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Background: Senescence is significantly associated with cancer prognosis. This

study aimed to construct a senescence-related prognostic model for

colorectal cancer (CRC) and to investigate the influence of senescence on

the tumor microenvironment.

Methods: Transcriptome and clinical data of CRC cases were downloaded from

The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)

databases. Senescence-related prognostic genes detected by univariate Cox

regression were included in Least Absolute Shrinkage and Selection Operator

(LASSO) analysis to construct a model. The efficacy of the model was validated

using the receiver operating characteristic (ROC) curve and survival analysis.

Differentially expressed genes (DEGs) were identified and Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

were performed. CIBERSORT and Immuno-Oncology Biological Research

(IOBR) were used to investigate the features of the tumor microenvironment.

Single-cell RNA-seq data were used to investigate the expression levels of model

genes in various cell types. Immunofluorescence staining for p21, SPP1, and

CD68 was performed with human colon tissues.

Results: A seven-gene (PTGER2, FGF2, IGFBP3, ANGPTL4, DKK1, WNT16 and

SPP1) model was finally constructed. Patients were classified as high- or low-risk

using themedian score as the threshold. The area under the ROC curve (AUC) for

the 1-, 2-, and 3-year disease-specific survival (DSS) were 0.731, 0.651, and

0.643, respectively. Survival analysis showed a better 5-year DSS in low-risk

patients in the construction and validation cohorts. GO and KEGG analyses

revealed that DEGs were enriched in extracellular matrix (ECM)-receptor

interactions, focal adhesion, and protein digestion and absorption. CIBERSORT

and IOBR analyses revealed an abundance of macrophages and an

immunosuppressive environment in the high-risk subgroup. Low-risk patients

had higher response rates to immunotherapy than high-risk patients. ScRNA-seq
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data revealed high expression of SPP1 in a subset of macrophages with strong

senescence-associated secretory phenotype (SASP) features. Using CRC tumor

tissues, we discovered that SPP1+ macrophages were surrounded by a large

number of senescent tumor cells in high-grade tumors.

Conclusion: Our study presents a novel model based on senescence-related

genes that can identify CRC patients with a poor prognosis and an

immunosuppressive tumor microenvironment. SPP1+ macrophages may

correlate with cell senescence leading to poor prognosis.
KEYWORDS
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Introduction

Colorectal cancer (CRC) is one of the most prevalent

malignancies and the third leading cause of cancer-related

mortality worldwide. Early stage CRC can be treated with surgical

resection, adjuvant radiation, or chemotherapy. The standard

treatment strategy for metastatic CRC is combined chemotherapy

and targeted agents, including immune checkpoint inhibitors (ICIs);

however, the 5-year overall survival (OS) rate remains relatively low

(10–14%) in these cases (1, 2) due to drug resistance. Thus, a further

understanding of the mechanisms of treatment failure in CRC

remains crucial for improving the survival outcomes of CRCpatients.

In the past few years, the role of senescence in cancer has been

widely investigated. Cellular senescence is characterized by aberrant

changes in cell morphology, gene expression, chromatin, and

metabolism induced by continuous microenvironmental

stimulation. Generally, cellular senescence serves as a complement

to programmed cell death and helps maintain tissue homeostasis.

However, the effects of senescence on cancer cells are complex.

Despite their protective role in certain contexts, senescent cells may

promote tumorigenesis, development, and relapse (3, 4). The

senescence-associated secretory phenotype (SASP), characterized

by the secretion of a series of proinflammatory chemokines and

cytokines, can mediate the function of neighboring cells, such as

immune cells, stromal cells, and adjacent non-tumor epithelial cells

in the surrounding tumor microenvironment (TME) (5).

Recent evidence suggests the role of cellular senescence in tumor

immune escape. Pereira et al. revealed that senescent cells can evade

immune clearance by secreting SASP factors, such as IL-6, to

upregulate HLA-E, which suppresses natural killer (NK) cells and

T cell clearance in premalignant lesions (6). During the development

of hepatocellular carcinoma (HCC), chemokine CCL2, another SASP

factor, recruits immature suppressive myeloid cells that inhibit NK

cell function and promotes the progression of HCC (7). Cellular

senescence can induce drug resistance during cancer treatment. In

addition, the SASP-related factor amphiregulin contributes to

chemoresistance via upregulating programmed cell death 1 ligand

(PD‐L1) expression in recipient cancer cells and creating an
02
immunosuppressive TME (8). In summary, cell senescence can

cause therapeutic resistance and lead to poor survival outcomes in

cancer patients. Given the importance of cell senescence in tumors,

many studies have investigated the expression of senescence-

associated genes in cancer and have constructed survival prediction

models. However, little is known regarding the prognostic role of

senescence and its immune-mediated functions in CRC.

