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Macrophages are ancient, phagocytic immune cells thought to have their origins

500 million years ago in metazoan phylogeny. The understanding of

macrophages has evolved to encompass their foundational roles in

development, homeostasis, tissue repair, inflammation, and immunity. Notably,

macrophages display high plasticity in response to environmental cues, capable

of a strikingly wide variety of dynamic gene signatures and phenotypes.

Macrophages are also involved in many pathological states including neural

disease, asthma, liver disease, heart disease, cancer, and others. In cancer, most

tumor-associated immune cells are macrophages, coined tumor-associated

macrophages (TAMs). While some TAMs can display anti-tumor properties

such as phagocytizing tumor cells and orchestrating an immune response,

most macrophages in the tumor microenvironment are immunosuppressive

and pro-tumorigenic. Macrophages have been implicated in all stages of

cancer. Therefore, interest in manipulating macrophages as a therapeutic

strategy against cancer developed as early as the 1970s. Companion dogs are

a strong comparative immuno-oncology model for people due to documented

similarities in the immune system and spontaneous cancers between the species.

Data from clinical trials in humans and dogs can be leveraged to further scientific

advancements that benefit both species. This review aims to provide a summary

of the current state of knowledge on macrophages in general, and an in-depth

review of macrophages as a therapeutic strategy against cancer in humans and

companion dogs.

KEYWORDS

dog (canine), oncology, cancer, immunotherapy, tumor-associated macrophage,
tumor microenvironment
Introduction

Macrophages are ancient, phagocytic immune cells thought to have their origins 500

million years ago in metazoan phylogeny (1). Ilya Metchnikoff, a Russian zoologist,

biologist, and Nobel laureate, first described macrophages in 1882 when he observed

large, mobile cells that moved to areas of injury in starfish larvae and phagocytized foreign

debris (2). The understanding of macrophages has evolved since then to encompass their
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foundational roles in development, homeostasis, tissue repair,

inflammation, and immunity. Notably, macrophages display high

plasticity in response to environmental cues, capable of a strikingly

wide variety of dynamic gene signatures and phenotypes. In

addition to macrophages derived from blood monocytes, most

tissues in the body have resident macrophages uniquely adapted

to their local environment.

Regardless of their remarkable diversity, a few core genetic

programs establish macrophages’ key role as phagocytes (3, 4). Like

other myeloid cells of the innate immune system, macrophages

display trained immunity, in which responsiveness to secondary

stimulation is enhanced over their first response, and

immunological tolerance, in which responsiveness to repeated

exposures is diminished (5). Macrophages are also involved in a

variety of pathological states including neural disease, asthma, liver

disease, heart disease, cancer, and others (6).

In cancer, most tumor-associated immune cells are

macrophages, coined tumor-associated macrophages (TAMs) (7).

While some TAMs can display anti-tumor properties such as

phagocytizing tumor cells and orchestrating an immune response,

most macrophages in the tumor microenvironment are pro-

tumorigenic (8). Macrophages have been implicated in all stages

of cancer. They contribute to the initiation of cancer through

smoldering inflammation, leading to a mutagenic environment (9,

10). They support the progression of cancer by inducing

angiogenesis, supporting the migration and invasion of cancer

cells, and enhancing anti-tumor immunity. They also drive

metastasis by preparing the metastatic niche and enhancing

tumor cell extravasation and survival during the metastatic

cascade (7, 9). Therefore, interest in manipulating macrophages

as a therapeutic strategy against cancer developed as early as the

1970s (11–13). Companion dogs are a strong comparative immuno-

oncology model for people due to documented similarities of the

immune system and spontaneous cancers between the species (14).

Data from clinical trials in humans and dogs can be leveraged to

further scientific advancements that benefit both species. This

review therefore aims to provide a summary of the current state

of knowledge on macrophages in general, and an in-depth review of

macrophages as a therapeutic strategy against cancer in people and

companion dogs.
Macrophage ontogeny

The understanding of the ontogeny of macrophages has

undergone a somewhat dramatic evolution since their initial

discovery. Although Metchnikoff popularized macrophages and

the theory of phagocytosis, there were earlier observations of

phagocytic cells (2, 15). As scientists fought to understand the

complexities of the immune system, macrophages were included in

an evo lv ing number o f c la s s ifica t ion schemes . The

reticuloendothelial system was proposed in 1924, representing a

group of cells found in blood vessels capable of forming networks in

tissues. Macrophages were observed to differentiate from

monocytes in 1925 and documented to respond to sites of

inflammation in several experiments in the following decades
Frontiers in Immunology 02
(16–18). The mononuclear phagocyte system was therefore

coined in 1969 as an updated classification scheme, comprised of

monocytes and monocyte-derived macrophages (15, 19, 20).

Dendritic cells (DCs) would shortly be recognized as distinct cells

in the mononuclear phagocyte system as well (21). A bone marrow-

derived progenitor cell of monocytes, macrophages and DCs was

isolated in 2006 in the mouse, although this finding has since been

debated in favor of the theory that there is not a common

macrophage-dendritic cell precursor (22, 23). The current

understanding indicates that hematopoietic stem cells (HSCs)

differentiate into myeloid progenitors and granulocyte-

macrophage precursors in adults. A series of intermediates

including a common monocyte-restricted progenitor result in

mature blood monocytes, which can differentiate into

macrophages or monocyte-derived DCs. Other DC subsets likely

differentiate from a very early branch point off early myeloid

progenitors (24, 25). There is ongoing debate about the exact

branching pattern from early progenitors that lead to all known

subsets of monocyte, macrophages and DCs (24, 26). It should be

noted that monocytes themselves have been recognized as

increasingly heterogeneous in origin and function, with multiple

defined subsets (26, 27). To help with standardization in the face of

this complexity, ontogeny-based classifications schemes of myeloid

cells should take priority over schemes that rely primarily on

function, location, or cell-surface markers (28). A more

comprehensive outline of the history of macrophage research is

presented in several good reviews (15, 29).

Monocyte-derived macrophages (MDMs) are continually

renewed via the bone marrow and spleen during periods of high

demand such as inflammation or tissue reparation (28, 30). While

MDMs remain an important subset of macrophages in vertebrates,

in the past two decades a finer understanding of macrophage

ontogeny and heterogeneity has evolved. It is now known that the

MDMs recruited to inflammation are distinct from tissue-resident

macrophages (TRMs). There are numerous populations of TRMs

that are singularly adapted to their anatomical location and unique

in their ability to self-renew through proliferation (31, 32). TRMs

were hypothesized as early as 1971 when Ken Hashimoto identified

a resident population of Langerhans cells in the dermis and noted

they were self-perpetuating phagocytes (33). Examples of TRMs

include the Kupffer cells of the liver, alveolar macrophages of the

lung, and microglia of the brain in the adult. Their origins can be

traced back to embryogenesis, during which mammalian embryos

produce waves of erythro-myeloid progenitor cells prior to the

definitive establishment of HSCs in the bone marrow. The yolk sac

of the embryo first produces primitive macrophages that develop

into microglia in the adult. Subsequent waves of cells from the yolk

sac and fetal liver seed resident macrophages in most tissues (34).

