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Effect of NETs/COX-2 pathway
on immune microenvironment
and metastasis in gastric cancer
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Harbin, Heilongjiang, China, 2The Key Laboratory of Myocardial Ischemia, Ministry of Education,
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Background: Neutrophil extracellular traps (NETs) are crucial in the progression

of several cancers. The formation of NETs is closely related to reactive oxygen

species (ROS), and the granule proteins involved in nucleosome

depolymerization under the action of ROS together with the loosened DNA

compose the basic structure of NETs. This study aims to investigate the specific

mechanisms of NETs promoting gastric cancer metastasis in order to perfect the

existing immunotherapy strategies.

Methods: In this study, the cells and tumor tissues of gastric cancer were

detected by immunological experiments, real-time polymerase chain reaction

and cytology experiments. Besides, bioinformatics analysis was used to analyze

the correlation between cyclooxygenase-2 (COX-2) and the immune

microenvironment of gastric cancer, as well as its effect on immunotherapy.

Results: Examination of clinical specimens showed that NETs were deposited in

tumor tissues of patients with gastric cancer and their expression was

significantly correlated with tumor staging. Bioinformatics analysis showed that

COX-2 was involved in gastric cancer progression and was associated with

immune cell infiltration as well as immunotherapy. In vitro experiments, we

demonstrated that NETs could activate COX-2 through Toll-like receptor 2

(TLR2) and thus enhance the metastatic ability of gastric cancer cells. In

addition, in a liver metastasis model of nude mice we also demonstrated the

critical role of NETs and COX-2 in the distant metastasis of gastric cancer.

Conclusion: NETs can promote gastric cancer metastasis by initiating COX-2

through TLR2, and COX-2 may become a target for gastric cancer

immunotherapy.

KEYWORDS

neutrophil extracellular traps (NETs), gastric cancer, metastasis, Cyclooxygenase-2
(COX-2), toll-like receptor 2 (TLR 2)
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1 Introduction

The global morbidity and mortality of gastric cancer (GC) are

increasing annually, and China has approximately half of the

world’s patients with GC (1, 2). Gastric cancer has a complex

etiology and is induced mainly by Helicobacter pylori infection

during an inflammatory reaction (3, 4). The prognosis of GC is

polarized. Physical examination shows that endoscopic resection

usually leads to a good long-term prognosis of early gastric cancer,

but advanced GC is often correlated with distant organ metastasis,

leading to poor survival rate and prognosis (5, 6). Therefore, gastric

cancer research has gradually focused on the metastasis (7).

According to research, GC is always accompanied by the

infiltration of a lot of inflammatory cells, which are also

implicated in the metastasis of GC (8). Evidence supports that

neutrophils play a crucial role in GC (9–11).

Neutrophils are important immune cells in the human body,

mainly involved in the inflammatory responses, and the

mechanisms of neutrophils in cancer evolution are still unclear

(12). Neutrophils promote metastasis of many types of cancers,

including gastric cancer (13), which is related to neutrophil

extracellular traps (NETs) or their interactions with various

inflammatory cytokines (14–17).

NETs are mainly composed of the DNA reticular released by

the stimulation and activation of neutrophils, and embedded with

various granule proteins, like citrullinated histone H3 (citH3),

neutrophil elastase (NE) and myeloperoxidase (MPO) (18). NETs

are correlated with the immune response of cancers, like breast

cancer, hepatoma, and colorectal carcinoma (19). Our group

previous study has reported that NETs can promote gastric

cancer metastasis with the underlying mechanisms unclear (20).