Bulk transcriptomics allow scientists to comprehensively

understand tumor features. Thus, several analyses regarding cell

senescence have been performed based on bulk transcriptome data,

and attempts have been made to decompose the bulk data into lineage-

specific constituents using deconvolution algorithms. However, single-

cell RNA sequencing (scRNA-seq) enables the accurate identification of

different cell types and recognizes their distinct characteristics in

various biological states and conditions (9, 10). In the field of cell

senescence, scRNA-seq has been used to understand aging of the

nervous, hemopoietic, and immune systems. Thus, combined bulk

transcriptome and scRNA-seq analyses provide unique insights into the

SASP features of CRC and help identify potential therapeutic markers.

In this study, we constructed a senescence-related prognosticmodel

for CRC patients based on the SenMayo gene list (11). We discovered

thathigh-riskpatientsnotonlyhadpoorprognosis and strong senescent

features but also presented an immunosuppressive TME and resistance

to immunotherapy. ScRNA-seq analysis revealed that one of the model

genes, secreted phosphoprotein 1 (SPP1), was highly expressed in a

subsetofmacrophages.This subset secretes relativelyhigh levels of SASP

factors and may contribute to the senescence of tumor cells.
Materials and methods

Data collection of bulk transcriptome and
senescence gene sets

For the construction cohort, clinical features, RNA-seq expression

data, and somatic mutation data were downloaded from the Cancer

Genome Atlas-Colon Adenocarcinoma (TCGA-COAD) database

(https://cancergenome.nih.gov/). For validation, clinical features and
frontiersin.org
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RNA-seq expression data of GSE17536, GSE17537 (12) andGSE38832

(13) were obtained from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/). GSE17536 and

GSE17537 were merged into a single cohort because they were

derived from the same study. RNA-seq expression data of patients

from the GSE213331 cohort (13) and their pathological response to

neoadjuvant ICI were collected to validate themodel’s ability to predict

immunotherapy response. The SenMayo gene list was downloaded

from the SupplementalMaterial of the study by Saul (11). Patients with

unrecorded expression of genes in the SenMayo gene set

were excluded.
Construction and validation of the
prognostic senescence-related
gene model

Univariate Cox regression analysis was performed to identify

genes predicting disease-specific survival (DSS)-predicted genes. DSS

was defined as the interval from diagnosis to CRC-associated death.

Senescence-related genes with |hazard ratio (HR)| > 1.0 and p-value<

0.05 were included in the model construction. To minimize the risk

of overfitting, the least absolute shrinkage and selection operator

(LASSO) algorithm was performed with tenfold cross validation and

run for 1,000 cycles with a random stimulation of 1,000 times. Risk

scores were calculated using the R package ‘glmnet.’ The senescence

risk score for each patient was calculated as follows:

f (x) = o
n

n=1
(regression   coefficient*   expression   level   of   the   gene)

The1-, 2-, and3-yearROCcurves of the riskmodelwere constructed

to evaluate its prognostic performance. Patients were stratified into low-

and high-risk subgroups using the median score as the cutoff value.

Kaplan–Meier survival curves were plotted to compare the DSS between

the two groups in the construction and validation cohorts.
Functional enrichment analysis

We used the R package ‘limma’ to identify the expression of

differentially expressed gene (DEG) sets between the high- and low-

risk groups. The thresholds were set at |log2FC| > 1.0, along with a

p-value< 0.05. The R package ‘clusterProfiler’ was used to explore

the biological attributes of the DEGs. Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analysis, Gene Ontology (GO)

pathway enrichment analysis, and Gene Set Enrichment Analysis

(GSEA) were conducted. The heatmap constructed by the R

package ‘ggplot2’ was used for result visualization.
Mutation analysis

The mutation annotation format (MAF) downloaded from

TCGA database was created with the ‘maftools’ package.