Fate-mapping studies have shown that these TRMs are replaced to

varying degrees by MDMs in the adult (35). Some tissues, like the

intestines and skin, appear to rely primarily on MDMs. Other

tissues, like the lung, brain, liver, spleen, and peritoneum, rely

primarily on their respective TRMs with minimal contributions

from MDMs. These balances can be upset after pathological insults

(36–38). The exact origin and function of fetal macrophage

progenitors is the topic of ongoing debate and is nuanced beyond
frontiersin.org
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the scope of this review; several excellent reviews of macrophage

ontogeny and nomenclature are recommended (34, 39). A

simplified outline of the ontogeny of macrophages is shown in

Figure 1. The interplay and contribution of MDMs and TRMs to

states of health and disease is not yet fully elucidated. Ontogeny,

and not just external stimuli, has been established as an important

contributing factor to how macrophages respond to physiologic and

pathologic stimuli, underlying the importance of further

understanding in this area (43, 44).
Macrophage polarization

Macrophage activation or polarization is a complex topic, in

part because of the lack of standardized nomenclature. Both terms

are used frequently in macrophage research, without clear

definitions for either. Additionally, these terms do not encompass

a single switch in a macrophage. Rather, polarization towards a

certain phenotype involves multiple steps that trigger changes in

concert with an evolving microenvironment (45). In general,

activation or polarization refers to the effect of cytokines or

growth factors on macrophages, producing changes to their

phenotype, metabolism, gene expression, cell surface markers,

and function. Macrophage phenotype is determined by a complex

network of extrinsic factors, the tissue microenvironment, and
Frontiers in Immunology 03
genetic and epigenetic regulation (29, 43, 46). Examples of stimuli

that impact polarization in addition to cytokines and growth factors

include hypoxia, toll-like receptor (TLR) binding, microbes and

microbial products, glucocorticoids, tissue damage and nucleotides

(29). It is worthwhile to note that many polarization experiments

have been performed only in mice and have not been fully

replicated in humans (47). A thorough review of the important

differences between murine and human macrophages is

recommended (48).

The term “activation” was in use by the early 1970s. Peter

Alexander and Robert Evans did significant early work with

macrophages at the Institute of Cancer Research in London,

demonstrating that macrophages could be “armed” and made

cytotoxic by exposure to specially sensitized lymphoid cells (13,

49). Veterinarian Isaiah Fidler injected activated macrophages

intravenously to inhibit pulmonary metastasis in a mouse model

of melanoma around the same time (11). The discovery of specific

factors that could activate macrophages was made in the 1980s

when it was demonstrated that cytokines such as interferon-gamma

(IFN-g) could increase the antimicrobial activity and oxidative

metabolism of macrophages (50). It was thus generally believed

that type 1 T helper (Th1) lymphocytes produced IFN-g to activate

macrophages and type 2 T helper (Th2) lymphocyte responses

characterized by interleukin (IL)-4 and IL-10 inhibited

macrophages. Then, in 1992, Stein et al. described the activation
FIGURE 1

Simplified ontogeny of macrophages. In several waves of primitive hematopoiesis stemming initially from the embryonic yolk sac, erythro-myeloid
progenitors differentiate into primitive macrophages and fetal monocytes that eventually become adult microglia and TRMs, respectively. These
progenitors also seed the fetal liver, along with pre-HSCs and HSCs from the embryo, yolk sac, and placenta. The fetal liver, the major site of
hematopoiesis, subsequently produces liver monocytes, which likely contribute perinatally to macrophage pools in the adult. HSCs, after maturing in
the fetal liver, also seed the fetal bone marrow and spleen. In the adult, HSCs from the bone marrow differentiate through several monocyte
precursors before being released into the blood as monocytes. These cells are recruited by inflammation and injury in the tissue, and terminally
differentiate into MDMS. The spleen also holds a pool of monocytes that can be mobilized when needed. TRMs will be replaced to varying degrees
in different tissues by MDMs in the adult. Many of these steps are areas of ongoing research and debate in murine and human models; similar fate-
mapping studies have not been undertaken in dogs. For more detail, focused reviews are recommended (34, 40–42). Created with BioRender.com.
TRMs, tissue-resident macrophages; HSCs, hematopoietic stem cells; MDMs, monocyte-derived macrophages.
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of macrophages by IL-4. As this contrasted with the classical IFN-g
activation, the term “alternatively activated” was used to denote a

distinct function and phenotype (51). In 2000, the M1/M2

terminology was formalized in an experiment with Th1 mouse

strains (C57BL/6) and Th2 mouse strains (BALB/c) that presented

the idea that persists to this day that M2 macrophages have

increased arginine metabolism. It was noted that IFN-g and

lipopolysaccharide (LPS) could activate macrophages in the Th1

strains to produce nitrous oxide more easily, while LPS activated

arginine macrophage metabolism in the Th2 strains (52). However,

a discovery since then has shown that C57BL/6 mice have a

mutation that impacts their arginine handling, and therefore the

differences seen in arginine metabolism is likely multifactorial (53).

Regardless, metabolic reprogramming contributes significantly to

macrophage polarization, with differences documented in multiple

pathways including glycolysis, arginine metabolism, oxidative

phosphorylation, the Krebs cycle, and others. Several good

reviews are recommended for more detail (54–56). In 2002

Montovani et al. formalized the knowledge that M1/M2

phenotypes represented “extremes of a continuum of functional

states” (57). Presently, the work of transcriptome and single-cell

analysis has significantly increased the granularity and depth of the

understanding of macrophage phenotype (discussed further below).

Table 1 provides an overview of generally accepted characteristics of

the two extremes of macrophage polarization, although as already

noted this framework should be applied with caution to in

vivo systems.

It is easy to see that these dichotomous labels fall short of

capturing the complexity of macrophage reality, which is best

described as a multidimensional spectrum (61). One barrier in

macrophage research is how to apply results from in vitro

conditions to in vivo reality, as in vitro macrophages that are

perturbed in a variety of ways merely represent one snapshot in

time of these dynamic systems. Experimentally stimulated

macrophages in vitro have significantly different gene signatures

than in vivo activated macrophages (62). For example, while

granulocyte macrophage colony-stimulating factor (GM-CSF) and
Frontiers in Immunology 04
macrophage colony-stimulating factor (M-CSF) are often

associated with the M1 and M2 phenotype respectively, these

growth factors would not be found alone in vivo (60). One

solution to better capture the complexities of macrophages in vivo

is to describe additional categories of alternative activation

including M2a through 2d (54, 63–66). Other groups have

investigated mesenchymal stem cell-activated macrophages as a

distinct phenotype as well (67, 68). While the general behavior of

these subtypes is largely consistent across experiments, it is easy to

find discrepancies in the literature regarding stimuli, markers and

secretory products attributed to each (69, 70). As these categories

grow, so do the problems of standardization and replication across

experiments. In 2014 a group of macrophage researchers informally

met to propose unofficial guidelines to attempt to improve clarity

and reproducibility within the field (71). They recommend several

steps worth summarizing. For example, M1/M2 should only refer to

in vitro experimental conditions, specifically using IFN-g and IL-4,

respectively, as these activators have been extensively studied (6).

They provide comprehensive guidelines on minimum reporting

standards for in vitro macrophage experiments, including stringent

descriptors of the population under study, the isolation and culture

method used, and the details of external stimuli used. They also

recommend nomenclature that specifies activators, such as M(LPS)

rather than M1, to avoid confusion across experiments (71).

Macrophage phenotype has been investigated in dogs. Heinrich

et al. used canine MDMs, defining their populations as M0

(unstimulated), M1 (GM-CSF, LPS, IFN g-stimulated) and M2

(M-CSF, IL-4-stimulated). Using immunofluorescence (IF), only

cluster of differentiation (CD)206 was able to distinguish M2-

polarized macrophages from the other phenotypes. Routinely

used murine and human M1-markers (CD16, CD32, major

histocompatibility complex [MHC] class II and inducible nitric

oxide synthase [iNOS]) and additional M2-markers (CD163 and

arginase-1) were not useful in discriminating the subtypes. Global

microarray analysis showed significant differences in the

transcriptomes of the polarized macrophage subsets. Interestingly,

the identification of gene sets from prototypical literature-based
TABLE 1 Two extremes of a spectrum of human macrophage phenotype.

