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3D cancer models: One step
closer to in vitro human studies

Nicoletta Manduca1†, Ester Maccafeo1†, Ruggero De Maria1,2,
Antonella Sistigu1* and Martina Musella1*

1Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy,
2Fondazione Policlinico Universitario ‘A. Gemelli’ - Istituti di Ricovero e Cura a Carattere Scientifico
(IRCCS), Rome, Italy
Cancer immunotherapy is the great breakthrough in cancer treatment as it

displayed prolonged progression-free survival over conventional therapies, yet,

to date, in only a minority of patients. In order to broad cancer immunotherapy

clinical applicability some roadblocks need to be overcome, first among all the

lack of preclinical models that faithfully depict the local tumormicroenvironment

(TME), which is known to dramatically affect disease onset, progression and

response to therapy. In this review, we provide the reader with a detailed

overview of current 3D models developed to mimick the complexity and the

dynamics of the TME, with a focus on understanding why the TME is a major

target in anticancer therapy. We highlight the advantages and translational

potentials of tumor spheroids, organoids and immune Tumor-on-a-Chip

models in disease modeling and therapeutic response, while outlining pending

challenges and limitations. Thinking forward, we focus on the possibility to

integrate the know-hows of micro-engineers, cancer immunologists,

pharmaceutical researchers and bioinformaticians to meet the needs of cancer

researchers and clinicians interested in using these platforms with high fidelity for

patient-tailored disease modeling and drug discovery.

KEYWORDS

tumor microenvironment, cancer model, spheroids, organoids, microfluidic devices,
organ-on-a-chip, drug screening
Abbreviations: ACT, adoptive cell therapy; ADCC, antibody-dependent cellular cytotoxicity; ALI, air-liquid

interface; CAF, cancer-associated fibroblast; CAR, chimeric antigen receptor; CEA, carcinoembryonic

antigen; CSC, cancer stem cell; CTL, cytotoxic T lymphocyte; DC, dendritic cell; ECM, extracellular

matrix; GEMM, genetically engineered mouse model; ICB, immune checkpoint blocker; iToC,

immunocompetent Tumor-on-a-Chip; MCTS, multicellular tumor spheroid; NK, natural killer; NSCLS,

non-small-cell lung cancer; OoC, Organ-on-a-Chip; PBL, peripheral blood lymphocyte; PBMC, peripheral

blood mononuclear cell; PDAC, pancreatic ductal adenocarcinoma; PDO, patient-derived organoid; PDX,

patient-derived xenograft; TAM, tumor-associate macrophage; TCR, T cell receptor; TIL, tumor-infiltrating

T lymphocyte; TME, tumor microenvironment; TNBC, triple-negative breast cancer; ToC, Tumor-on-a-

Chip; 2D, two-dimensional; 3D, three-dimensional.
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1 Introduction

Despite the impressive progress in early detection and

development of increasingly efficient and tumor-targeted

treatments over the past decade, cancer remains a major burden

of disease worldwide and one of the leading causes of death (1).

Currently, the greatest challenge in oncology is to move away from

old “one-size-fits-all” treatments, which, in the majority of cases,

work well only for a few patients, toward novel personalized “one

dose-one patient” therapeutic approaches (2).

Tumor heterogeneity, within and across cancers, often

represents the most significant roadblock in the implementation

of effective patient-specific therapies (3–5). Of note, clinical

diagnoses are mainly based on tumor biopsies which do not really

capture the extensive intratumoral heterogeneity but may hide

newly emerging, highly aggressive, tumor clones. Moreover,

patients with the same cancer subtypes often present different

tumor phenotypes that dynamically evolve during disease

progression and clinical treatment, and lead to the most disparate

therapeutic responses, including natural and acquired therapeutic

resistance (6, 7). It is now well established that tumors are not

simple masses of neoplastic cells, but rather heterogeneous

collections of infiltrating or resident host non-neoplastic cells

[mainly T and B lymphocytes, natural killer (NK) cells, dendritic

cells (DCs), monocytes, endothelial cells, perycites, cancer-

associated fibroblasts (CAFs), mesenchymal stromal cells and

adipocytes], niche-relevant soluble factors (i.e., cytokines, growth

factors, metabolites, enzymes, miRNAs) and altered extracellular

matrix (ECM) that actively interact with one other and constitute

the tumor microenvironment (TME) (8). Increasing evidence

highlights that this evolving and reciprocal interplay between

cancer cells and TME players is a disease-defining factor as it

governs cancer initiation, metastasis and drug resistance and thus

represents a promising therapeutic target (9, 10).

In light of this, the chance to achieve the designing of successful

personalized anticancer strategies, characterized by more durable and

side effect-limited (or even better free) responses, will depend on the
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ability to accurately model cancer heterogeneity and TME

interactions (11). If on the one hand two dimensional (2D)

cultures, xenografts and syngeneic mouse models have made the

history in cancer research, on the other hand, to date scientists are

addressing their focus more and more on three dimensional (3D) in

vitro systems which can preserve tumor proper genetic, proteomic,

morphological and pharmacotypic features while offering the

unprecedented possibility to deeply dissect tumor-stroma dynamics.

In this review we present an overview of cancer model (r)evolution

over the years (Figure 1) for studying the biological implications of the

TME on cancer progression and response to therapy. We critically

discuss the opportunities of state-of-the-art in vitro 3D cell culture

strategies, with an emphasis on cancer spheroids, organoids and

Tumor-on-a-Chip (ToC) models, for the development of

microphysiological platforms recreating human cancers growing

within living organs. In addition, we point out the current

limitations and challenges that such novel culture systems should

overcome to fully establish, validate and exploit the fidelity of 3D

models for cancer research and clinic.
2 Chronicles of conventional cancer
models in preclinical research

For many years, in vitro 2D cell cultures and in vivo xenografts or

genetically engineered animal models have been the gold standards in

cancer research. Nevertheless, these “conventional” models lack the

ability to sustain the complex genetic and phenotypic heterogeneity

of the respective human patient-derived tumor samples as well as to

model the disease pathogenesis while simultaneously facilitating

comprehensive cellular and environmental manipulation (11).

Given their wide availability, reproducibility, high-throughput and

the overall low cost, 2D monolayer cultures of immortalized cell lines

have been widely employed as initial screening models to elucidate

the mechanisms of cancer biology and to identify the efficacy and

safety of several drug candidates (12, 13). However, a large body of

evidence indicates that these systems still present several drawbacks.
FIGURE 1

Timeline of milestones in the development of 3D cancer models.
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First, isolation and culture maintenance of cancer cell lines from

patient biopsies may be tricky and unproductive. Second, once

cultured, these cells adhere, spread, and grow on a flat synthetic

surface, do not conserve the original morphology and polarization,

and therefore can potentially lose crucial cellular signaling pathways

or change their responses to external stimuli (14–16). Third, cells in

2D cultures commonly undergo to extensive clonal selection thus

resulting in the establishment of derived cell lines which no longer

recapitulate the genetic heterogeneity of parental tumors. Finally,

in vitro cancer cell lines are rarely flanked by a patient-matched 2D

normal tissue counterpart and, most importantly, they do not provide

significant information about the intricate network of dynamic

interactions within the 3D TME of living patient’s tumors, which

instead can dramatically affect the efficacy of cancer therapies (17–

19). In an attempt to partially simulate the complex in vivo cell-cell

communications occurring in the TME, 2D co-cultures of cancer cell

lines and different types of exogenous and heterogeneous cells [such

as peripheral blood mononuclear cells (PBMCs) or CAFs] have been

set up (20). In this regard, transwell cell cultures have been exploited

to assess the capability of cells to migrate toward a particular chemo-

attractant and additionally to test the ability of cancer cells to invade

and bypass the ECM and to extravasate by pre-coating the top of the

membrane insert with thin layers of ECM gels (such as collagen or

Matrigel™) and endothelial cells (21). Anyway, despite somewhat

more complex, such 2D reconstituted systems failed to faithfully

model primitive intrinsic tumor stroma and its 3D architecture

(22, 23).