As an inducible enzyme, COX-2 can be activated by

inflammatory factors and tumor promoters, and its expression is

related to the colonization ofHelicobacter pylori; however, the related

mechanisms are unclear (21–23). The research have revealed COX-2

is related to the metastasis of breast, lung, prostate, and ovarian

cancers (24). Clinical studies demonstrate that COX-2 can be used as

a protein marker for predicting lymph node metastasis of GC (25–

27). Neutrophil aggregation and NETs formation can regulate COX-2

in inflammatory diseases like arthritis (28). This study aims to further

investigate the mechanisms which NETs promote gastric cancer

metastasis and clarify the role of COX-2 in the downstream

cascade induced by NETs.
2 Materials and methods

2.1 Tissue samples and cells

All patients had a clear pathological diagnosis (primary gastric

cancer) and signed an informed consent form in this study. We

excluded patients under 18 years of age or over 70 years of age, as

well as patients with severe cardiovascular and autoimmune

diseases. In addition, patients with a prior diagnosis of

malignancy or the presence of distant metastases from the tumor

were excluded. AGS and HGC-27 were purchased from PROCELL
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(Wuhan, China). Upon reaching 80-90% cell confluence, follow-up

experiments were performed, including cell passaging, cell

cryopreservation, and the extraction of RNA and protein.
2.2 Neutrophils isolation

We used a neutrophil isolation kit to isolate the neutrophils

from peripheral blood of patients with gastric cancer. After mixing

the neutrophil separation solution with the blood, the mixture was

centrifuged for 35 minutes to stratify the blood, and then the

neutrophil layer was gently aspirated with a disposable dropper.

The erythrocyte separation solution was used to purify the

neutrophil layer. These steps were repeated until red blood cells

were completely removed.
2.3 Generation, isolation, and preparation
of NETs

Using 100nM phorbol 12-myristate 13-acetate (PMA),

neutrophils were activated and incubated for four hours.

Neutrophils and NETs were collected in cold PBS and

centrifuged for ten minutes. To obtain a NETs suspension, the

supernatant was centrifuged at 15000g. NETs were frozen at -20°C

following the determination of DNA concentration on an

ultraviolet spectrophotometer.
2.4 Cell stimulation and gene knock-down

To pre-stimulate the cancer cells with NETs, AGS and HGC-27

cells were seeded in a medium containing NETs (0.5mg/ml) for 24

hours. Cancer cells were cocultured with the COX-2 inhibitor NS-

398 (50mM, 24 h) (Beyotime, Shanghai, China), and the toll-like

receptor 2 (TLR2) inhibitor C29 (50mM, 2h) (MedChemExpress)

was pre-stimulated before NETs stimulation. The cells were rinsed

with PBS and follow-up experiments were performed after changing

the culture medium. The COX-2 knock-down lentiviral vector

(sequence: GCTGAATTTAACACCCTCTAT) and negative vector

(shNC) (Genechem, Shanghai) were transfected into AGS and

HGC-27 cells, and stable cell lines were developed and

refrigerated at -80°C.
2.5 Real-time polymerase chain reaction
(PCR) analysis

RNA was isolated using Trizol reagent (Invitrogen, CA, USA).

Applied Biosystems 7500Fast (Thermo Fisher, USA) was used for

analysis. Sequences of primers include COX-2, forward:5’-

CCAGAGCAGGCAGATGAAATA-3’;COX-2, reverse: 5’-CAGCA

TCGATGTCACCATAGAG-3’; TLR2, forward:5’-ATCCTCC

AATCAGGCTTCTCT-3’;TLR2, reverse:5’-GGACAGGTCAA

GGCTTTTTACA-3 ’ ; TLR4, forward:5 ’-AGACCTGTCCC

TGAACCCTAT-3 ’ ;TLR4, reverse:5 ’-CGATGGACTTCTA
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AACCAGCCA-3 ’ ; TLR9, forward :5 ’ -AATCCCTCATA

TCCCTGTCCC-3’;TLR9, reverse:5’-GTTGCCGTCCATGAA

TAGGAAG-3’.
2.6 Transwell assay

Cells were aliquoted into Transwells chambers (Corning,

USA), which were inserted in a 24-well plate. After culturing the

cells for 24h, the underside of the polycarbonate membranes were

fixed. The cells passing through the membrane were observed

under a microscope to evaluate the cancer cell migration. In the

invasion test, the Matrigel was placed at the bottom of the

chamber before cell inoculation. The Matrigel (Corning, 356234,

USA) and the 24-well plate were pre-cooled before the Matrigel

was laid and then transferred to a 37°C incubator after the

Matrigel was laid evenly.
2.7 Wound-healing assay

Gastric cancer cells in the pretreated group or untreated control

group were counted, and the cell concentration was adjusted. The

cells were inoculated evenly in a 6-well plate. When cell

convergence reached 80-90%, a wound was made with a 200mL
aseptic pipette tip perpendicular to the bottom of the plate.
2.8 Immunohistochemistry assay