M1/Classical M2/Alternative

Prototypical
markers

CD80, CD86, MHC II, CD64 (54, 58, 59) CD163, CD204, CD206, FIZZ1 (54, 58, 59)

Stimuli IFN-g, LPS, TNF-a, TLR ligands (46, 58, 59) IL-4, IL-10, IL-13, TGF-b (46, 58, 59)

Secretory
products

TNF-a, IL-1b, IL-6, IL-12, IL-23, CXCL9, CXCL10 (54, 59) IL-10, TGF-b, CCL17, CCL18, CCL22, CCL24 (54, 59)

Arginine
metabolism

Metabolizes arginine by iNOS to NO and L-citrulline (54, 56) Hydrolyzes arginine by arginase to orthenine and urea (54, 56)

Transcription
factors

STAT1, IRF5, NF-kB (46, 59) STAT6, IRF4, PPAR (46, 59)

Function Infectious/Th1 response, type 1 inflammation, intracellular pathogen
killing, tumor resistance (46, 54, 60)

Allergy/Th2 response, parasite killing, immunoregulation, matrix deposition,
tissue repair, tumor promotion (46, 54, 60)
CD, cluster of differentiation; MHC II, major histocompatibility complex class II; FIZZ1, found in inflammatory zone-1; IFN-g, interferon-gamma; LPS, lipopolysaccharide; TNF-a, tumor
necrosis factor-alpha; TLR toll-like receptor; IL, interleukin; TGF-b, transforming growth factor-beta; CXCL, C-X-C motif chemokine ligand; CCL C-C motif chemokine ligand; iNOS, inducible
nitric oxide synthase; NO, nitric oxide; STAT, signal transducers and activators of transcription; IRF, interferon regulatory factors, NF-kB, nuclear factor kappa B; PPAR, peroxisome proliferator-
activated receptor; Th1, T helper type 1; Th2, T helper type 2.
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human and murine macrophage gene sets only had minor overlap

with gene sets of the polarized macrophages (72).

Herrmann et al. used canine and human MDMs activated with

combinations of M-CSF, IL-4, and IL-13 to activate an M2a allergen

subtype and GM-CSF, LPS, and IFN-g for an M1 subtype. On flow

cytometric surface marker analysis, only the high-affinity

immunoglobulin (Ig) E receptor FcϵR1 was significantly

upregulated in canine M2a macrophages, whereas CD86 was

upregulated in human M1 macrophages. They did not find

significant differences in the expression of another well-

established M1-marker CD80 or the M2-marker CD206 in canine

MDMs (although CD206 had a statistically insignificant increase in

both human and canine M2a macrophages). Reverse transcription-

quantitative polymerase chain reaction did show expected changes

such as the upregulation of pro-inflammatory genes in the M1

subtype (73).

Chow et al. also investigated canine macrophage phenotype.

They cultured canine MDMs in M-CSF and polarized them with

IFN-g (M1) or IL-13 and IL-4 (M2). Flow cytometric analysis of cell

surface markers CD86, MHC class II and CD40 were not able to

discriminate between M1 and M2 macrophages. Activated

macrophages (both M1 and M2) upregulated MHC class II, a

finding supported by Heinrich et al. as well (72, 74). Using IF,

however, M1 macrophages were shown to significantly upregulate

intracellular iNOS, while M2 macrophages upregulated intracellular

CD206, transglutaminase 2 and suppressor of cytokine signaling 1

(SOCS1) as compared to M1 macrophages. This group also found

significant differences in function as measured by cytokine secretion

and phagocytosis, with M2 macrophages displaying an impaired

ability to phagocytose and kill intracellular pathogens. (It is

worthwhile to note that although it is widely accepted that M2

macrophages have decreased ability to respond to infectious insults,

some conflicting data in the human literature describe M2

macrophages as highly phagocytic (75, 76)). RNA-sequencing

(RNA-seq) was used to identify unique canine gene signatures of

polarized macrophages, resulting in 6 distinct clusters of

macrophage genes (74). Macrophage phenotype has also been

studied in a variety of canine pathologies, including (non-

exhaustively) intestinal disease, spinal cord disease and

Leishmania infections (77–79).
Tumor-associated macrophages

Tumors maintain a tumor microenvironment (TME) via

secretion of cellular factors such as chemokines and cytokines,

other environmental factors such as hypoxia and lactic acid, and by

the recruitment of local and distant immune and stromal cells.

Although most intuitive with solid tumors, blood-borne cancers

also maintain a TME composed of a diversity of cells (80).

Macrophages are the most abundant immune cell in the TME

and comprise a strikingly heterogenous group with multiple

ontogenies, phenotypes and roles represented (81). There are

differing accounts of the ontogeny of TAMs; both MDMs and

TRMs are likely recruited by tumors to varying degrees (82). Some

evidence from mice also suggests that a subset of myeloid-derived
Frontiers in Immunology 05
suppressor cells (MDSCs), a distinct, immature myeloid cell that

contributes to the immunosuppression, also differentiate into

mature TAMs once in the TME (83–85).There is evidence that

subsets of TAMs with differing ontogenies take up different

functions in the TME. For example, in a mouse model of lung

carcinoma, TRMs were associated with tumor cell growth, while

recruited MDMs were more associated with metastasis (86). Even in

protected spaces such as the central nervous system, both MDMs

and tissue-resident microglia with distinct transcriptional profiles

and functions are represented in the population of TAMs in

primary brain tumors (43, 87).

TAMs are generally described with the permissive language of

“M2-like”, sometimes specifically associated with the M2d subset.

The M2d phenotype is associated with angiogenesis, matrix

remodeling and immunosuppression (88). However, TAMs can

simultaneously express gene signatures from multiple subsets

including canonical M1 signatures, and some TAM subsets are

more closely aligned solely with M1 phenotypes (89–91).

Additionally, TAM maturation has been shown as distinct from

typical alternative activation of macrophages (92). Although

initial ly aligned most strongly with tumor-associated

inflammation, it is now known that TAMs interact with cancer

cells, other immune cells, and stromal cells to facilitate several other

hallmarks of cancer (10, 93). TAMs help induce or access

vasculature, promote invasion and metastasis, help avoid immune

destruction and contribute to sustained proliferative signaling

(93, 94).

TAMs have complex interactions in the TME with cancer cells.

TAMs and cancer cells engage in various constitutive feedback

loops, in which cancer cells recruit TAMs via factors such as colony

stimulating factor-1 (CSF-1, a major driver of macrophage

maturation). In turn, TAMs then secrete cellular factors such as

protein kinase C, which upregulates production of CSF-1 from

colon cancer cells (95). Similar feedback loops have been established

in gastric cancer (hypoxia induced C-X-C motif chemokine ligand

[CXCL]8 production from TAMs stimulates IL-10 secretion from

cancer cells resulting in M2 polarization), breast cancer (reciprocal

secretion of GM-CSF and C-C motif chemokine ligand [CCL]18

recruits TAMs and induces epithelial-mesenchymal transition), and

others (96–98). Many of these same pathways reveal how TAMs

promote the progression and metastasis of cancer cells. Once

recruited, TAMs produce factors that remodel the TME to better

support cancer cells, increase invasion via epithelial-mesenchymal

transition, improve tumor vascularization, increase intravasation

and extravasation, improve survival of circulating tumor cells, and

help prepare the pre-metastatic niche. For example, TAMs produce

matrix metalloproteinases and cathepsins, which disrupt cell

junctions and basement membranes to aid in tumor invasion into

surrounding tissues and blood vessels (99, 100). Another interesting

example demonstrates that primary tumor secretion of factors such

as vascular endothelial growth factor-A and transforming growth

factor-beta induce distant lung endothelium to produce a variety of

monocyte chemoattractants, thus preparing the metastatic niche

(101). Each of these processes are complex, and detailed reviews

have been written (96, 102, 103). The unique metabolism of TAMs

also supports cancer cell growth. Their handling of glucose, amino
frontiersin.org
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acids, and lipids increases the availability of critical nutrients such

as iron in the TME, contributes to immunosuppression, and

provides strong growth signals to cancer cells (55, 104). Their

universal metabolism of L-arginine, for example, results in

extracellular depletion, rendering it unavailable to auxotrophic T

cells that require it for proliferation (105).