Otherwise, preclinical in vivo animal models, such as patient-

derived xenografts (PDXs) and genetically engineered mouse

models (GEMMs), enable unique studies that intrinsically

contemplate 3D tumor tissue organization and therefore offer

system-level analysis of tumor onset, progression and treatment

response (24, 25).

Due to their ability to retain morphologies, architectures and

molecular signatures very close to those of the original tumors, PDX

mouse models provide promising platforms for personalized cancer

medicine (26). Hence, they have been increasingly utilized in both

basic and preclinical cancer research as potential tools for

biomarker detection, drug screening, drug-resistance mechanism

investigation and novel therapy development (27–30). PDXs are

generated by transplanting subcutaneously or orthotopically freshly

derived patient material into immunodeficient mice. Even though

subcutaneous transplantation models allow for easier cell transfer

and precise monitoring of tumor formation and growth, orthotopic

PDX mouse models better mimic the biological characteristics of

the donor tumor in terms of phenotype - cancer heterogeneity and

behavior - metastatic potential (31–34). Nevertheless, some

important and unavoidable limitations have restricted PDX

application in precision cancer therapy. Since they rely on

immunocompromised/immunodeficient mice that lack the

adaptive immune system, PDX mouse models do not fully

recapitulate the surrounding tumor stroma and thus constitute

inappropriate tools for the screening and the functional analysis

of new immunotherapeutic agents (35). Furthermore, the

progressive replacement of human stromal cells with recipient

mouse cells may affect drug response predictions (36). In the last
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years, new humanized PDX mouse models have been generated by

engrafting patient-derived tumors into immunodeficient mice

bearing CD34+ human hematopoietic stem cells or PBMCs, but

cost, time, throughput, and complete immune compatibility,

remain unmet challenges (37, 38). Undoubtedly, the main

weakness of PDX models is the inability to graft all tumor

subtypes. For instance, hormone-sensitive breast cancer has a

lower rate of engraftment than triple-negative tumors (39) and,

more generally, non-metastatic tumors fail to stably engraft and

grow in mice (32, 40). Finally, PDX models suffer from clonal

selection pressure upon human tumor tissue engraftment and

propagation leading to genetic and phenotypic divergence from

the parental tumor (41, 42).

By contrast, GEMMs develop de novo tumors in an

immunoproficient microenvironment thus enabling the

investigation of the native interactions between cancer cells and

the surrounding TME and representing valuable tools for testing the

potential of cancer immunotherapies (43). Additionally, tumors

arising in next-generation GEMMs closely mimic the

histopathological and molecular features of their human

counterparts, display genetic heterogeneity, and are able to

spontaneously progress toward metastatic disease (44, 45).

Although GEMMs have been successfully used in preclinical

research (as reviewed in (46)) to validate candidate cancer genes

and drug targets, assess therapy efficacy, dissect the impact of the

TME, and evaluate mechanisms of drug resistance, there are still

some aspects that need to be improved. In particular, their overall

genetic manipulation is relatively limited and the introduction of

novel (non)-germline mutations is a laborious and slow

process (24).

On the whole, the development and validation of PDX and

GEMM models is expensive, time- and resource-consuming,

relatively low-throughput and subject to increasing ethical

pressure for replacement solutions according to the 3Rs’ principle

in animal experimentation (47). As a result of these limitations,

even preclinical in vivo models generally have a dramatic poor

performance (~3%) in terms of predicting the clinical success of

next-generation anticancer therapies (48).
3 3D models: Bridging the gap
between cell cultures and live tissues

The need to reduce drug failure in clinical trials has encouraged

researchers to deploy more sophisticated in vitro surrogate systems

which can recreate human organs and diseases in the laboratory bench.

In recent years, 3D cell models have gained even more attention in

cancer research for their ability to closely replicate several hallmarks of

in vivo tumors. Indeed, unlike 2D cell cultures, such systems provide a

more realistic insight of tumor-tissue architecture, multicellular

complexity and dynamic interplay between cancer cells and TME

thus holding the great promise for many applications in tissue

engineering, drug development, and precision medicine (49, 50). In

the following sections, we will explore, in order of biological and

technological complexity, the characteristics and potential applications

of the most cutting edge 3D systems (Figure 2).
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3.1 Tumor spheroids

Spheroids are one of the best established 3D culture methods for

the study of tumor biology (51, 52). As extensively reviewed in (53),

spheroids are microsized aggregates of closely-packed cells which

accurately recapitulate some important features of solid tumors

including internal structure, cellular heterogeneity, cell signaling

pathways, ECM deposition, cell-to-cell and cell-to-ECM

interactions, growth kinetics, gene expression and drug resistance.

These unique characteristics highlight the potential of spheroids to

be used as suitable in vitro tools for high-throughput screening of

anticancer therapeutics (54–56).

Depending on cellular source and preparation protocols,

spheroids can be distinguished into four major types, namely: (i)

multicellular tumor spheroids (MCTSs) assembled using primary cell

or cell line suspensions, (ii) tumorospheres obtained from solid

tumor dissociation, (iii) tissue-derived tumorospheres generated

from tissue remodeling after partial enzymatic or mechanical

dissociation and (iv) organotypic multicellular spheroids consisting

of cut and minced tumor fragment cultures obtained without

dissociation (57). Of these, MCTSs are the best characterized
Frontiers in Immunology 04
spheroid models and have been widely used to reproduce different

solid tumors, such as breast (58), cervical (59), colon (60), lung (61),

pancreas (62), and prostate cancer (63), among the others. Currently,

multiple techniques, requiring or not the incorporation of an

exogenous scaffold, are available for MCTS production (64). In the

most commonly employed scaffold-free methods, cells are cultured in

conditions that force to strong cell-to-cell interactions and ultimately

support cancer cell aggregation and ECM deposition. Several

anchorage-independent methodologies have been developed,

including the noteworthy hanging drop and liquid overlay

protocols, followed by agitation-based, microencapsulation, and

magnetic levitation systems (reviewed in detail in (65–67)). By

contrast, scaffold-based approaches enable cells to grow dispersed

on hydrogels that mimic ECM architecture or anchored to acellular

matrices, which may be comprised by natural (e.g., alginate, chitosan,

dextran, hyaluronic acid), synthetic (e.g., poly lactic-co-glycolic acid,

polycaprolactone, polyvinyl alcohol and polyethylene glycol)

biomaterials or decellularized natural ECM (e.g., Matrigel™,

collagen, fibrin, gelatin) (50, 68–70). More recently, advances in

bioengineering techniques have emphasized the role of

microfluidics and 3D bio-printing for the development of more
FIGURE 2

Schematic representation of spheroid, organoid and Tumor-on-a-Chip cell culture strategies for tumor microenvironment mimicking. (A) Downstream
applications of state-of-the-art 3D models according to their accessibility and biological fidelity. (B) Benefits (+) and drawbacks (-) of 3D in vitro models.
CAF, cancer-associated fibroblast; DC, dendritic cell; ECM, extracellular matrix; NK, natural killer; MDSC, myeloid-derived suppressor cell; Treg,
regulatory T cell.
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complex tumor spheroids with well-defined architecture,

composition and high reproducibility which can model various

cancer types and stages (71–74). Intriguingly, such Spheroid-on-a-

Chip technologies have been proposed as preclinical platforms to

investigate tumor angiogenesis, metastatic potential and

chemotherapy response in glioblastoma, breast adenocarcinoma

and ovarian cancer (73, 75, 76), as detailed below.