The sliced tumor tissues were dewaxed with xylene before the

experiment. After removing endogenous peroxidases, the tissues

were steamed in the citric acid buffer to expose antigen-binding

sites. Following blocking with serum, primary antibodies against

citH3 (Affinity, USA), COX-2 (Abcam), and TLR2 (Proteintech)

were added and incubated overnight. The slides with tissue were

plated with a secondary antibody at room temperature, and stained

with diaminobenzidine and hematoxylin, which can be preserved

for a long time after being treated with neutral gum. Tissues were

observed microscopically and analyzed using Image-lab software to

evaluate the expression of target proteins.
2.9 Immunofluorescence

The tumor cells were seeded on a microscope slide, and the cells

were pre-stimulated after completely attached to the slide. For

frozen tissue sections, PBS was used to wash off the OCT

compound before the experiment. The slides or frozen sections

were blocked for one hour, and covered with the primary antibodies

against citH3 (Affinity), COX-2 (Abcam), TLR2 (Abcam), and

MPO (Abcam) overnight. Cells or tissues were covered with

fluorescent secondary antibodies for 2 h, and re-stained with

DAPI or Hoechst. We used Image-Lab to evaluate the expression

of the target proteins.
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2.10 Animal model

BALB/c nude mice were purchased from Weitong Lihua Co.

Ltd. All mice were anesthetized with inhalation before operating.

Intraperitoneal injection of Dnase-1 could inhibit the formation of

NETs in nude mice. For the mouse subcutaneous tumor model,

200mL of HGC-27 cell suspension was injected into the axilla, and

the mice in experimental group were intraperitoneally injected with

deoxyribonuclease I (Dnase-1) every 24h (5mg/kg). All mice were

euthanized after 15 days. For the mouse liver metastasis model, 75-

125mL of HGC-27 cell suspension was injected into the spleen. After

ligating the blood vessels around the spleen, the spleen was severed.

Tumor tissues were collected for follow-up experiments.
2.11 Data preparation and processing

Disease expression data and clinical information of gastric cancer

(STAD) were obtained from the Cancer Genome Atlas (TCGA)

database. The transcriptional spectra of tumor and paracancerous

samples were obtained from the TCGA. The response of STAD to

immunotherapy was evaluated by a submap analysis. The database of

GDSC was used to forecast the drug sensitivity.
2.12 Carcinogenic characteristics of COX-2

The expression differences of the target gene in tumor and

adjacent tissue were analyzed based on transcriptional data, and the

Kaplan-Meier curve was plotted based on clinical information. GO

and KEGG databases were used to analyze the correlation between

COX-2 and cancer-related functional pathways, and the results

were displayed by GSVA thermomaps.
2.13 The immunological characteristics
associated with COX-2

We employed ESTIMATE algorithm to calculate the infiltration

ratio. The relationship between neutrophil infiltration and the

target gene level was assessed using the MCPcounter algorithm

with the Tumor Immunoassay database (TIMER 2.0), and ssGSEA

was performed with the GSVA program package.
2.14 Statistical analysis

The independent samples with normal distribution were tested

using the parametric t-test, the samples with homogeneity of variance

were tested using the nonparametric t-test, and the samples with

uneven variance were tested using Welch’s correction. The paired

samples whose difference obeyed a normal distribution were tested

using a parameter t-test. Paired samples whose difference did not

obey a normal distribution were analyzed using a nonparametric t-

test. Statistical significance was set at p< 0.05.
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FIGURE 1