The crosstalk between TAMs and cancer cells does not exist in a

vacuum. Stromal cells and other immune cells are intimately

involved in these processes as well. The biomechanical properties

of the extracellular matrix (such as stiffness, topography, etc.) in the

TME contributes to TAM polarization and function (106). Stromal

cells themselves can recruit and polarize TAMs. Cancer-associated

fibroblasts recruit TAMs, support M2 polarization, and inhibit

cancer fighting immune cells from entering the TME (107, 108).

Mesenchymal stromal cells, in addition to directly promoting tumor

progression, secrete various angiogenic factors that polarize TAMs

to an M2-like phenotype (109). TAMs are also involved in constant,

reciprocal feedback with other immune cells. In hepatocellular

carcinoma, for example, tumor-associated neutrophils recruit

TAMs and regulatory T cells (Tregs) to the TME, promoting the

immunosuppressive environment (110). In the TME, TAMs inhibit

CD4+ and CD8+ T cells and natural killer (NK) cells, induce Treg

differentiation, and recruit natural Tregs (111). Exhausted T cells

and TAMs have been shown to maintain a positive feedback loop

which supports the persistence of both populations in the

TME (112).

There is some evidence from the veterinary literature

support ing how macrophages may contr ibute to the

immunosuppressive TME. Hartley et al. evaluated programmed

death-ligand 1 (PD-L1) expression in primary canine MDMs,

showing that expression was significantly induced by exposure to

IFN-g (113). Although IFN-g is classically considered a pro-

inflammatory cytokine, it is better understood now to have both

immunostimulatory and immunosuppressive functions as well

(114). Upregulation of PD-L1 on MDMs after exposure to IFN-g
may therefore be one mechanism of immunosuppression in the

TME (113). Eto et al. demonstrated that damage-associated

molecules released from necrotic canine cancer cells exerted

immunosuppressive effects on macrophages via prostaglandin E2.
Frontiers in Immunology 06
This was hypothesized to be one mechanism by which

dysregulation of the response to inflammation may contribute to

tumorigenesis (115).

TAMs serve as prognostic biomarkers in many cases, as well as

predictive biomarkers for response to treatment. TAMs are also

associated with resistance to chemotherapy, immunotherapy,

endocrine therapy, radiation therapy and targeted therapy (116–

118). One meta-review of the prognostic significance of TAMs in

human solid tumors identified a negative effect of TAM density on

overall survival (OS) in gastric, breast, bladder, ovarian, oral, and

thyroid cancer. In contrast, a positive effect was noted for OS in

colorectal cancer, and no effect of TAMphenotype was found for any

tumor type (119). However, the literature on this topic is vast, and as

expected there are many conflicting conclusions. Table 2 outlines key

prognostic indicators of TAMs in select human and canine cancers.

It can be difficult to comprehensively apply conclusions regarding

TAMs and prognosis to large groups of patients, as the immune

composition of the TME varies widely not only between tumor types,

but also within tumor type dependent on patient factors such as age,

sex, and body weight (146–148).

Single-cell RNA-seq (scRNA-seq) techniques, first reported in

2009, have made incredible progress in elucidating the complexity

of TAMs a priori (91, 149, 150). In brief, these techniques resolve

the transcriptomes of single cells otherwise masked in bulk

sequencing techniques. Several recent publications have explored

the complexity and heterogeneity of TAM subsets across many

cancer types using scRNA-seq (91, 151). A consistent finding across

studies is that individual TAMs can express both canonical M1 and

M2 gene profiles at the single-cell level (43, 91). A review article that

attempted to integrate the findings of multiple scRNA-seq studies

on TAMs proposed names for seven TAM subsets with distinct

transcriptional profiles and metabolic pathways across many cancer

types. For example, angio-TAMs had signatures enriched for

angiogenesis, while IFN-TAMs were enriched for interferon-

regulated genes and M1 markers. These seven subsets were not

exhaustive, with many other subsets found in fewer numbers of

cancers (152).

scRNA-seq of TAMs has not only been used to characterize new

subsets of macrophages but also to identify macrophage-based
TABLE 2 Prognostic impact of tumor-associated macrophages in select human and canine cancers.

Cancer Type Increased TAM infiltration associated with
(human):

Increased TAM infiltration associated with (canine):

Glioma Variable (120–122) High-grade disease (123, 124)

Osteosarcoma Increased OS and metastasis PFS in most studies; some
exceptions noted (125–127)

Increased DFI (128)

Lymphoma Advanced stage, decreased OS (129, 130) High-grade disease (131)

Soft tissue sarcoma Variable, but generally high-grade disease and decreased
DFS and OS (132, 133)

High-grade disease and increased MI (134)

Breast/mammary
carcinoma

Decreased OS and DFS, high-grade disease, HR-negative
disease (135, 136)

Decreased OS, high metastatic rate, high-grade disease, HR-negative disease in most
studies; one exception noted (137–141)

Colorectal
carcinoma

Variable (associated with both improved and poor
prognosis) (142, 143)

No association in one study, higher TAMs in normal tissue versus tumor in another
(144, 145)
TAM, tumor-associated macrophage; OS, overall survival; PFS, progression free survival; DFI, disease free interval; DFS, disease free survival, MI, mitotic index; HR, hormone receptor.
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prognostic markers or personalized treatment strategies (153, 154).

For example, malignant gliomas in people are characterized by

robust angiogenesis, a process aided significantly by TAMs. It has

been demonstrated that the contribution of MDMs and TRMs to

this process differs between primary and recurrent tumors, and

therefore strategies targeting blood-derived TAMs versus resident

microglia may have varying degrees of success at different time

points in the course of disease (43, 155). Single-cell sequencing has

also progressed beyond RNA, with new multi-omics techniques

providing information at the single-cell level on epigenetic

modifications, including histone modifications, DNA methylation,

and chromatin openness (156). For example, combining epigenetic

information with scRNA-seq data has produced data on TAM

chromatin accessibility and cis-regulatory sequences (152). Single-

cell sequencing data in companion animal species is in its infancy,

although there are increasing numbers of publications in the past

few years (157–162). ScRNA-seq data on canine TAMs has not yet

been published to the authors’ knowledge.
TAMs in companion dogs

In companion dogs, a large body of work exists regarding TAMs

and mammary carcinoma due to its relative frequency and

relevance as a translational model for breast cancer. Several

groups have investigated the molecular crosstalk and changes in

gene expression that occurs between canine mammary carcinoma

cells co-cultured with macrophages (163–165). One notable

conclusion was that carcinoma cells co-cultured with canine

macrophages had increased migration and invasion compared to

carcinoma cells in monoculture (163). Another group showed that

carcinoma cells inhibited LPS activation of co-cultured

macrophages, suggesting cancer-mediated immune suppression

(164). Another demonstrated that TAMs increased the secretion

of pro-angiogenic factors from canine mammary cancer stem-like

cells (165). Multiple groups have published on associations between

higher levels of TAMs in canine mammary tumors and shorter OS,

higher metastatic rate, higher histologic grade, higher levels of intra-

tumoral vascular endothelial growth factor and hormone receptor

negativity (137–140, 166). One study found that, in contrast, higher

numbers of macrophages in canine mammary carcinoma samples

correlated with longer survival time. However, when taking the M2

TAMs alone a correlation with lymph node metastasis was noted

(141). It should be noted that M1 and M2/TAM markers vary by

study, and so results should be interpreted considering this fact.

Some of the discrepancies arise from differing use of the term TAM,

to either signify all macrophages in the TME versus only those with

a pro-tumorigenic/M2-like phenotype. Table 3 summarizes

markers investigated for canine macrophages in the veterinary

literature (most of which have been chosen based on human and

murine data and have not been validated as able to discern between

macrophage phenotypes in the dog).

TAMs and their significance have also been investigated in

other canine tumor types. Correlations between increased TAM

infiltration and higher-grade disease has been identified in canine
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gliomas, lymphoma, soft tissue sarcomas and mast cell tumors (123,

124, 131, 134, 171, 173). In an analysis of canine hemangiosarcoma

tumors, 67% contained macrophages that co-expressed an M2

marker and PD-L1. These tumors with PD-L1-expressing M2

macrophages had lower numbers of T cells in the TME.