MCTCs have the ability to mimic to a great extent the TME thus

offering a good representation of oxygen, nutrient, and other soluble

factor diffusion and exchange (77). Indeed, if cells grown in

monolayer cultures are uniformly exposed to nutrients and

oxygen, cancer cells cultured as spheroids instead experience

physiochemical gradients similar to those observed in

micrometastases and avascular tumors (77). Moving toward the

center of the spheroid, oxygen nutrient and pH levels decrease,

whereas the amounts of carbon dioxide, lactate and waste products

increase. Owing to the limited diffusion of nutrients and oxygen,

larger spheroids (>500 µM in diameter) display an internal

structure consisting of different cell layers: an inner anoxic and

acidic core containing necrotic cells, a middle hypoxic zone of

quiescent/senescent cells and an outer layer of highly proliferating

cells (55, 78–80). Such heterogeneous multilayered organization is

reported to be the key factor behind the use of spheroids as

preclinical models to evaluate the therapeutic efficacy of

anticancer treatments, including chemotherapy, radiation therapy,

and immunotherapy (81–84).

The hypoxic environment found in the core of the spheroids is

detrimental for all those drugs known to induce DNA and

membrane damage via production of reactive oxygen species (e.g.,

5-fluorouracil, cisplatin, doxorubicin, and irinotecan) (77, 85, 86).

Accordingly, Doublier and co-workers observed that in estrogen

receptor-positive MCF7 breast cancer spheroids activation of

hypoxia-inducible factor 1 together with an increase of P-

glycoprotein expression were responsible for doxorubicin

resistance (87). Similarly, Kim and colleagues showed that U251

glioma and U87 astrocytoma cells, grown as spheroids under

hypoxia conditions, exhibited increased apoptosis resistance upon

exposure to doxorubicin and the caspase-3 activating molecule

resveratrol, as compared to monolayer cell cultures (88).

Additionally, senescent and necrotic cells that reside in MCTS’

inner zones were shown to be more resistant to antiproliferative

compounds (e.g., carboplatin, cisplatin, doxorubicin, oxaliplatin,

methotrexate, and paclitaxel) than rapidly dividing cells (89, 90). In

this regard, different breast cancer cell lines (i.e., BT-549, BT-474,

and T-47D) exhibited greater resistance to doxorubicin and

paclitaxel associated with higher levels of hypoxia, increased

percentages of G0-dormant cell subpopulation and lower

expression of cleaved-PARP and caspase-3, when cultivated as 3D

MCTSs. Moreover, the peculiar acidic pH of the spheroid core can

induce changes in the net charge of some chemotherapeutics (e.g.,

melphalan, methotrexate, mitoxantrone and vinca alkaloids) thus

negatively affecting their intracellular uptake (91–93).

Importantly, the deposition of ECM proteins and the close

ECM-cells and cell-cell physical interactions are known to increase

spheroid density, leading to a higher interstitial fluid pressure which

is responsible for the impaired penetration of anticancer drugs (94,
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95). Therefore, compact and larger MCTCs are often more resistant

to both chemotherapy and radiotherapy than loosely aggregated

cells (96, 97). Of note, due to their structural similarities with in vivo

solid tumors, MCTCs may also be used to improve the predictive

value of nanomedicine screening and their physicochemical

properties, by modeling the selective penetration, accumulation,

retention, and distribution of drug-loaded nanocarriers within the

tumor mass (98, 99).

MCTCs can be constituted exclusively of cancer cells

(homotypic spheroids) or of cancer cells co-cultured with other

cell types (heterotypic spheroids) such as fibroblasts, endothelial

cells or immune cells (53, 58). Such heterotypic MCTCs are shown

to be extremely helpful for studying tumor-immune system

interactions and testing immunotherapeutic agents. Intriguingly,

Coureau et al. recently exploited in vitro heterotypic co-cultures of

human colorectal cancer MCTSs with immune cells to assess the

infiltration, activation and function of T and NK cells. They showed

that allogeneic T and NK cells infiltrated cell line-derived spheroids,

inducing immune-mediated cancer cell killing and 3D structure

destruction via the engagement of the activating receptor NKG2D

(100) while cancer cells tried to evade immune recognition by

upregulating HLA-E, ligand of the inhibitory receptor NKG2A

expressed by CD8 T and NK cells. The simultaneous antibody

targeting of both NKG2D ligands on cancer cells, in order to elicit

an antitumor antibody-dependent cellular cytotoxicity (ADCC),

and of the inhibitory receptor NKG2A on immune cells,

highlighted an increased immune cell infiltration as well as a

greater antitumor response (100). Ultimately, the authors

confirmed these results in autologous co-cultures of colorectal

cancer patient-derived spheroids and tumor-infiltrating

lymphocytes (TILs) to generate a clinically relevant functional

assay to the study of immunotherapies (100). A heterotypic colon

carcinoma spheroid model was also used to evaluate the anticancer

immune response of allogeneic Vd2 gd T lymphocytes triggered by

zoledronate or cetuximab (101). Furthermore, gastric and ovarian

MTCS models have been exploited to test the therapeutic efficacy of

chimeric antigen receptor (CAR) T cells targeting the mesothelin

antigen (102), whose preclinical and clinical testing in combination

with immune checkpoint blockade (ICB)-based therapy has been

extensively discussed in (103–105). Of interest, Dordick’s group

have recently developed a high throughput 3D tumor spheroid

microarray consisting of a 330 micropillar-microwell sandwich

platform where NK cells are co-cultured with pancreatic

(MiaPaCa-2) or breast cancer cell lines (MCF-7 and MDA-MB-

231) to faithfully recapitulate the hypoxic TME and investigate NK-

cell mediated cell cytotoxicity in combination with the two

monoclonal antibodies Trastuzumab and Atezolizumab (106).

Overall, these models are limited by the absence of stromal cells,

which are usually present in the TME and are critical to the

establishment of a chemoresistant cancer cell niche (107). Driven

by the enticing possibility of improving cellular heterogeneity in

MCTS cultures, Jeong et al. established a more clinically relevant

colorectal cancer model by combining 3D co-culture with

microfluidic technology. Specifically, tumor spheroids were grown

within a collagen matrix-incorporated microfluidic chip and co-

cultivated with CAFs in a microscale distance away, allowing
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mutual microenvironmental interactions culminating in CAF

activation, as demonstrated by the increase of a-smooth muscle

actin (a-SMA) expression and migratory activity, as well as the

induction of resistance to the chemotherapeutic paclitaxel (108).

To further complicate the system, a scaffold-free MCTS consisting

of a triple co-culture of pancreatic cancer cells (PANC-1), fibroblasts

(MRC-5) and endothelial cells (HUVEC) was assembled to closely

mimic the in vivo influence of the surrounding TME on cancer cell

therapeutic resistance (109). Remarkably, a heterotypic spheroid model

composed of tumor cells, fibroblasts, and immune cells was developed

to assess the efficacy of novel cancer immunotherapy agents [i.e., IL-2

variant and tumor- or fibroblast-targeted T cell bispecific antibody]

both as monotherapy and in combination (110). To better understand

the role of macrophages in the TME using spheroids, Rebelo et al.,

developed a 3D culture model based on alginate microencapsulation

and stirred culture strategies which enclosed tumor cell spheroids of

non-small cell lung carcinoma (NSCLC), CAFs and monocytes. In

such a way, they successfully recreated an immunosuppressive TME

enriched in cytokines/chemokines (IL-4, IL-10, IL-13, CCL24, CXCL1),

ECM elements (collagen type I, IV and fibronectin) and

metalloproteases (MMP1/9), supporting cell migration and monocyte

polarization toward an M2-like macrophage phenotype (109, 111).