Mutations in SenMayo genes were compared between the high-

and low-risk subgroups.
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Exploration of immune-related signatures

Upregulated or downregulated immune-related pathways in the

high-risk groups were analyzed using the GSEA software. We used

CIBERSORT (https://cibersort.stanford.edu) to analyze the relative

levels of 22 tumor-infiltrating immune cells in high- and low-risk

patients. The relationship between gene expression levels and immune

cell infiltration was evaluated using the TIMER2.0 database (http://

timer.comp-genomics.org/). The Immuno-Oncology Biological

Research (IOBR) R package was used to assess the immune features

and immune cell infiltration in high- and low-risk groups.
Single-cell sequencing data collection
and processing

The raw unique molecular identifiers (UMI) count matrix of the

single-cell dataset GSE132465 was downloaded (14). For quality

control, the raw gene expression matrix was filtered, normalized

using the Seurat R (15) package, and selected according to the

following criteria: cells with > 1,000 UMI counts, > 200 genes and<

6,000 genes, and< 20% mitochondrial gene expression in UMI

counts. Gene expression matrices from filtered cells were

normalized and scaled. The uniform manifold approximation and

projection (UMAP) method was used to lower the dimensions of

the data, and t-distributed stochastic neighbor embedding (t-SNE)

projection was applied to cluster and visualize the results. The cells

were annotated using canonical cell surface markers. Differentially

expressed genes (DEGs) were detected using the FindMarker

function. Gene expression levels across various cell subtypes were

determined using the DoHeatmap function.
Immunofluorescence staining

For immunofluorescence (IF), surgical specimens of benign colon

tissues (colonic diverticula), low-grade colon tumors without venous

or nervous system invasion, and high-grade colon tumors with venous

or nervous system invasion were collected. All procedures involving

human tissue experiments were approved by the Ethics Committee of

the Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of

Medicine, Shanghai, China. The IF stainingwas implemented based on

formalin-fixed paraffin-embedded (FFPE) tissues which were cut into

5 μm thick slides for each panel test. The slides were dewaxed,

rehydrated, and subjected to epitope retrieval by boiling in citrate

antigen retrieval solution (pH = 6; Servicebio #G1206) for 3 min. After

cooling, the slides were washed three times in phosphate-buffered

saline (PBS) for 5 min. Proteins were blocked with bovine serum

albumin (BSA) for 30 min. One antigen was added in each round,

including the BSA block, primary and secondary antibody incubation,

and antigen retrieval. The above procedures were repeated until the

three biomarkers, CD68 (Servicebio #GB113150, 1:3000), p21

(Servicebio #GB11153, 1:4000), and SPP1 (abcam # ABS135915,

1:200), were added. The secondary antibodies for the three

biomarkers were horseradish peroxidase (HRP)-labeled goat anti-

rabbit antibody (Servicebio #GB23303, 1:500) for CD68 and p21 and
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Cy3-labling goat anti-rabbit antibody (Servicebio #GB21303, 1:500).

AnAutoFluo quencher was applied and the nuclei were stained with 4,

6-diamidino-2- phenylindole (DAPI, Servicebio #GB1012) before

the slides were blocked using an antifade mounting medium

(Servicebio #GB1401). Images were captured using an inverted

fluorescence microscope.
Statistical analysis

Statistical analyses were conducted using R software (version

4.2.2, https://www.r-project.org/) and its appropriate packages.

Kaplan–Meier analysis was used to assess and compare survival

between the different subgroups. Log-rank two-tailed p< 0.05 was

considered as statistically significant.
Results

Construction of senescence-related model

The whole work diagram was summarized in Supplemental

Figure 1. Among the 125 SenMayo genes, 18 were prognostic

according to univariate Cox regression analysis. LASSO Cox
Frontiers in Immunology 04
regression analysis was conducted to build a multigene prognostic

model with the least chance of overfitting, based on the 18 genes

(Figures 1A, B). Seven genes were finally selected into the model

according to the optimal value of l and the multivariate hazard

ratios are shown in Figure 1C. The genes included prostaglandin E

receptor 2 (PTGER2), fibroblast growth factor 2 (FGF2), insulin like

growth factor binding protein 3 (IGFBP3), angiopoietin like 4

(ANGPTL4), dickkopf WNT signaling pathway inhibitor 1

(DKK1) and wingless-type MMTV integration site family

member 16 (WNT16). The risk score was calculated using the

following formula: senescence risk score = (-0.744 × expression level

of PTGER2) + (0.295 ×the expression level of FGF2) + (0.155 × the

expression level of IGFBP3) + (0.520 × the expression level of

ANGPTL4) + (0.106 × the expression level of DKK1) + (0.337 × the

expression level of WNT16) + (0.012 × expression level of SPP1).