Additionally, M2 polarization and PD-L1 expression could be

induced by tumor-conditioned media (167). In samples of canine

tumors, pulmonary metastases from hemangiosarcoma were shown

to have greater numbers of monocytes compared to metastases

from other tumor types, as well as significantly higher CCL2

production, a monocyte chemoattractant protein (also called

MCP-1) (174). In canine oral melanomas, M2 macrophages were

significantly higher in malignant disease and associated with

nuclear atypia and mitotic count. M2-marker CD163 positivity by

itself was associated with metastatic disease and tumor-related

death (168). In contrast to the above studies, in canine

osteosarcoma, a higher percentage of M2 macrophages was

correlated with a longer disease-free interval in one study. This

same group analyzed paired primary tumor and metastasis samples

of canine osteosarcoma and found the metastases to have a

significantly higher degree of T cells, B cells and M2

macrophages, suggesting a role of these cells in the metastatic

immune environment (128, 169). A preprint study from the

National Cancer Institute confirmed these findings, showing a

potential benefit from abundant M2 macrophages in canine and

human osteosarcoma by transcriptomic analysis. These authors

suggest this may be due in part to the unique properties of bone,

namely that cytokines responsible for M2 differentiation can also

inhibit osteoclast formation (170). In canine colorectal cancer, one

study found no significant difference in macrophage counts between

control tissue, adenomas, and carcinomas, while another found

lower levels of macrophages in adenomas and carcinomas as

compared to controls (144, 145).

There is also a body of literature that investigates the prognostic

value of peripheral blood monocytes in dogs with cancer. Peripheral

blood may provide insight into the TME ’s systemic

immunosuppressive impacts and can provide useful prognostic

information in many tumor types. On analysis of peripheral

blood, MCP-1 was increased in dogs with histiocytic sarcoma and

lymphoma compared to healthy controls, while dogs with

osteosarcoma were shown to have decreased chemotactic function

of peripheral blood monocytes compared to controls (176–178).

Increased monocyte counts or decreased lymphocyte-to-monocyte

ratios have also been shown to be poor prognostic factors in canine

lymphoma and osteosarcoma, similar to findings in many human

cancers (178–182). A retrospective study of adjuvant carboplatin in

dogs with hemangiosarcoma found an increased median survival

time (MST) in dogs whose monocyte counts decreased post-

operatively compared to those whose counts increased (265 days

versus 66 days, respectively) (183). Interestingly, recent attention

has been paid to circulating macrophage-like cells in peripheral

blood. One veterinary study found that of 39 complete blood counts

from dogs with circulating macrophage-like cells, 46% had a

diagnosis of cancer (including both histiocytic and non-histiocytic

origin) (184). These cells have the potential to be detectable in
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higher numbers than circulating tumor cells as sources of

phagocytized tumor DNA (185).
Therapy (preclinical/human)

When targeting macrophages as an anti-cancer therapy, there

are a few general approaches. Broadly, one may attempt to deplete

the TME of TAMs, inhibit the recruitment of monocytes/

macrophages to the TME, or re-educate TAMs from

tumorigenic to anti-tumor. (Although these categories are

discussed separately below, it is likely that many of these

therapies impact different macrophage subsets in multiple

ways). Since the early work of Evans, Alexander and Fidler

(discussed above), significant progress has been made in

macrophage-based therapies, with many ongoing clinical trials.
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Table 4 outlines some noteworthy macrophage-based cancer

therapies in people and dogs. As the understanding of myeloid

cells in the TME progresses, several anti-cancer therapies initially

understood to have other targets have subsequently been found to

have significant impacts on TAMs, very likely contributing to the

anti-cancer effect. Examples include paclitaxel (via TLR-4

activation similar to LPS), imatinib (via the M-CSF receptor),

and ibrutinib (via Bruton’s tyrosine kinase inhibition) (200–202).
TAM depletion

Macrophage depletion has long been performed in vitro with

bisphosphonates (BPs), initially agents of interest for anti-

resorptive properties for skeletal metastasis (203–205). BPs are

phagocytized by macrophages resulting in apoptosis and have
TABLE 3 Markers investigated in the veterinary literature for canine macrophages.

Antigen Used to
identify

Polarizing agents
used (various
combinations)

Method used if
successful to discern
between M1/M2

Method attempted if
unsuccessful to discern

between M1/M2

References

CD80

M1 GM-CSF, LPS, IFN-g

FC (73)

CD86 FC (73, 74)

CD40 FC (74)

CD16 IF (72)

CD32 IF (72)

iNOS IF IF, FC (72, 74, 131, 137)

MHC II* IF, FC (72, 74)

SOCS-3 (141)

LXN IF (72)

CD204

M2 M-CSF, IL-4, IL-13

(128, 131, 138, 140,
167–170)

CD206 IF FC (72–74, 137)

FcϵRI FC (73)

TGM2 IF FC (74)

SOCS-1 IF (74, 141)

CD301 (164)

CD163 IF (72, 123, 131, 168)

Arg-1 IF (72, 74)

MS4A2 IF (72)

Calprotectin/
MAC387

M1, TAMs, recently
recruited macrophages

(123, 131, 137, 139,
144, 166, 168)

IBA-1
Pan-myeloid, TAMs

(124, 134, 138, 167,
168, 170–172)

CD11/CD18 Pan-leukocyte, TAMs (145, 173, 174)
*Has also been used as a general marker of macrophage activation (164, 175). CD, cluster of differentiation; iNOS, inducible nitric oxide synthase; MHC II, major histocompatibility complex class
II; SOCS, suppressor of cytokine signaling; LXN, latexin; FcϵRI, high-affinity IgE receptor; TGM2 transglutaminase 2; Arg-1, arginase-1; MS4A2, membrane spanning 4-domains A2 (beta
subunit of IgE receptor); MAC387, clone name commonly used that recognizes calprotectin; IBA-1, ionized calcium-binding adapter molecule 1; TAMs, tumor-associated macrophages; GM-
CSF, granulocyte-macrophage colony-stimulating factor; LPS, lipopolysaccharide; IFN-g, interferon-gamma; M-CSF, macrophage colony-stimulating factor; IL, interleukin; IF,
immunofluorescence; FC, flow cytometry.
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been demonstrated in vivo to deplete TAMs and inhibit tumor

growth (206, 207). They are still actively studied clinically for their

macrophage-specific anti-cancer effects (208). There are other ways

to selectively induce apoptosis in TAMs. Trabectedin, a marine-

based DNA-binding small molecule, and its analogue lurbinectedin

are approved for use in soft tissue sarcoma (trabectedin) and

ovarian cancer and non-small cell lung cancer (lurbinectedin).

While they likely have multiple mechanisms of action, they have

preferential cytotoxicity for monocytes and macrophages via tumor

necrosis factor-related apoptosis ligand (TRAIL) mediated

apoptosis (209–211).

Another approach to TAM depletion is accomplished via

blocking ligand-receptor interactions with small molecules or

monoclonal antibodies. One popular strategy is the targeting of

the M-CSF receptor, also called colony-stimulating factor 1 receptor

(CSF-1R), or one of its ligands, M-CSF/CSF-1 (212). This pathway

is responsible for the survival and differentiation of macrophages.

Selective inhibitor of CSF-1R pexidartinib has shown significant

clinical benefit for a rare tumor that overexpresses CSF-1

(tenosynovial giant cell tumor) (213). In other trials of CSF-1/R

inhibitors for advanced solid tumors, stable disease or partial

responses are observed with combinatorial therapies, and there

are many other CSF-1/R inhibitors under investigation (212,

214, 215).