Similarly, Kuen et al., established pancreatic cancer spheroids

consisting of different cancer cell lines (PaTu-8902, BxPc3, HPAC,

and MiaCaPa-2) and MRC-5 fibroblasts, which then incubated with

peripheral blood-derived monocytes. Such monocytes were able to

penetrate into the spheroids, reflecting the in vivo tumor infiltration,

and differentiated into M2-like macrophages (112).

Despite their huge potential, several issues still exist which

hinder the application of MCTSs as high-fidelity preclinical

cancer models. The main challenges concern the lack of standard

protocols and methods to establish spheroids of uniform size and

shape. In addition, some techniques are associated with low-

throughput and difficulty in retrieving cells for readout analysis.

Indeed, if on the one hand homotypic MCTS models provide a too

simplistic tissue representation, on the other hand they are more

suitable for high-throughput screenings. Conversely, heterotypic

MCTSs strengthen the in vitro representation of TME but requires a

mindful optimization of the cellular composition in terms of cell

ratios and cell media components, consequently affecting the

throughput (113). Furthermore, spheroids do not reproduce the

complexity observed in the 3D tissue architecture of living organs

nor incorporate mechanical forces (such as fluid shear stress,

hydrostatic pressure and tissue deformation) that can significantly

influence cancer cell behavior (114). Although nowadays a plethora

of techniques are commonly employed to perform phenotypic and

genetic analysis of tumor spheroids, such experimental procedures

conceal several drawbacks. For instance, standard biochemical

assays to evaluate viability and cytotoxicity (such as the acid

phosphatase activity, the MTT, the Trypan Blue exclusion, and

the lactate dehydrogenase assay) were found to be inefficient in 3D

spheroids, usually due to the incomplete probe penetration and

limited sensitivity (115–118). Optical, phase contrast, confocal,

fluorescence and electron microscopic techniques are reported to

be particularly valuable for characterizing spheroid size,

morphology and internal organization (119–121). However, 3D
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model imaging is generally affected by poor light penetration, light

scattering by cells, and high background (117, 118, 122). Flow

cytometry and western blotting application on 3D structures can

also be challenging. Indeed, both the techniques require spheroid

enzymatic dissociation into single cell suspensions which inevitably

leads to the loss of important information on marker spatial

distribution (123–125).

To date, considerable efforts are being made to improve large-

scale production of spheroids under highly reproducible conditions

and to further adapt quantitative analysis and imaging techniques

to such 3Dmodels, in order to extract significant biological data and

allow for high-throughput screening of anticancer drugs.
3.2 Tumor organoids

Organoids originally arise as 3D in vitro stem cell derived

cultures that recapitulate the cellular variety, architectural

organization and function of their in vivo normal tissue

counterparts and have the ability to self-organize and self-renew

(126–128). Since their discovery, organoids represented an ideal

model for studying organ development (129) and host-pathogen

interactions (130) by bridging the gap between in vivo animal

models and in vitro 2D cell culture systems. The first attempts of

generating organ-specific models in vitro date back to the early

2000’s, when Sasai and colleagues demonstrated that embryonic

stem cells could differentiate and self-assemble into 3D apico-

basally polarized cerebral cortical tissues (131). Shortly after, Sato

et al. established gut organoids from single mouse adult intestinal

stem cells in specific culture conditions mimicking the in vivo stem

cell niche and favoring the dynamic proliferation and differentiation

of the intestinal crypt epithelium (132). This seminal work paved

the way to grow other organotypic cultures of multiple mouse and

human epithelial tissues, including colon (133), pancreas (134),

liver (135), prostate (136–138), stomach (139), lung (140),

endometrium (141), fallopian tubes (142), taste buds (143),

salivary and mammary glands (144, 145), retina (131) and brain

(131, 146).

Over the years, organoid technology promptly adapted to

tumor biology providing a novel low-cost approach for cancer

modeling and therapy development. Since they usually derive

from one or few cells, and follow the different stages of cancer

development, tumor organoids preserve key histopathological,

genetic and phenotypic features of the parent tumor and retain

cancer cell heterogeneity to a greater extent (126, 127, 147).

Therefore organoids emerge as promising research tools to

improve translational research and may have a potential relevance

in clinical decision making (148).

To date, cancer organoids may be generated by multiple

strategies. On the one hand genetic engineering of organoids from

wild-type tissues or induced pluripotent stem cells provides a unique

opportunity for determining the mechanisms of cancer initiation and

progression in specific organs, the tumor niche factor requirements

and the mutation pattern-related cellular response to anticancer

therapies (149–151). Starting from available healthy human tissue-

derived organoids, different reports exploited CRISPR-Cas9 genome
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editing to introduce combinations of common driver mutations and

model the multi-hit oncogenic transformation in colorectal (151–

153), brain (154), gastric (155), pancreatic (156) and breast (157)

cancer. Of note, numerous studies have focused on genetically

engineered colorectal cancer organoids carrying oncogenic

mutations in Wnt, EGFR, TP53 and TGFb/BMP signaling

pathways to gain deeper insights into the metastatic dissemination

program. Surprisingly, although such organoids efficiently grew in

vivo as invasive tumors, only when transplanted into their orthotopic

environment, they were able to develop primary tumors that

spontaneously formed distant liver and lung metastases as result of

progressive loss of stem cell-niche dependency (158, 159). Organoids

were also used to investigate the contribution of cancer stem cells

(CSCs) to colorectal cancer clinical progression. Intriguingly, two

seminal works from de Sauvage and from Sato teams, demonstrated

how the selective CSC depletion restricted primary tumor growth but

did not result in tumor regression, owing to the extensive cellular

plasticity of human colorectal cancer cells. Indeed, proliferative

differentiated cancer cells constantly attempt to replenish the CSC

state leading to rapid tumor recurrence upon treatment cessation

(160, 161). Remarkably, tumor organoids have also been derived

from transgenic mouse strains to study the effects of a particular

oncogenic mutation in the context of a specific genetic background.

In this regard, Kuo and colleagues demonstrated that TGFb receptor

2 was implicated in metastatic gastric cancer (162), whereas Fearon’s

group showed that the transcription factor CDX2 and BRAFV600E

mutations cooperated to promote serrated colorectal cancer

development (163).

Given the ability of genome-editing technologies to repair

disease-causing genes, as previously demonstrated for the

mutated dysfunctional CFTR allele in intestinal stem cell

organoids of cystic fibrosis patients (164), genetic engineered

cancer organoids are now revolutionarily investigated to test the

possibility of reverting particular oncogenic mutations and the so

leaded tumorigenic phenotype. Although cancer is genetically much

more complex, with tumors typically harboring hundreds of

mutations, it was shown that restoration of APC expression

recovers crypt homeostasis in a colorectal cancer mouse model

and derived organoids (165).

On the other hand, a large body of evidence has provided a

proof-of-concept for generating patient-derived organoids (PDOs)

which have shown relevant phenotypic and genetic resemblances

with their original tumor specimens (166–168) and a tremendous

potential in personalized cancer therapy (169). Unlike conventional

cancer models, PDOs can be robustly propagated from a small

sample size derived from solid/liquid biopsies or surgical resections

of primary tumors (167), circulating cancer cells (170) and

metastatic lesions (168, 171).

Since the establishment of the first colon adenocarcinoma PDO

by Sato et al. (133), long-term tumor organoid cultures were

successfully generated from a wide range of other primary colon

(167, 172), oesophagus (173), pancreas (174), lung (175), stomach

(176), liver (177), ovarian (178), breast (145), brain (179) and prostate

(170, 180) cancer tissues, as well as from urothelial (181) and renal

carcinoma (182). Importantly, the success rate of organoid generation

from these selected cancer subtypes was almost always reported to be
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>70% and notably higher than that for traditional cancer cell lines

(~20–30%) (183). Moreover, follow-up analyses of such 3D models

suggest that organoids have the ability to preserve long-term parent

tumor’s biology including (epi)genetic, proteomic, morphological

and pharmacotypic features. In addition, as PDOs are relatively

easy to establish and cheap to maintain, they are suitable for high-

throughput applications in the context of precision cancer treatments

and help predict treatment responses and stratify individual patients

to specific therapeutic regimens.

