MAIT cells decreased with age. These studies

showed that the proliferation and differentiation of CD8+ MAIT

cells may be important markers of immune response. In our study,

SARS-CoV-2 vaccination induced both CD8+MAIT cell

proliferation and differentiation, indicating enhanced early

immunity and rapid response to the target virus.

Our study found that NK cellular expressions of DEGs KLRD1,

GZMB, and PRF1 increased significantly after SARS-CoV-2

inactivated vaccination. At the same time, the expressions of these

three DEGs by CD8+ effector T cells and CD8+MAIT cells were also

increased (Figure 5). Adaptive NK cells are currently grouped into

three major categories, including cytokine-induced, memory-like,

and true antigen-specific NK cells (58, 59). Cytokine-induced

memory NK cells respond to specific cytokine profiles and seem

to retain “memory” of a previous activation (60), memory-like NK

cells are potent effector cells via antibody-dependent cellular

cytotoxicity (61), and true antigen-specific NK cells respond to
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cytomegalovirus and adenoviral vaccine vectors in a peptide-

specific manner and may utilize the NKG2C-CD94 heterodimer

to identify specific target cells (62, 63). Bongen et al. (64) found that

a gene associated with NK cells, KLRD1, which encodes CD94, was

expressed at lower levels in symptomatic influenza virus shedders at

baseline in discovery and validation cohorts. KLRD1 expression in

circulating NK cells at baseline negatively correlated with influenza

susceptibility and symptom severity. In addition, KLRD1 expression

was positively correlated with several cytotoxic granule-associated

genes, which included PRF1 and those encoding granzymes

(GZMA, GZMB, and GZMH), suggesting that higher KLRD1

expression may correlate with increased proportions of cytotoxic

cells. These results imply that KLRD1-expressing NK cells may

serve as a novel biomarker for influenza susceptibility and that their

early response may reduce and potentially prevent symptoms

entirely. Our study also showed that KLRD1 expression in NK

cells increased significantly after inactivated SARS-CoV-2

vaccination. Furthermore, GZMB and PRF1 expressions in T cells

were also promoted. Therefore, whether the postvaccination

upregulation of KLRD1 expression can confer protection by

promoting the expressions of GZMB and PRF1, and whether

KLRD1 expression is related to COVID-19 susceptibility needs to

be clarified.

Our T cell enrichment pathway analysis found that nuclear-

transcribed mRNA catabolic process, nonsense-mediated decay

(NMD), and translational initiation were significantly upregulated

after inactivated SARS-CoV-2 vaccination (Figure 6). NMD, which

degrades flawed cellular mRNA by translating codons, not only

contributes to a cellular quality control system to prevent abnormal

protein synthesis but dynamically adapts the transcriptome and

proteome to varying physiological conditions. The upregulation of

NMD is closely related to the stress response. NMD confers

positive-sense single-stranded RNA virus-restricting capacities,

suggesting that the cellular RNA decay process may act as a

primitive mechanism of intracellular antiviral immunity (65). In

addition to its quality control function, which usually involves

mRNA degradation, NMD also controls the abundance of ~10%

of the cellular transcriptome (66). NMD has the capacity to co-

regulate the abundance of entire groups of genes. Furthermore, as a

post-transcriptional mechanism, NMD can facilitate rapid cellular

responses to various stimuli. These processes are utilized during

both cellular development and stress but may be circumvented by

infecting viruses. The postvaccination upregulation of this pathway

demonstrated in our study suggests that mechanisms of the SARS-

CoV-2 vaccine may be related to quality control, limitation of

SARS-CoV-2 replication, and rapid response.

Our study showed significant upregulation of the translation

initiation T cell enrichment pathway after inactivated SARS-CoV-2

vaccination. Translation can initiate at alternate, non-canonical

start codons in response to stressful stimuli. Viral infections and

antiviral responses alter sites of translation initiation, and in some

cases, lead to the production of novel immune epitopes.

Machkovech et al. (67) showed that the subset of host transcripts

induced by the antiviral response is enriched for alternate initiation

sites upon influenza infection or during the antiviral response. Their
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results systematically mapped the landscape of translation initiation

during influenza virus infection, and shed light on the evolutionary

forces shaping this landscape. Thus, whether translation initiation

promotes the production of protective antigen epitopes after

inactivated SARS-CoV-2 vaccination deserves further study.

Our study showed that B cells did not proliferate after

inactivated SARS-CoV-2 vaccination, while B-cell and B-cell

receptor signaling enriched pathways were significantly

upregulated, which is consistent with the study by Yin et al. (68).

However, Yin et al. indicated that a SARS-CoV-2 inactivated

vaccine induced activation of regulatory CD4+ T cells and

CD8+ cytotoxic T cells, which may contribute to vaccine-induced

T cell memory. The present study, however, focused on the

vaccination-enhanced CD8+ MAIT cells, which enhanced early

and quick immune response.

Several limitations of this study should be noted. Only three

subjects were recruited. Follow-up tracked only to day 90 after the

third inoculation. A larger population of subjects and longer follow-

ups are required in subsequent studies to further characterize the

overall immunological landscape after vaccination. Related

molecular mechanisms need to be explored. In addition, the

effects of innate immunity on adaptive immunity in the context

of vaccination remain to be elucidated.
Conclusion

Inactivated SARS-CoV-2 vaccination promoted T cell

proliferation, TCR clone amplification, and TCR diversity,

conferring adaptive T cell immunity to recognize a variety of

antigens. The proliferation and differentiation of CD8+ MAIT

cells and the KLRD1 gene expression were significantly enhanced.

Furthermore, the two pathways of the nuclear-transcribed mRNA

catabolic process, NMD, and translational initiation were

upregulated, which enhanced early immunity and rapid anti-

viral responses.
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