The correlation matrix (Figure 1D) revealed that the expression of

each model gene was independent of other genes.
Validation of the model in the training and
validation cohorts

Next, we evaluated the prognostic value of ourmodel in TCGAand

validation cohorts (GSE17536/7 and GSE38832). In each cohort, we
A B

DC

FIGURE 1

Construction of a cell senescence-associated prognostic model based on the SenMayo gene set. (A, B) LASSO Cox regression analysis was
conducted to screen the key genes; (C) Forest plots showing the results of the univariate Cox regression analysis between overlapping genes and
overall survival; (D) Correlation of the seven model gene expression.
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categorized patients into low- and high-risk groups using the median

value as the threshold. Survival analysis was performed for low- and

high-risk patients. In the training cohort, the 5-year DSS rates were

84.7% (95% confidence interval (CI): 75.6–94.9%) for low-risk patients

and 71.7% (95% CI: 59.0–87.1%) for high-risk patients (p = 0.016,

Figure 2A). In the two validation cohorts, high-risk patients had worse

survival outcomes than low-risk patients (p< 0.001 in GSE17536/7,

Figure 2B; p = 0.027 in GSE38832, Figure 2C). The AUC at 1, 2, and 3

years were 0.731, 0.651, and 0.643, respectively, in TCGA cohort

(Figure 2D); 0.658, 0.669, and 0.669, respectively, in GSE17536/7

cohort (Figure 2E); and 0.666, 0.693, and 0.670, respectively, in

GSE38832 cohort (Figure 2F). Taken together, our senescence-related

7-gene riskmodel accurately distinguished high-risk patients from low-

risk patients, and its prognostic ability was stable.
Clinicopathological features of senescent
high- and low-risk patients

In addition to the prognosis, we investigated the basic

clinicopathological features of the high- and low-risk groups (Table 1).

High-riskpatientsweremore likely tohave tumorswithvenous invasion

(p = 0.001) and higher American Joint Committee onCancer (AJCC) T

stages (p=0.006), andNstages (p=0.001).Theproportionofmetastases

was also higher in the high-risk patients (p = 0.012). In summary, the

clinicopathological features weremore aggressive in the senescent high-

risk patients than in the low-risk patients.
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The landscape of DEGs and mutations in
high-risk and low-risk subgroups

To explore the genomic characteristics of low- and high-risk

patients, we identified DEGs between the two subgroups using a

fold change cutoff value of 1.5 and a p-value< 0.05 (Figure 3A).

Compared with the low-risk group, there were 375 upregulated and

4 downregulated genes in the high-risk group. The expression of the

top50 upregulated genes in high-risk patients is shown in a heatmap

(Figure 3B). We then examined the mutation status of the SenMayo

genes in the two groups and listed the top 10 differentially mutated

genes. More mutated senescence-related genes, including SLIT-

ROBO Rho GTPase activating protein 3 (SRGAP3), vacuolar

protein sorting 13 homolog B (VPS13B), titin (TTN), nuclear

GTPase, germinal center associated (NUGGC), integrin subunit

beta 4 gene (ITGB4), nestin (NES), nuclear receptor corepressor 1

(NCOR1), and polycystic kidney disease protein 1-like 1 (PKD1L1),

were found in the high-risk group (Figure 3C). GO pathway

analysis revealed enrichment mainly in the extracellular matrix

(ECM) and structure-related pathways (Figure 3D). The top 1

KEGG enrichment pathway was phagosome, which participates in

the elimination of senescent cells. Others included ECM-receptor

interactions, focal adhesions, and protein digestion and absorption

(Figure 3E). We calculated the SenMayo signature scores of the two

subgroups and confirmed that the scores were significantly higher

in the high-risk patients (Figure 3F), indicating that this group was

burdened with strong SASP features.
A B

D E F

C

FIGURE 2

Validation of the model in the training cohort and validation cohorts. (A–C) Kaplan-Meier survival curves of in senescent low- and high-risk patients
in the TCGA training cohort (A), the GSE17536 and GSE17537 validation cohort (B) and the GSE38832 validation cohort (C); (D–F) The ROC curves at
1-, 2- and 3-year in the mentioned three cohorts.
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Comparison of TME features in the high-
risk and low-risk groups