Therefore several “living biobanks” of PDOs capturing the

histological and mutational heterogeneity of human cancers (like

colon, pancreas, breast, prostate, liver, lung, stomach, ovary, kidney,

bladder, and brain, among the others) have been created in recent

years providing a representative collection of well-characterized

models for preclinical drug screening and for predicting patient

outcomes, as extensively discussed by others (147, 184). In 2015 van

de Wetering et al. created the first organoid biobank from colorectal

cancer patients consisting of 20 primary tumors matched with

adjacent normal-tissue derived organoid cultures. By developing a

robotized high-throughput drug screening, they tested 83

compounds (including standard-of-care chemotherapeutics and

new targeted inhibitors) across the organoid panel and correlated

drug sensitivity with cancer genomic features to identify molecular

signatures and clinically relevant biomarkers associated with drug

responses (167). In line with this previous report, Sato and

colleagues generated a larger biobank of 55 colorectal cancer

organoids derived from different histological subtypes and clinical

stages, including the poorly differentiated adenocarcinoma,

mucinous adenocarcinoma, and neuroendocrine carcinoma and

observed a progressive decrease in niche factor requirements

during adenoma-carcinoma transition, reflecting accumulation of

multiple mutations (172). Interestingly, the authors underscored

cancer organoids’ ability to model distinct histopathological

features and genetic signatures of their parental tumor

counterparts also following xenotransplantation under the kidney

capsule of immunodeficient mice, suggesting that such 3D culture

systems can be effectively employed to validate in vitro drug

responses in a more complex in vivo environment (172).

Similarly, Ooft et al. derived a collection of PDOs from metastatic

colorectal cancer patients to predict responsiveness to standard-of-

care chemotherapy (185). These organoids were able to predict

responses of the biopsied lesion in more than 80% of patients

treated with irinotecan-based therapies without misclassifying

patients who would have benefited from treatment. Conversely,

such predictive value was not identified for 5-fluorouracil or

oxaliplatin combined treatment, probably because of the lack of

the surrounding TME, which might influence the efficacy of one

treatment more than the other. Additionally, to test the potential of

organoids to evaluate drug responses in preclinical settings,

Verissimo et al. utilized a colorectal cancer organoid panel to

evaluate the effect of different RAS pathway inhibitors that are

currently used in the clinic, either as single agents or in

combinations. Using this strategy, the authors confirmed that the

presence of mutant RAS strongly correlated with resistance to these

targeted therapies. Moreover, they highlighted that combinatorial

targeting of the EGFR-MEK-ERK pathway in RAS mutant
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organoids effectively suppressed tumor growth by inducing a

transient cell-cycle arrest rather than cell death (186). Moreover,

Ganesh et al., established a biorepository of 65 patient-derived

rectal cancer organoid cultures from patients with primary,

metastatic or recurrent disease to study individual responses

following chemoradiation (187).

As pancreatic cancer is one of the most lethal malignancies with

high recurrence rate and a minor survival benefit following

systemic therapy, different libraries of primary pancreatic ductal

adenocarcinoma PDOs were generated to determine prognosis-

predictive gene expression signatures (156, 174). Notably, Tiriac

et al., attempted to fully recapitulate the mutational spectrum and

transcriptional subtypes of primary pancreatic cancer and hence

established pancreatic cancer organoids from a comprehensive

cohort of 138 patients. Detailed pharmacotyping of these organoid

lines revealed genetic and transcriptomic signatures associated with

anticancer drug response that could potentially correlate with patient

clinical outcomes. Interestingly, by focusing their attention on 9

patients with advanced pancreatic adenocarcinoma, they obtained a

retrospective clinical follow-up which perfectly matched with PDO

chemosensitivity profile (174). Recently, a living biobank of more

than 100 breast cancer organoids was generated from a wide variety

of primary and metastatic tumors broadly recapitulating the diversity

of the disease. Besides preserving the typical breast cancer

morphology and histopathology, most of these organoids also

retained the hormone receptor and the HER2 status of the original

tumors allowing in vitro drug screens that were consistent with

patient response (145).

Alongside these large biobanks, smaller PDO collections from

advanced prostate and primary liver cancer were generated that

helped validate that tumor organoids recapitulate molecular and

genomic diversity of cancer subtypes and enable physiologically

relevant drug screens (170, 177).

Kim et al. reported a method for successfully creating a living

biobank of 80 lung cancer organoids that were assessed for drug

sensitivity to both cytotoxic (i.e., docetaxel) and targeted agents (i.e.,

olaparib, erlotinib and crizotonib). According to what observed in

patients, organoids exhibited a mutation-based drug sensitivity profile.

Therefore, as expected, responses to olaparib (PARP inhibitor),

erlotinib (EGFR tyrosine kinase inhibitor) and crizotonib (c-Met

inhibitor) correlated with BRCA2, EGFR and MET mutational

status, respectively (175). Moreover, Vlachogiannis et al., applied

PDOs to predict the clinical outcomes of gastrointestinal cancer

patients undergoing a compound library of drugs (encompassing

chemotherapeutics, immunotherapeutics and targeted therapy

agents) either already approved in the clinic or currently in clinical

trials. By comparative analysis of the drug sensitivity of patients with

metastatic gastrointestinal cancers and that of corresponding PDO

models, they showed that the PDO model can accurately recapitulate

patient responses in the clinic and could be implemented in

personalized medicine programs to define cancer vulnerabilities

while improving treatment responses (171). Two organoid platforms

that capture intra- and interpatient heterogeneity were also successfully

developed from multiple stages and subtypes of ovarian cancer. PDO

drug screening of both chemotherapeutics (platinum/taxanes) and

targeted agents (PIK3K/AKT/mTOR inhibitors or PARP inhibitors)
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revealed relevant differences in drug sensitivity which significantly

correlated with clinical responses (188, 189).

In 2020, Calandrini et al. described the first pediatric cancer

organoid biobank consisting of tumor and matching normal

organoid cultures from over 50 children with different subtypes of

kidney cancer, including Wilms tumors, malignant rhabdoid

tumors, renal cell carcinomas, and congenital mesoblastic

nephromas. By using this approach, they identified treatments

with the best therapeutic ratio, considering both tumor efficacy

and normal tissue toxicity (190). Yao et al. established a living

organoid biobank of locally advanced rectal cancer and showed that

PDOs could predict chemoradiation responses in patients (191).

Yet, Lee et al., screened 50 drugs in organoid models of bladder

cancer, expressing the FGF receptor, mitogen-activated protein

kinase, and the mechanistic target of rapamycin inhibitors (192).

More recently, Song and colleagues reported methods for

generating and biobanking high-fidelity patient-derived

glioblastoma organoids to test personalized therapies and model

CAR T cell-based immunotherapy (179).

A less described application of organoids lies in a better

understanding and prediction of treatment-related side effects,

which is often observed with targeted therapy. As organoids can

be generated from both healthy and tumor tissues of the same

patient, they offer the possibility to screen for drugs that specifically

target tumor cells while leaving normal cells unharmed thus

potentially reducing toxicities in clinical trials (193).

Despite the multiple downstream therapeutic applications of

tumor organoids, the lack of stromal components and of an

immune-competent microenvironment may hamper the

implementation of this approach in a clinical setting. Therefore

significant efforts have already being made in order to incorporate

aspects of the TME into the cancer organoid system and thus to

decipher complex tumor immune cell crosstalks, to identify

immune evasion mechanisms and to determine the effectiveness

of various immunotherapeutic approaches (194).