There are other interesting, experimental approaches to TAM

depletion. One group engineered a hybrid peptide, consisting of

melittin (a polypeptide that binds preferentially to TAMs) and a

pro-apoptotic peptide. Injection of this hybrid peptide into a mouse

model of lung carcinoma resulted in selective apoptosis of M2-like

macrophages while sparing other immune cells (216). Chimeric

antigen receptor (CAR)-T cells have been engineered to deplete

TAMs via folate receptor beta binding, resulting in improved

antitumor immunity and survival in a mouse model (217). Bi-

and tri-valent T-cell engagers have been made that recognize CD3

on T-cells and a specific M2 marker on TAMs such as CD206 or

folate receptor beta, resulting in selective T-cell mediated TAM

depletion (218).
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Blocking TAM recruitment

Blocking the recruitment of MDMs to the tumor site is another

therapeutic strategy. The chemokine CCL2 is crucial for the

recruitment of c-c chemokine receptor type 2 (CCR2)-expressing

monocytes to the TME. Of several compounds targeting CCL2/

CCR2 to enter phase I clinical trials, CCX872, a CCR2-specific

antagonist, showed the best anti-cancer activity, although the

benefit was still modest. When given in combination with

standard-of-care chemotherapy to advanced pancreatic cancer

patients, it modestly improved OS in comparison to a historical

cohort of patients receiving chemotherapy alone (219). Monoclonal

antibodies against CCL2 have not been as effective (220). Another

important pathway for monocyte recruitment is CCL5/CCR5.

Several CCR5 antagonists in phase I clinical trials are repurposed

drugs, initially developed for human immunodeficiency virus

therapy (186, 221, 222). Therapeutic hurdles to blocking TAM

recruitment include a rebound of recruited monocytes to the TME

that can be seen after discontinuation of treatment, as well as

redundancy in monocyte recruitment mechanisms (223, 224).

However, decreasing recruitment or depleting TAMs can still

enhance other immunotherapies, such as checkpoint inhibitors

and cancer vaccines (225–227).
TAM repolarization

TAMs may also be re-educated (or “repolarized”) from their

generally immunosuppressive, pro-tumorigenic roles to have anti-

cancer functions. Re-programming TAMs not only encourages

macrophage-specific tumor cell killing but may also activate NK

cells and T cells in the TME to kill tumor cells as well (228–231). In

2011, while testing CD40 activation (a co-stimulatory molecule

expressed on antigen-presenting cells) on antitumor T cell

responses, Beatty et al. found that CD40 agonism robustly

activated macrophages in the TME, resulting in infiltration and

depletion of tumor cells and tumor stroma (228). Since then,
TABLE 4 Select comparative macrophage-based cancer therapies in humans and dogs.

Therapy Human Canine

CSF-1/R
blockade

Pexidartinib FDA approved for tenosynovial giant cell tumor, multiple phase I/
II clinical trials ongoing for other agents (186, 187)

Canine blocking antibody developed (188)

CCL2-CCR2
blockade

Multiple phase I/II clinical trials ongoing (186) Losartan investigated clinically in canine osteosarcoma and glioma
(189–191)

L-MTP-PE Failed FDA approval in 2007; approved for use in other countries for adjuvant
therapy of osteosarcoma (192)

Early trials in canine hemangiosarcoma, osteosarcoma, mammary
carcinoma and stage I oral melanoma (193–196)

CD40
agonism

Multiple phase I/II clinical trials ongoing (186) Intralesional therapy with CD40 and IL-2 investigated clinically in
dogs with STS (197)

CD47/SIRPa
blockade

Multiple phase I/II clinical trials ongoing (186) Xenograft model of canine DLBCL sensitive to combination anti-
CD20 and CD47 blockade (198)

CAR-M
therapy

NCT04660929 (first-in-human CAR-M phase I trial) (199) Not applicable
CSF-1/R, colony-stimulating factor 1/receptor; CCL2-CCR2, C-C motif chemokine ligand/receptor 2; L-MTP-PE, liposome-encapsulated muramyl tripeptide phosphatidylethanolamine; CD
cluster of differentiation; SIRPa, signal regulatory protein alpha; CAR-M, chimeric antigen receptor-macrophage.
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multiple agonists of CD40 have progressed to phase I/II clinical

trials (186). A CD40 monoclonal antibody showed promising

clinical in combination with chemotherapy for metastatic

pancreatic adenocarcinoma (232). Checkpoint inhibitors are

another avenue for TAM repolarization. TAMs, in addition to T

cells, express PD-1, resulting in tumor immunity via PD-L1

expression from tumor cells (233). PD-L1 inhibition was shown

to successfully rescue phagocytosis and re-educate TAMs in a

mouse model (233, 234). Myeloid-specific checkpoint inhibitors

have also been developed. Many tumor cells overexpress CD47, the

prototypical “don’t eat me” signal that inhibits phagocytosis on

normal cells from signal regulatory protein alpha (SIRPa)-
expressing myeloid cells. This pathway can be blocked to increase

phagocytosis of cancer cells and antigen presentation by

macrophages, and promising clinical activity has been

demonstrated in hematological malignancies and solid tumors

(231, 235, 236). Increased Fc-mediated phagocytosis appears

especially beneficial when combined with antibody-mediated

opsonization (186, 237). As might be expected from a

ubiquitously expressed self-marker, significant toxicity can be

seen, and so different strategies have been employed to

circumvent this limitation. Strategies include manipulation of the

antibody structure or increasing specificity with a bispecific

molecule target CD47 and a tumor antigen (186, 231). Other

myeloid checkpoint inhibitor targets are under investigation such

as the inhibitory leukocyte immunoglobulin-like receptor subfamily

B member 1 receptor (LILRB1), an MHC class I-binding protein

that suppresses phagocytosis, and CD24, another anti-phagocytic

signal that binds through sialic-acid-binding Ig-like lectin (Siglec)-

10 (238, 239). There are various other targets that repolarize TAMs

including agonism or inhibition of TLRs, scavenger receptors

(CD206, Clever-1, macrophage receptor with collagenous

structure (MARCO), stimulator of interferon genes (STING),

phosphoinositide 3-kinases gamma (PI3Kg), or histone

deacetylase (HDAC). Some of these therapies have broad impacts

on anti-tumor immunity, although TAM re-polarization is

recognized as an important contributing factor (186, 240, 241). A

phase I/II clinical trial with a Clever-1 inhibiting antibody resulted

in reversed immunosuppression in the TME and some clinical

responses in patients (242). Conventional radiation therapy, proton

irradiation, cryo-thermal therapy and cryosurgery have also been

used to repolarize TAMs in addition to directly killing cancer cells.

These therapies have multiple anti-cancer mechanisms, but in

general cause activation of previously immunotolerant

macrophages (243–246).

Toll-like receptors, a type of pattern recognition receptor, sense

and respond to exogenous and endogenous danger signals. Their

stimulation largely results in inflammatory, anti-cancer responses

mediated by various immune cells including macrophages, and so

make attractive targets for TAM repolarization. Historically,

systemic administration of TLR agonists was inefficient and

resulted in significant toxicity. However, with the advancements

of nanomedicine, TLR agonists are able to be administered with

fewer adverse effects, significantly improved tumor trafficking, and

prolonged persistence in the TME (247, 248). Repolarization of
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TAMs has been investigated pre-clinically using nanoparticles

(NPs) loaded or linked with various TLR agonists including CpG

oligodeoxynucleotides, type I IFNs, imidazoquinolinone, and many

others (247–252). Interestingly, empty NPs themselves have been

shown to stimulate TLRs (247). As with many immunotherapies,

combination therapy is of high interest. Imiquimod, a TLR-7

agonist, and anti-CD47 antibodies were delivered together on a

nanoscale metal framework, leading to tumor eradication when

combined with checkpoint inhibitors in a colorectal tumor

model (253).

As mentioned above, the metabolism of TAMs and other

myeloid cells in the TME is unique and contributes to

immunosuppression and treatment resistance. Altering their

metabolic pathways has therefore become an interesting

therapeutic target. CB-1158, a small molecule developed to inhibit

arginine metabolism and reverse immunosuppression in the TME,

has entered phase I/II trials alone and in combination with

checkpoint inhibitors (105, 254). Other interventions are under

study that reprogram TAM metabolism towards an M1 phenotype,

including suppressing glycolysis (resulting in decreased lactate in

the TME), inhibiting hypoxia, and regulating iron handling. As

might be expected, metabolic manipulation can have complex

downstream effects, and the metabolism of TAMs even within a

solitary tumor is significantly heterogenous (81, 104).