We then compared the TME features between the high- and

low-risk subgroups. Using the CIBERSORT algorithm, we analyzed

the abundance of 22 different immune cells in the two groups

(Figure 4). The proportions of plasma cells, CD4+ memory T cells,

monocytes, and dendritic cells were obviously lower in the high-risk

subgroup than in the low-risk subgroup (Figure 5A). In contrast,

the infiltration levels of macrophages (including the M1 and M2

subtypes), mast cells, and neutrophils were significantly higher in

high-risk patients. Further analysis of TME signatures using the

IOBR package revealed that the TME of high-risk patients was

immunosuppressive, exclusive, and exhausted (Figures 5B–D).
Frontiers in Immunology 06
Moreover, low-risk patients may be more sensitive to

immunotherapy according to their higher mismatch repair

(MMR) and homologous recombination scores (Figure 5E). High-

risk patients exhibited stronger epithelial-mesenchymal transition

(EMT) signatures (Figure 5F). Collectively, these results indicate an

immunosuppressive TME in high-risk patients. Therefore, we

examined the association between senescence risk score and the

efficacy of immunotherapy in a rectal cancer cohort. Non-pCR

patients had significantly higher senescence risk scores than pCR

patients (p = 0.024; Figure 5G). We also compared the expression

other IO biomarkers in the two subgroups. While no difference of

tumor mutation burden (TMB) was found, we discovered

significant enhanced PD-L1 expression in the high-risk group.

(Supplemental Figure 1)
TABLE 1 Comparison of basic clinicopathological features in high-risk and low-risk groups.

Characteristics High risk n=167 Low risk n=168 p-value

MS type 0.497

MSI-H 29 (17.4) 21 (12.5)

MSI-L 25 (15.0) 26 (15.5)

MSS 109 (65.3) 114 (67.9)

Unknown 14 (8.3) 7 (4.1)

Venous Invasion 0.001

Yes 48 (28.7) 24 (14.3)

No 97 (58.1) 126 (75.0)

Unknown 22 (13.2) 18 (10.7)

Pathologic T 0.006

T1 1 (0.5) 9 (5.3)

T2 20 (12.0) 31 (18.5)

T3 118 (70.7) 112 (66.7)

T4 28 (16.8) 16 (9.5)

Pathologic N 0.001

N0 77 (46.1) 110 (65.5)

N1 52 (31.1) 38 (22.6)

N2 38 (22.8) 20 (11.9)

Pathologic M 0.012

M0 109 (65.3) 120 (71.4)

M1 33 (19.8) 15 (8.9)

Unknown 25 (14.9) 33 (19.6)

Pathologic stage <.001

I 20 (12.0) 36 (21.4)

II 54 (32.3) 72 (42.9)

III 58 (34.7) 45 (26.8)

IV 35 (21.0) 15 (8.9)
fron
MS, microsatellite; MSI, microsatellite instability; MSS, microsatellite stability; T, tumor; N, lymph node; M, metastasis.
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A B

D
E F

C

FIGURE 3

A landscape of different expressed genes and mutations in high-risk and low-risk subgroups. (A) Volcano plots of differentially expressed genes
(DEGs) between high-risk and low-risk patients; (B) Heatmap of the expression of top 50 DEGs in the two subgroups; (C) The differentially mutated
SenMayo genes between the two groups; (D) The GO enrichment pathways of DEGs; (E) The KEGG enrichment pathways of DEGs; (F) Comparison
of SenMayo enrichment score between two subgroups.
FIGURE 4

The proportions of 22 types of immune cells in each sample of low-risk (top line) and high-risk (bottom line) groups revealed by CIBERSORT.
Frontiers in Immunology frontiersin.org07

https://doi.org/10.3389/fimmu.2023.1175490
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2023.1175490
Identification of SPP1+ macrophages as a
key component in cell senescence based
on scRNA transcriptomic analysis

Based on the close relationship between the immune

microenvironment and cellular senescence, we focused on the

expression of our model genes in immune cells using scRNA

transcriptomic analysis. After scaling and normalizing the

expression matrix, we used CD45 as a marker to broadly

categorize the cells into immune and non-immune cell

populations (Figure 6A). Immune cells were selected and

dimensionality reduction was performed. Using specifical

canonical markers defined in the literature, cells were divided into

the following clusters (Figures 6B, C): B cells (‘MZB1’), CD4

positive cells (‘CD4,’ ‘IL2RA,’ ‘CXCR3,’ ‘CCR4’), CD8 positive
Frontiers in Immunology 08
cells (‘CD8A,’ ‘CD8B’), regulatory T cells (‘IL2RA’), and myeloid

cells (‘LYZ,’ ‘MARCO,’ ‘CD68,’ ‘FCGR3A’). The expression levels of

the model genes were examined in the five populations

(Supplementary Figure 2). Strong expression of SPP1 was

observed, particularly in myeloid cells (Figures 6D, E). Given the

significantly enhanced infiltration of macrophages in high-risk

tumors, we selected myeloid cell clusters for further analysis. The

myeloid cell population was divided into dendritic cells (DCs)