Three main strategies have been developed to date to capture

TME cell heterogeneity and heterotypic cell interactions,

specifically: (i) reconstituted submerged cultures (195), (ii)

holistic microfluidic 3D cultures (196), and (iii) air-liquid

interface (ALI) cultures (197).

In reconstituted TME models, organoids containing exclusively

cancer cells, derived from mechanically and enzymatically

dissociated tissues, are cultured in ECM domes (e.g., Matrigel™

or Cultrex® Basement Membrane Extract) and submerged beneath

tissue culture medium. Exact culture conditions are customized for

specific tumor histologies, but often include various growth factors

and/or pathway inhibitors which allow stem cells to undergo self-

renewal and differentiation (e.g., in intestinal organoids) (20). To

model the TME, exogenous immune cells, such as those from

autologous peripheral blood or tumor bulk, are isolated and

subsequently co-cultured with grown organoids. Such submerged

reconstituted PDOs are suitable for modeling cancer disease and for

screening drug efficacy by recapitulating not only the genetic and

phenotypic diversity of original tumors, but also the functional

patient responses to clinical treatment (187, 198). Several

reconstitution approaches were developed by supplementing PDO
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cultures with CAFs. Interestingly, human ductal adenocarcinoma

(PDAC) organoids co-cultured with CAFs revealed that CAF-

secreted Wnt drives organoid growth in Wnt-non-producing

PDAC subtypes (156). Additionally, co-culture of murine

pancreatic stellate cells with PDAC organoids revealed

desmoplastic stroma production and heterogeneous CAF

differentiation into two distinct subtypes: IL-6-expressing

inflammatory CAFs activated by paracrine secreted factors from

tumor cells, and high aSMA-expressing myofibroblast-like CAFs

that interact with tumor cells (199). Of note, in another study

reconstituted PDOs enabled the identification of IL-1 and TGFb as

tumor-secreted ligands responsible of shaping the above-mentioned

CAF heterogeneity (200). Similarly, Ebbing, van der Zalm et al. co-

cultured oesophageal adenocarcinoma organoids with patient-

derived CAFs and found that stromal-derived IL-6 drove

epithelial-to-mesenchymal transition and therapeutic resistance

(201). Diverse immune cell reconstitution of submerged

Matrigel™ organoids has also been performed. By co-culturing

patient-matched CAFs and peripheral blood lymphocytes (PBLs)

with PDAC organoids, Tsai et al. demonstrated myofibroblast-like

CAF activation and tumor organoid lymphocyte infiltration (202).

A noteworthy study reported a more complex setup involving a

triple co-culture of mouse gastric tumor organoids, DCs and

cytotoxic T lymphocytes (CTLs). In the presence of anti- PD-L1

neutralizing antibody, antigen stimulated-CTLs killed gastric tumor

organoids, suggesting that the reconstitution of multiple immune

cells may allow the study of tumor–immune and immune–immune

cell crosstalks (203). Furthermore, reconstitution models of tumor

organoids with autologous PBLs hold the potential to predict the

functionality of TILs after ICB-based therapy. In a proof-of-

principle study, Ramsay and colleagues co-cultured human

colorectal cancer organoids with TILs and observed that

exposition to anti–PD-1 antibody partially restored antitumor

immunity of PD1-expressing T cells (204). Accordingly, Voest’s

group generated tumor-reactive CD4+ and CD8+ T lymphocytes by

co-culturing autologous PBMCs with colorectal cancer or NSCLC

PDOs, in medium supplemented with IL-2, anti-CD28, and anti-

PD1 (195, 205). In a clinical study with early stage colon cancer

patients treated with neoadjuvant immunotherapy, Chalabi et al.

used the same autologous organoid and PBMC co-culture system to

potentially correlate ex vivo induced T cell reactivity to patient

response. However, T cell reactivity could only be partly linked to

clinical response, due to the absence of anti-CTLA4 in the co-

culture system and lack of key TME constituents (206). Organoid-

based immune assays have also been explored to provide a rationale

for combination treatments of targeted MEK or BRAF inhibitors

with multiple ICB agents (207).

Given their adaptability, tumor organoids have been applied for

numerous other immunotherapeutic approaches. In this regard,

Gonzalez-Exposito et al. used patient-derived colorectal cancer

organoids to gain insight into treatment response to cibisatamab,

a carcinoembryonic antigen (CEA)-targeting bispecific antibody

(208) demonstrating that heterogeneity and plasticity of CEA

expression conferred low sensitivity to such an agent. Moreover,

tumor organoids may support studies in the field of adoptive

cellular therapy (ACT), including the use of tumor TIL, NK, and
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CAR-T cell treatments. Intriguingly, Schnalzger et al. used available

matching normal and tumor organoids to explore tumor antigen-

specific cytotoxicity of CAR-NK cells (209).

Otherwise, holistic TMEmodels preserve, as a cohesive unit, the

intrinsic immune microenvironment of tumor specimens along

with tumor cells. Of interest, spheroid-based organotypic cultures

within collagen gels in 3D microfluidic culture devices have been

adapted to culture murine- or patient-derived tumors (114). Briefly,

tumor spheroids from syngeneic immunocompetent murine

models and patient tumor specimens, such as melanoma and

Merkel cell carcinoma, were mixed with collagen gels, injected

into microfluidic devices and cultured for 1–2 weeks (196, 210, 211).

Flow cytometric immune cell profiling showed that such

organotypic cultures were able to retain cancer cells as well as

autologous lymphoid and myeloid cell populations while

recapitulating the in vivo therapeutic sensitivity and resistance

profile to PD-1 blockade (211). In vitro culture systems are

further being deployed to explore novel mechanisms, therapeutic

combinations, and putative biomarkers relevant to ICB response

and resistance. In another study, small-molecule screening

identified CDK4/6 inhibitors as compounds enhancing T cell

activation in PD-1-overexpressing Jurkat T cells. Combination of

CDK4/6 inhibition and PD-1 blockade significantly induced tumor

cell death in vitro in MC38 murine-derived organoids, as evidenced

by tumor live/dead staining as well as by T cell-mediated tumor

growth inhibition in vivo in syngeneic MC38 and CT26 mouse

models (210).

More recently, ALI cultures offer a valuable and more

sophisticated alternative to co-culture the original tumor

epithelium en bloc with its native stromal and immune cells

without any reconstitution (212). In this method tumor organoids

from minced primary tissue fragments containing both tumor cells

and immune components are embedded in a collagen gel within an

inner transwell dish. Culture medium in an outer dish diffuses via

the permeable transwell into the inner dish and the top of collagen

layer is exposed to air via an ALI, allowing cells access to a sufficient

oxygen supply (197). Initially, ALI organoid method was developed

to culture different normal tissues, including small intestine, colon,

stomach, and pancreas, which were shown to comprise both

epithelial and mesenchymal components. Subsequently, this

technology was extended to the establishment of PDOs from

human biopsies, such as melanoma, renal cell carcinoma, and

non-small cell lung cancer, as well as from murine tumors in

syngeneic immunocompetent mice (197). ALI PDOs preserve not

only the genetic alterations of the original tumor, but also the

complex cellular composition and architecture of the TME. Indeed,

both tumor parenchyma and stroma are retained, including

fibroblasts and a variety of endogenous infiltrating immune cell

populations, such as TAMs, T cells [T helper (Th), cytotoxic (Tc),

regulatory (Treg), and exhausted (Tex)], NK cells, and B cells (197).

Strikingly, the ALI PDOs could preserve the T cell receptor

(TCR) heterogeneity found in the original tumor and model

immune checkpoint-dependent mechanisms of immune

suppression (197). Indeed, ALI organoids grown from mouse

tumors inoculated into syngeneic immunocompetent mice (i.e.,

B16-SIY, MC38, and A20) and from diverse human cancer
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biopsies, (such as NSCLC, melanoma, and renal cell carcinoma)

exhibited antigen-specific clonal CD8+ T cell expansion, activation

and subsequent tumor killing in response to anti-PD-1/PD-L1

antibodies (213).