Cell-based therapies with macrophages deserve special mention.

Combining cell therapy with nanotechnology has been used in of

interesting ways to target TAMs. The first approach is to load M1-

like macrophages with a variety of drug-laden NPs, inducing tumor

cell killing via both the NP load and their natural M1 functions

(255, 256). The second approach involves using NPs to deliver

messages to TAMs to induce repolarization. One group used

mannose-coated nanoparticles to introduce mRNA encoding M1-

polarizing transcription factors into TAMs, subsequently inducing

an M1 phenotype with anti-tumor properties (257). These

approaches can be combined, for example, by using doxorubicin-

laden NPs anchored to macrophages via LPS. When these reached

their target, tumor cells were killed via M1 macrophages and

doxorubicin, and TAMs were re-educated via the LPS (258).

Macrophages have been modified in a variety of other ways as

well for cell-based therapy, including engineered IFN-g-laden
“backpacks” and lentivirus-driven genetic engineering to express

therapeutic IL-12, a pro-inflammatory cytokine (259, 260). Most

interestingly, macrophages have been identified as candidates for

CAR therapy. Large numbers of macrophages can be obtained after

monocyte-apheresis or from HSCs (261, 262). Despite initial

technological challenges, macrophages can now be engineered to

express CARs against a cancer-specific antigen, called CAR-M cells

(263, 264). It has been suggested that CAR-M cells possess an

advantage over CAR-T cells in their ability to infiltrate into the

TME and bypass the immunosuppressive environment, as well as

re-educate “bystander” M2 macrophages (263, 265). Recently, the

first-in-human CAR-M trial was launched, targeting human

epidermal growth factor receptor 2 (HER2)-positive solid tumors

(clinical trial NCT04660929). Several other targets are under

preclinical investigation for CAR-M therapy (186, 264).
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TAM-specific imaging

Dynamic TAM-specific imaging is an important arm in

treatment strategies. This has been investigated with both

magnetic resonance imaging (MRI) and positron emission

tomography (PET). TAM-targeting contrast agents used with

MRI are phagocytosed by monocytes and then accumulate in

tumors or leak directly into tumors due to the increased

permeability of tumor vessels and are subsequently phagocytosed

by macrophages. Alternatively, some agents are labeled with

antibodies that bind macrophage receptors. Gadolinium, iron

oxide nanoparticles and fluorine-19 have all been studied

preclinically. Generally, these agents are unable to distinguish

M1-like versus M2-like TAMs (266). Therapeutic uses of contrast

agents have also been studied. One group used magnetic resonance

targeting to direct iron oxide-labeled macrophages carrying an

oncolytic virus to the sites of primary and metastatic tumors in

mice. This resulted in increased macrophage infiltration and

decreased tumor burden (267). With PET, radiotracers can be

used to distinguish generally pro-inflammatory and anti-

inflammatory macrophages. Tracers are in development for

several prototypical M2 markers. Another approach is to target

radiotracers to macrophage function, such as phagocytosis or

antigen presentation (268). Imaging probes can be modified to

include immunomodulatory therapeutics, resulting in imaging

techniques that are both diagnostic and therapeutic. As discussed

above, CSF-1/R blockade is a popular investigational approach for

TAM depletion. Ligands of CSF-1R have been radiolabeled for PET

tracers and investigated in mouse models (269). Several other

targets of macrophage-based therapy are under similar

investigation as potential imaging tracers. In theory, these tracers

could be used to stratify patients pre-treatment who may benefit

from macrophage-based therapy, deliver macrophage-targeted

therapies and monitor response to therapy (269).
Therapy (companion dogs)

In companion dogs, there are historically very few macrophage-

specific therapies in cancer, although this is starting to change. As

mentioned above, several therapeutics in use likely significantly

impact TAMs, whether intentionally or not. As in humans,

depletion of TAMs via BPs has been attempted. Liposomal

clodronate (LC) was evaluated for the treatment of 13 dogs with

soft tissue sarcoma (STS), and serial biopsies from 5 of them

demonstrated significantly decreased numbers of infiltrating

macrophages after the administration of LC. However, a decrease

in TAMs was not correlated with tumor regression in this small

sample (270). This group also used canine histiocytic sarcoma (HS)

cells to evaluate sensitivity to LC in vitro, demonstrating apoptotic

cell death in HS cell lines, but not other cell lines. They also showed

tumor regression in 2 of 5 dogs with spontaneous HS treated with

LC. As histiocytic neoplasms arise from DC or macrophage origin,

the mechanism leading to apoptosis is likely similar to primary

macrophages (271). They also demonstrated an increased sensitivity

to chemotherapy in canine HS cells co-treated with clodronate
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(272). Regarding the CSF-1/R axis for TAM depletion, a blocking

antibody against canine CSF-1R has been developed, although

follow-up work has not yet been published (188).

Attempts to block the recruitment of TAMs have also been

evaluated in dogs. Losartan, a type I angiotensin II receptor blocker,

has recently gained interest as a newly recognized specific inhibitor

of the CCL2-CCR2 axis mentioned above. Its ability to block

monocyte/macrophage recruitment was initially evaluated in

inflammatory and atherosclerotic diseases (273). Regan et al. were

the first to evaluate its anti-cancer role as a TAM-targeting therapy

in dogs. They initially demonstrated a reduction in pulmonary

metastasis in a mouse model associated with a significant decrease

in monocytes recruited to the lung through the inhibition of CCL2

(189). A follow-up study demonstrated that losartan inhibited

monocyte migration to human and canine osteosarcoma cells in

vitro. A prospective clinical trial evaluating safety and efficacy in

combination with toceranib was performed on dogs with metastatic

osteosarcoma. In the high-dose cohort, 4 of 16 dogs experienced a

partial response of their lung metastasis for a median duration of

163 days, and another 4 dogs experienced stable disease for a

median of 139 days (190). These findings were significant as

toceranib alone had been shown to have minimal activity in

metastatic osteosarcoma in dogs (274). This same group used

losartan in combination with propranolol (shown to have MDSC

depletion activity) and a cancer stem cell vaccine in canine glioma.

Of 10 dogs (6 with high-grade tumors and 4 with low-grade

tumors), 2 experienced a partial response and 8 had stable

disease, with an overall MST of 351 days (191). This MST is

comparable to other studies for high-grade disease (275, 276).

The final approach of re-polarizing or activating TAMs has also

been investigated (largely unintentionally). In all examples noted

below, other than when explicitly stated, macrophage-specific data

were not reported, even when other immune cells were profiled.

Several bacterial-based immunotherapies which cause broad

immunomodulation in the TME undoubtedly impact TAMs in

some way. Starting in the 1890s, a New York City surgeon Dr.

William Coley was treating cancer patients with systemic or intra-

tumoral injections of bacteria and bacterial products referred to as

Coley’s toxins. Although he went through several iterations, the

most successful concoction was heat-killed streptococcal organisms

and Serratia marcescens, importantly anaerobic organisms that

would flourish in a hypoxic tumor (277). Although his results

eventually came under fire for inconsistencies, the kernel of his

ideas has lived on in other experiments (278, 279). Importantly for

macrophages, Coley’s toxins and other bacterial products are

known to activate TLRs and other pathogen-associated molecular

pattern receptors (280, 281). This bacterial activation of

macrophages is the precursor to more specific TLR agonists used

in macrophage-based therapies presently (240, 280).