(‘BIRC3,’ ‘HLA-DPB1’), macrophages (‘CD163,’ ‘CD68,’ ‘CD14’)

and monocytes (‘IL1RN’) as shown in Figures 6F, G. After

cluster ing the macrophages into three subgroups by

dimensionality reduction, we found that SPP1 was highly

expressed, particularly in cluster 0 (Figures 6H, I). We compared

the expression of the SenMayo genes between clusters 0 and 1. In

addition to SPP1, nine other senescence-related genes were
A

B D

E

F G

C

FIGURE 5

Comparison of tumor microenvironment features in high-risk and low-risk groups. (A) Comparison of the infiltration of immune cells between two
subgroups; (B–D) Comparison of immune suppression, exclusion and exhaustion features between two subgroups; (E, F) Comparison of tumor
signatures and EMT signatures between two subgroups; (G) Analysis of the senescence risk score in patients with different response to
immunotherapy using a rectal cancer cohort (GSE213331). *P < 0.05; **P < 0.01; ****P < 0.0001; NS, not significant.
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upregulated in cluster 0 macrophages, indicating the SASP features

of this sub-cluster (Figure 6J). We performed immunofluorescence

assays to detect the association between SPP1+ macrophages and

tumor senescence. Normal colon tissues, low-grade colon tumor

tissues, and high-grade colon tumor tissues were stained. A larger

number of SPP1 (red)-positive macrophages (green) and

surrounding senescent tumor cells (p21 positive, pink) were

observed in high-grade tumors than in low-grade tumors. In

normal tissues, the proportions of SPP1+ macrophages and p21+

tumor cells were low (Figure 7).
Discussion

CRC is one of themost prevalentmalignancies with highmortality

rates worldwide. In this study, we constructed a senescence prognostic

model based on the SenMayo gene panel using public bulk

transcriptome data and discovered a relationship between SASP and

the immunosuppressive microenvironment. We investigated the

expression of senescence prognostic genes in scRNA-identified

immune cell populations and identified SPP1+ macrophages as an

important TME component that leads to tumor senescence.
Frontiers in Immunology 09
Cellular senescence is elicited by various intrinsic and extrinsic

stresses, including replicative exhaustion and cancer therapies such as

chemotherapy and radiation. SenMayo is a novel gene set designed by

Saul et al. to identify cells expressing high levels of SASP genes and to

evaluate the clinical senescence burden. Based on SenMayo, we

constructed a prognostic model that could distinguish CRC

patients with strong SASP features and poor survival outcomes.

The model consisted of the following seven genes: PTGER2,

FGF2, IGFBP3, ANGPTL4, DKK1, WNT16, and SPP1. Among

these risk factors, FGF2 (also known as bFGF, a basic fibroblast

growth factor) is a well-known survival factor, and a higher level

of FGF2 is secreted by senescent cells than by pre-senescent cells.

It has also been reported that FGF2 can shift macrophages towards

an M2-like phenotype and alter tumor immunity, which can

therefore be a therapeutic target in cancer treatment (16).

IGFBP3 is known for its pleiotropic ability to regulate cell

proliferation, apoptosis, and differentiation. It has recently been

shown that IGFBP3 is an upregulated secretory factor of senescent

cells and is associated with SASP (16–18). ANGPTL4 encodes a

secreted glycoprotein that promotes angiogenesis and inhibits

ferroptosis (19). ANGPTL4 participates in tumorigenesis and

therapeutic resistance through autocrine and paracrine activity
A B D
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FIGURE 6