As extensively discussed, tumor organoids have undoubtedly

emerged as physiological relevant in vitro models to study cancer

biology. However, to realize their full potential, key challenges need

to be addressed. First, the use of non-standardized and ill-defined

culture protocols across cancer organoid studies (i.e., cancer tissue

source, medium formulations, animal-derived 3D matrices)

introduces a huge technical variability that leads to a

misrepresentation of cancer’s intrinsic biological heterogeneity

which may potentially affect drug development and biomarker

discovery (214). Second, for several cancer subtypes the efficiency

of organoid derivation is extremely low and to date only few studies

were able to adapt the organoid approach for non-epithelial cancers

(11, 127). Third, established organoid cultures often include only

cancer cells and do not support long-term co-culture of other TME

cell types (212). In the future, the development of next-generation

tumor organoids will require a meticulous patient-specific

understanding of the in vivo tumor niche in order to identify the

necessary medium components to maintain non-neoplastic cells in

culture and favor heterotypic interactions. Last, but not the least,

organoids are significantly high time- and resource-consuming and

in order to become highly relevant model for translational

applications they require optimization of high-throughput and

high-content functional readout analyses, as already described

for spheroids.
3.3 Tumor-on-a-Chip models

Organ-on-a-Chip (OoC)-technology is a rapidly evolving,

highly innovative, and promising tool that allows in vitro

microscale biomimetics of human organs. By flanking and

integrating cell biology with microengineering and microfluidics,

OoCs mode l phys io log i ca l and pa tho log i ca l t i s sue

microenvironments thus breaking conventional in vitro and in

vivo impasses (215). Specifically, OoCs are multichannel

microfluidic cell-culture devices hosting multiple cell types

organized in a 3D tissue, and even organ, structure in order to

model with high fidelity, and to control with high precision, key

structural and functional units including, but not limited to,

vasculature-like perfusion, heterotypic cellular interactions, flows

of chemical gradients and mechanical forces (216–219). These

features make OoCs accurate human-relevant models critical to

address questions that conventional cell culture and animal models

do not (220, 221). Indeed, conventional in vitro models are not

complex enough to recapitulate tissue/organ pathophysiology, and

animal models do not faithfully mimic human disease and natural

and therapy-induced response (218). Since their first introduction

in basic research in the early 2000s (222–224), OoCs rapidly became

a valuable asset to model and dissect a wide range of pathologies

across all human organs (225–231) as well as to screen and test

various therapeutics (232, 233). For the sake of completeness, as the

OoC field is constantly evolving, new devices with improved
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functionality, integration, and automation are emerging that

recapitulate multi-organ-, body-, and even patient-on-chip

complexities at once, as exhaustively covered in (234–237).

Therefore, the key advantage of OoCs is the unique possibility,

they offer, to recreate a patient-tailored disease model taking into

consideration the genetic make-up, sex and gender features that

affect drug response (238). Of note, OoCs enable high-throughput,

high-resolution, live imaging, which allows to track cell trajectories

and quantify heterotypic cell interaction times at once. In addition,

end point assays could be performed to interrogate recovered cell

states at transcriptomic, proteomic and biochemical/metabolic

levels and to analyze cell secretome on perfused cell culture

media (239). All these aspects render OoC platforms perfect tools

for cancer research, which led to the rise of the ToC concept (202,

240–242) (Table 1). Today we dispose of state-of-the-art ToC

platforms that allow, in a less than 1-inch chip, to precisely

recapitulate and timely control critical hallmarks of the TME and

to integrate all tissue components while envisioning in real-time

cell-to-cell interactions and co-evolutions (243, 244). In particular,

immunocompetent ToC (iToCs) models are emerging as precious

tools to analyze and manipulate crucial aspects affecting both cancer

onset and progression as well as response to therapy (245, 246).

Indeed, 2D cell culture models do not recapitulate the TME and in

vivo animal models do not effectively resemble its immune

contexture and the response to immunogenic and immune-based

therapies (247, 248). By in vitro mimicking human immunity,

advanced iToCs address these unmet challenges and help

understand natural and therapy-induced evolutive pressures as

well as predict the clinical efficacy and safety outcomes of tested

drugs (245). In addition, by integrating TME biomimicry with

vasculature-like perfusion, iToCs allow to tightly control and

manipulate oxygen and nutrient supply, the release of growth

factors and cytokines and the interaction with ECM components

(249, 250) and to recapitulate and systematically depict the

communication between cells in disease progression and

metastatic dissemination in an unprecedented detail (251, 252).

First generation iToCs were designed to represent study-tailored

TME where cell types and positions reflect experimental needs and

specific research questions. In their simplest form, iToCs have been

used to study 2D cell migration and immune cell chemotaxis in

response to chemokine and immune alarmin gradients (246, 253–

257). Immune cell trajectories and interaction with cancer cells were

real-time monitored and quantified by time-lapse microscopy and

automated tracking analysis (246, 254–257). In a bit more complex

system, we and others analyzed competit ive immune

chemoat tractant forces of cancer ce l l s wi th diverse

immunogenicity by culturing in opposite, microchannel

connected, chambers three different cell types (246, 254, 257,

258). Similar devices have been used to study cancer cell

interactions with stromal and immune cells when cultured in

separate chambers (259). In a seminal study, Yu and collaborators

described a reconfigurable iToC allowing the spatiotemporal

control of paracrine signaling between pancreatic cancer cells and

TAMs (260). According to a fit-for-purpose approach, the authors

assembled a ‘stackable’ multi-culture system, in which each cell

component was cultured in a distinct layer, and then stacked,
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unstacked, and dynamically reconfigured over the course of the

study in order to control the spatial and temporal interaction of

these subsets. By manoeuvering the system, the authors

recapitulated the in vivo observation that paracrine signaling from

more aggressive prostate cancer cell variants tips the balance of

TAM polarization toward an anti-inflammatory, M2-like

phenotype which, in turn, promotes the formation of new blood

vessels by signaling with endothelial cells (260). Similar findings

were described by Guo et al. and Kim et al. in a NSCLC and triple-

negative breast cancer (TNBC) model, respectively (260–262). As

ECM meshwork is known to deeply condition cancer

immunosurveillance and therapeutic response (263–265), more

complex iToC systems including ECM scaffolds were developed

that allowed researchers to create a 3D TME where testing with high

fidelity the therapeutic effects of immune-based drugs (266–269).

More recently, ex vivo cultures of human tumor tissues were

introduced in iToCs as a representative platform to profile ICB-
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based therapies (211). Notably, within this setting, elaborated iToCs

have been designed that are characterized by a tightly planned

spatial compartmentalization allowing immune cell migration from

lymphnodes to blood circulation up to the TME, with the intent to

faithfully reproduce the human cancer-immunity cycle (245, 270,

271). In particular, Shim et al. established a first model of multi-

compartment iToC that recapitulates lymphnode-tumor bulk

crosstalks through a continuous perfusion of culture medium

(272). In the effort to integrate measurements of additional

chemical and physical cues (e.g., oxygen levels, cytokine and

chemokine flows, ECM stiffness and remodeling, lymphatic shear

stress and blood perfusion, among the others) working in the TME,

in vitro iToCs have been combined with multiscale in silico

modeling (273, 274). This systematic analysis offers a panoply of

combined factors and dynamics molding overall tumor behavior in

terms of progression and therapeutic response (273, 274).

Specifically, oxygen levels in ToC models have been tuned either
TABLE 1 Summary of Tumor-on-a Chip platforms.