Multiple bacterial-based anti-cancer therapies have been

evaluated in dogs. These include a phase I trial of Salmonella

typhimurium in dogs with spontaneous tumors, intra-tumoral

injection of Clostridium novyi spores in dogs with spontaneous

tumors (largely STSs), and Listeria- and Salmonella-based vaccine

strategies in dogs with osteosarcoma (278, 279, 282–284). Two

vaccine-based treatments for canine OS showed promise (one with
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immunogenic peptides from Salmonella-infected canine

osteosarcoma cells and one with a HER2-targeting Listeria).

Improvements in time to metastasis and survival were seen

compared to historical cohorts receiving the standard of care in

these preliminary studies (282, 284). Bacillus Calmette-Guerin

(BCG), a live-attenuated strain of Mycobacterium bovis, is

thought to activate macrophages predominantly through TLR-2,

although it introduces a massive cytokine response and likely works

through other mechanisms as well (285, 286). In the 1970s and

1980s it was used in a wide variety of canine cancers with varying

degrees of success, although the treatment of transmissible venereal

tumors seemed most promising (287–289). A more recent study

used it in combination with vincristine in dogs with transmissible

venereal tumors, resulting in shorter times to regression and

increased macrophages in post-treatment biopsy samples (290).

Like the theory that the intentional administration of bacterial

products may be beneficial in cancer, the survival benefits of post-

limb salvage surgical site infections in dogs and people with

osteosarcoma are well-established. This is likely attributable in part

to the upregulation of NK cells, monocytes, and macrophages (291–

293). Laboratory studies have demonstrated that chronic bacterial

osteomyelitis-mediated suppression of tumor growth can be

abrogated by the depletion of NK cells and monocytes (294).

Another example is liposome-encapsulated muramyl tripeptide

phosphatidylethanolamine (L-MTP-PE), a synthetic derivative of a

bacterial cell wall component. The base compounds, muramyl

dipeptide or tripeptide, were studied in the 1980s by Fidler’s

group, who demonstrated that these compounds activate

monocytes and macrophages to kill tumor cells (295, 296). L-

MTP-PE is a ligand of the Nod-like receptor and is taken up via

phagocytosis, increasing inflammatory cytokines such as tumor

necrosis factor alpha (TNF-a), IL-6, and C-reactive protein (193,

297). It appeared to improve OS and disease-free interval compared

to the standard of care in dogs with osteosarcoma,

hemangiosarcoma, and stage I oral melanoma in several studies

from the 1990s (193, 194, 297). A similar study in dogs with

mammary carcinoma did not show any benefit to L-MTP-PE

treatment but did report the mild toxicity observed (similar in

people), namely fever and shivering for 10-24 hours after dosing

(195). Interestingly, this early work in companion dogs assisted the

advancement of this compound through phase II/III clinical trials in

people, and while it is approved for use in dozens of countries

outside the USA, it was denied approval by the FDA in 2007 (192).

Other ways to re-polarize TAMs have also been investigated in

dogs. A canine monoclonal agonist antibody against CD40, the

macrophage-activating receptor, has been developed. In a phase I

dose escalation trial, 27 dogs with STS were treated with intralesional

agonist anti-CD40 canine antibody and IL-2. A clinical benefit was

observed in 13 of 19 evaluable dogs at one month, including 2 partial

responses. Seven of the 11 dogs with stable disease at one month

continued to have stable disease for at least 50 days (197). As

mentioned above, paclitaxel, imatinib, and BTK inhibitors can

repolarize TAMs, and have been used in companion dogs with

cancer (298–301). Chloroquine, an anti-malarial drug, also

repolarizes TAMs via calcium-mediated nuclear factor kappa B

(NF-kB) activation and was evaluated in combination with
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doxorubicin for dogs with lymphoma (302, 303). Of a total of 30

dogs, the response rate for this combination therapy was 93.3% and

the median progression-free interval (PFI) was 5 months (302).

Although head-to-head trials are needed, a retrospective evaluation

of doxorubicin alone showed a similar PFI and a response rate of

84% (304). Another group treated canine MDMs with all-trans

retinoic acid (ATRA) to reduce immunosuppressive secretions

from the macrophages, with possible applications to reversing

immunosuppression in the TME (305). There is human data,

however, that shows ATRA may support M2 polarization (306).

Cancer vaccines rely in part on the presentation of tumor

antigens to innate immune cells, including macrophages (307). In

addition to the bacterial-based vaccines mentioned above, several

other cancer vaccines have been looked at in veterinary medicine.

An oncolytic vaccinia virus was used in xenograft models of canine

STS and prostatic cancer, significantly increasing tumor

macrophage infiltration and causing tumor regression (308).

Similarly, an oncolytic herpes virus was used for canine gliomas.

Pre-treatment biopsy samples showed significant infiltration with

macrophages, and transcriptome analysis indicated myeloid cell

activation after treatment (172). A whole-cell autologous cancer

vaccine for metastatic canine hemangiosarcoma utilized a protein

immune adjuvant known to activate macrophages and other

immune cells (309, 310). Dogs with hemangiosarcoma received

surgery followed by either chemotherapy or the vaccine; MSTs were

the same (142 days) and either therapy conferred a benefit over

surgery alone (309). Monophosphoryl lipid A, a TLR-4 agonist, has

been evaluated as an adjuvant for anti-cancer vaccines in people,

and an in vitro study showed it can activate canine macrophages as

well (175, 311). Other examples abound (312–316).

Cytokine-based therapies have obvious applications to

macrophage strategies as they are major drivers of macrophage

polarization and function. Kurzman et al. exposed canine

pulmonary alveolar macrophages to recombinant canine TNF-a
and IFN-g and found increased cytotoxicity against osteosarcoma

cells (317). A phase I trial evaluating PEGylated TNF-a in dogs with

spontaneous tumors showed increased tumor blood flow after

administration and was well-tolerated. Minor or transient

responses in melanoma, squamous cell carcinoma and mammary

carcinoma were noted (318). Inhaled IL-2 and IL-15 have also been

used to treat dogs with pulmonary metastatic disease, and a

statistically insignificant increase in macrophage numbers in

bronchoalveolar lavage samples was noted after IL-2 therapy

(319, 320). These latter cytokines are largely studied for their

anti-tumor activation of T cells and NK cells, although there is

evidence that they activate macrophages as well (321–323).

Checkpoint inhibitors are areas of ongoing research interest in

veterinary medicine. Although PD-1/PD-L1 blockade is most

associated with T cells, as mentioned above TAMs may also

express PD-1 and/or PD-L1. The blockade of this checkpoint has

been shown to increase tumor cell phagocytosis by PD-1-positive

TAMs (113, 324). Canine monoclonal antibodies blocking this axis

have been developed and used in a pilot clinical study (325–329).

Similarly, the CD47/SIRPa axis is conserved in dogs. A xenograft

model of canine diffuse large B-cell lymphoma was sensitive to

combinatorial anti-CD20 and CD47 blockade therapy (198).
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Conclusions and future directions

Tumor-associated macrophages have undeniable impacts on

cancer progression and response to therapy. Veterinary

therapeutics targeting macrophages and other myeloid cells lag

behind human therapies, although progress is being made in recent

years. As with other cell-based therapies, the cost of macrophage

adoptive cell therapy will likely be a major obstacle in veterinary

species. Regardless, there is a strong potential to use companion

dogs as a streamlined pipeline for macrophage-based therapy

discovery due to similarities in spontaneous cancers and immune

systems between both species. When other immune parameters are

being studied, monocyte/macrophage-specific data should also be

collected whenever possible. In polarization experiments, precise

and complete reporting of experimental conditions should be

provided to improve reproducibility. Many topics tangentially

related to TAMs are routinely studied in veterinary medicine,

including radiotherapy, nanomedicine, and advanced imaging

such as PET. Future studies should explore these topics in

relation to TAMs in companion species, including the impact of

radiotherapy on TAM polarization, the use of NPs to reverse

immunosuppression in the TME and improve outcomes in

veterinary oncology patients, and the use of novel PET tracers to

explore macrophage-based imaging. Additionally, scRNA-seq

techniques should be employed to deepen the understanding of

TAMs in dogs and other companion species.
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