Identification of SPP1+ macrophages as a key imponent in cell senescence of colorectal cancer based on scRNA transcriptomic analysis. (A) tSNE
plots showing immune cell and non-subsets identified by the CD45 marker; (B) Bubble plots showing the expression of marker genes in all immune
cell clusters. Dot size indicates the percent expressed genes and color indicates the expression strength levels; (C) UMAP plot showing immune cell
clusters defined according to the marker genes; (D) The expression of SPP1 on all immune cells; (E) Violin plot showing SPP1 expression on various
types of immune cells; (F) UMAP plot showing myeloid cell clusters defined according to the marker genes; (G) Bubble plots showing the expression
of marker genes in myeloid cell clusters; (H) UMAP plot showing three subsets of macrophages; (I) Bubble plots showing macrophage related genes;
(J) Volcano plots showing differentially expressed SenMayo genes between SPP1+ and SPP1- macrophages.
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(20–23). DKK1 is a WNT signaling pathway inhibitor that could

trigger early onset of the cellular senescence (24, 25). WNT16 is a

secreted signaling protein that is overexpressed during stress- and

oncogene-induced senescence (26). A previous study has reported

that paracrine WNT16B attenuates the effects of cytotoxic therapy

(27). SPP1 is a secreted cytokine closely associated with

tumorigenesis, invasion, and metastasis. SPP1 could upregulate

the expression of interferon (IFN)-g and interleukin (IL)-12 and

modulate the function of various TME components. Importantly,

previous studies have reported that a special subtype of tumor-

associated macrophages (TAM) with strong SPP1 expression

presents immunosuppressive features and is positively correlated

with EMT markers (28–30).

As cell senescence can modulate the immune environment, we

further investigated the immune features of senescent high-risk

patients. Immune-related gene signature sets indicate an

immunosuppressive phenotype in senescent high-risk tumors.

According to the results of CIBERSORT, this population

distinctly exhibited highly infiltrating macrophages. Thus, we

hypothesized that macrophages contribute to tumor cell

senescence and SASP features in high-risk patients.

To evaluate the expression of senescence-related genes in

immune cells, we identified immune cell populations using

scRNA-seq data and further divided them into various subtypes.

We found a particularly high expression of SPP1, one of our model

genes, in myeloid cells. Based on previous evidence and our

CIBERSORT results, we next focused on the expression of SPP1
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in macrophages. It has been discovered that there are two distinct

subsets of TAMs in CRC, the SPP1+ subset and the C1QC+ subset.

While C1QC+ TAMs preferentially express phagocytosis- and

antigen presentation-related genes, SPP1+ TAMs have a

proangiogenic signature and are more likely to engage in

crosstalk with cancer-associated fibroblasts (CAFs) and

endothelial cells (29, 31). Patients with strong SPP1+ TAM

infiltration show resistance to immunotherapy and poor

prognosis. Our study is the first to report that SPP1+ TAMs

exhibit stronger SASP features than C1QC+ TAMs. This

subpopulation of TAMs highly expresses senescent factors such as

CCL20, CXCL1, MMP12, CXCL10, IL6, and CCL5. Using human

benign colon tissues and colon tumor tissues, we found that SPP1+

macrophages were particularly enriched in high-grade tumors. We

observed a large number of senescent tumor cells around the SPP1+

macrophages, whereas there were fewer SPP1+ macrophages and

senescent cells in low-grade tumors and benign colon tissues. This

result further indicates the role of SPP1+ macrophages in the

development of SASP features in CRC. Therefore, targeting SPP1+

macrophages may alter the senescent state of tumor cells and

reverse immunotherapeutic resistance.

Our study has several limitations. First, our model was based on

gene expression in CRC patient samples, and the incorporation of

clinical factors may have improved the efficacy of the model score.

The predictability of immunotherapy response in our model needs

to be further validated in larger cohorts. The intrinsic association

between macrophages and the senescent tumor environment
FIGURE 7

Densities of tumor-infiltrating SPP1+/CD68+ macrophages and p21+ senescent cells in benign colon tissues, low-grade colon tumor tissues and
high-grade colon tumor tissues. Confocal microscopy scan of immunofluorescence staining showed the distribution of SPP1 (red) positive CD68
(green) double positive macrophages and p21 (pink) positive senescent cells.
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revealed by our model should be further investigated in vivo and in

vitro. Despite these limitations, our study provides novel insights

into senescence-immune interactions in CRC and an effective

prognostic model to guide ICI treatment.
Conclusion

Our study presents a novel model based on senescence-related

genes that can identify CRC patients with a poor prognosis and an

immunosuppressive TME. SPP1+ macrophages may correlate with

cell senescence, leading to a poor prognosis.
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