Tumor-on-a-Chip models Cell types Applications Drugs References (PMID)

Lung Cancer A549, H1975, H560, LCA-
1, NCI-H1650, H2052
spheroids, BE063-T,
BE069-T spheroids

drug response and resistance,
evaluation of photodynamic
therapy, tumor-stroma
crosstalks, tumor-bacteria
crosstalks, tumor migration and
metastasis

Gefitinib, Afatinib, Osimertinib,
Erlotinib, Cisplatin

36005014, 29029734,
29020635, 26088102,
29686328, 27606718

Breast Cancer ductal carcinoma in situ
cells, MCF10A, HMT-
3522, BC tumor
organoids, MDA-MB-231,
SUM-159, SK-BR-3
spheroids

tumor invasiveness and
metastasis, angiogenesis, cell
cytotoxicity, drug sensitivity,
metabolic adaptation

Doxorubicin, Tirapazamine, Paclitaxel,
Taxol

27549930,30482722,
30723584, 30393802,
27678304, 33094918,
36278146

Prostate Cancer DU145, LNCaP, C4–2,
PC3, BCaP

TME mimicking, immunological
studies, drug testing

Docetaxel, Paclitaxel 30810874, 28371753,
33034643, 31427781

Colorectal Cancer CRC-268, Caco-2,
HCT116, SW620, SW480,
HT-29, MC38 spheroids,
CT26 spheroids, colon
organoids

angiogenesis, tumor-stroma
crosstalks, immunological
studies, drug sensitivity,
nanomedicine, pharmacokinetic,
pharmacodynamic, tumor
metastasis

Bevacizumab, FOLFOX, Oxaliplatin,
Pazopanib, Vincristine, CMCht/
PAMAM dendrimer nanoparticles
loaded with gemcitabine, Doxorubicin,
Pembrolizumab, Ipilimumab, 5-
fluorouracil

30393802, 27549930,
31131324, 28544639,
27796335, 27391808,
28439087, 20126684,
29101162, 34113836

Pancreatic Cancer PAC, PANC-1, PDAC162,
PDAC175, PD7591,
MH6883, PD883,
MH6556, S2-028, KPC2,
eKIC, mKIC, PDOs

immunological studies, TME
mimicking, EMT investigation,
drug resistance, tumor-stroma
crosstalks, tumor invasiveness

Gemcitabine, All-trans retinoic acid,
Clodrosome, Paclitaxel

32930334, 31489365,
31546820, 31997571,
35450328, 29329547

Melanoma MNT-1, WM-115, LOX-
IMVI, A-375, SK-Mel-28
spheroids

angiogenesis, tumor-stroma
crosstalks, tumor migration, drug
resistance, immunological studies

Vemurafenib 33533390, 26542093,
36671624

Ovarian Cancer SK-OV-3, OV90,
OVCAR-3,A2780

angiogenesis, tumor-stroma
crosstalks, TME mimicking,
immunological studies, tumor
invasiveness, tumor-platelet
crosstalks, tumor metastasis

Cisplatin, Revacept 28544639, 34290095,
32851999, 33524968,
35995621

Brain Cancer U-251 MG, primary GBM
cell culture, U87
spheroids, GS5, SKNBE,
PC9-BrM3

TME mimicking, drug screening,
tumor cell heterogeneity, tumor
metastasis

Temozolomide, Tirapazime, Cisplatin,
Irinotecan, Isotretinoid

31148598, 27151082,
27796335, 31016107,
29158813, 31034948
TME, tumor microenvironment; EMT, epithelial-to-mesenchymal transition; PDO, patient-derived organoid; GBM, glioblastoma.
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by the introduction of physical barriers (266), or by placing the

device into an hypoxic, adjustable culture chamber (266), or by

naturally generating hypoxic cores within cancer spheroids (275).

Cytokine-, chemokine- and alarmin-based flow gradients can be

either pre-established in dedicated device sinks (276), or naturally

triggered by the addition of soluble factors (277), or cancer cell

death inducers (246, 257). As ECM composition and stiffness were

shown to play a role in immune cell infiltration and therapeutic

response (278), cancer matrices with diverse composition, porosity

and density have been used and the ability to either impede immune

cell migration, or promote immune-cancer cell crosstalk have been

tested (266, 279). Lymphatic and blood perfusion are crucial players

within the TME as they affect immune cell homing and cancer cell

diffusion to distant sites (280–282). However, conventional in vitro

cancer models almost always lack vascular perfusion. In this sense,

iToCs represent a significant step forward, as they inherently

include vessel-like microchannels that researchers took advantage

of for studying neo-angiogenesis (283), cancer cell spreading

through intravasation (284) and extravasation (285), and off-

target effects of anticancer treatments (286). Moving forward in

complexity and fidelity, through careful study design and co-culture

selection, researchers have integrated cancer spheroids and

organoids in iToC models (219, 287, 288). Chemical and

biological drug testing are the most promising applications of

cancer organoids-on-a-Chip as this merger greatly improves the

fidelity of TME in vitro reconstruction. Hence, on the one hand

cancer organoids, as described above, are miniaturized tumors that

follow intrinsic developmental programs, developing from self-

organizing stem cells, and resembling their in vivo counterparts

better than any other in vitro modeling, on the other hand

microfluidic platforms are man-made constructs in which

heterotypic cell components and their microenvironment are

precisely controlled (288). Moving forwards, the design of multi-

organoids in iToCs could open the possibility to test drugs on

patients routinely excluded from clinical trials, such as children and

pregnant women. However, despite the impressive advances in

iToC field and the enormous potential these models offer, issues

remain that need to be addressed to reach the ambitious goal to

broadly apply iToCs in biomedical research (289, 290). Indeed, it is

still not possible to assess some systemic drug toxicities and side

effects currently studied using animal models (e.g., vomiting,

diarrhea and alopecia). Integration of in silico modeling and

artificial intelligence-based data analysis could maybe help in this

sense and circumvent this limitation to some degree. Moreover,

iToCs need to be improved in terms of throughput, adaptability and

manufacturing. Indeed, (i) the high in vivo relevance of these

models comes at the price of low throughput, as only a few

replicates can be performed at once; ( i i) the culture

microenvironment needs to be adapted to the according patient-

derived tumor, in a fit-for-purpose approach; and (iii) the high cost

and the availability of equipment and materials to realize iToCs are

a challenge to scale-up the manufacture (289–291).

In sum, while ToCmodels are still unable to fully replace animal

studies, the ever growing flow of innovation in the design and

development of microfluidic iToC technologies will continue to

provide ripe rewards for the cancer research and will help to solve
Frontiers in Immunology 12
unmet challenges in both basic biology and clinical patient

management, particularly in the field of immune-oncology and

cancer immunotherapy, as comprehensively reviewed in (245).
Concluding remarks

The improvement and integration of cancer spheroids, organoids

and iToCs into cancer research, drug development pipelines and patient

care hold great potential as these models offer biologic fidelity along

with experimental control as never before. Hence, 3D cancer models

help recreate, in a stepwise manner, the complexity of the TME by

making possible to decipher, monitor and timely maneuver the roles of

individual cell players and of their reciprocal interactions on tumor

progression and (immune)therapy response. Joining forces, know-hows

and skills frommicro-engineers, cancer immunologists, pharmaceutical

researchers and bioinformaticians is anticipated to achieve the

ambitious goal of overcoming the near-term challenges of these

platforms in order to expand their implementation in disease

modeling and drug discovery. Our vision is that, the selection of the

right 3D cancer model for each experimental purpose, and the proper

reconstitution and handling of the immune system, allow the

development of integrated high fidelity TME representations and help

to explore fundamental biology, and to tackle key issues of drug testing

with critical impact on clinical management. This ultimately will help

refine, reduce and replace animal studies, while helping human patients.
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