NETs and COX-2 in gastric tumor tissues. (A) Expression of cit-H3 in gastric cancer tissues of different stages. (**p<0.01; ****p<0.0001; n=3) (B)
Expressions of cit-H3 and MPO separately in gastric cancer and adjacent tissues. The expression of both was assessed by fluorescence intensity.
(*p<0.05 vs. Adjacent; n=3) (C) Representative images of COX-2 expression in gastric cancer and adjacent tissues. The expression of COX-2 was
compared by statistical immunohistochemical positive rate. (*p<0.05 vs. Adjacent; n=3) (D, E) The cells crossing the polycarbonate membrane in the
control and NETs stimulation groups were measured by migration and invasion assays. (*p<0.05 vs. Control; n=3). All results are presented as mean
± SD.
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3 Results

3.1 NETs and COX-2 in gastric
tumor tissues

The markers of NETs, citH3 and MPO, were detected in GC. In

the frozen sections, the MPO (green fluorescence) and citH3 (red

fluorescence) were full of disordered tumor tissues (Figure 1B), and
Frontiers in Immunology 05
their fluorescence intensities were higher than those of normal

tissues adjacent to tumors. Similarly, immunohistochemistry

demonstrated the citH3 in GC was correlated with the

pathological stage (Figure 1A). These observations proved the

high expression of NETs in GC. We then examined the COX-2

level in tumor tissues. The immunohistochemistry indicated COX-2

in tumor tissues was considerably increased than that in adjacent

(Figure 1C). To investigate the effect of NETs on the invasion and
A B

D

E

C

FIGURE 2

COX-2 is correlated with GC progression and prognosis. (A) Difference of COX-2 expression between cancer and paracancerous samples in TCGA
database. (B) The survival curve of patients with high and low COX-2 expression based on TCGA database. (C) Forest map of univariate and
multivariate cox regression based on TCGA dataset and clinical variables. (D) In gastric cancer tumor microenvironment, the expression of COX-2 is
related to ESTIMATE score, immune cell infiltration (ImmuneScore) and the proportion of stromal cells (StromalScore). (E) The GSVA analysis of
tumor-associated functions and signaling pathways in GO and KEGG databases.
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migration ability, we also employed Transwell assay, the research

indicated the number of cells which were pre-stimulated by NETs

moving through the membrane was higher than that of the

untreated gastric cancer cells (Figure 1D). Similarly, after covering

the polycarbonate membrane with Matrigel, the number of cells

pre-stimulated by NETs was still higher than that of the untreated

cells (Figure 1E).
3.2 COX-2 is correlated with prognosis and
involves in the progression of GC

The analysis based on the TCGA database showed that COX-2

was highly expressed in tumor tissues of GC (Figure 2A).

Furthermore, The Kaplan-Meier curve depicts the change in

survival probability over time in high and low COX-2 groups

(Figure 2B). The gene expression and clinical data in TCGA

database were analyzed by univariate and multivariate cox

regression analysis, and the result proved that COX-2 was an

independent risk factor in GC (Figure 2C). The TME score

revealed that COX-2 level was positively correlated with immune

score and stromal score, which implied that the activation of COX-2

was involved in the change of TME in GC (Figure 2D). Through

Gene Set Variation Analysis (GSVA) of tumor-associated functions

and signaling pathways in GO and KEGG databases, we found that

COX-2 was correlated with tumor progression. The results of

GSVA indicated that high COX-2 level was related with biological

processes which contribute tumor advance, such as growth factor

activity and positive regulation of glycolysis, and it was also

associated with a variety of signaling pathways which accelerate

tumor development, such as VEGF and MAPK signaling

pathways (Figure 2E).
3.3 COX-2 in GC is related
with immunocyte infiltration
and immunotherapy

We employed GSVA to analyze the processes related to the

immune reaction, such as the signaling pathways relevant to T/B cells

and cytokines. The result demonstrated that the COX-2 level was

closely linked to the immune response and immunocyte infiltration

in GC (Figure 3A). Subsequently, we separately evaluated the

neutrophils in GC by multiple analysis methods. The results

indicated that COX-2 was significantly correlated with neutrophil

deposition (Figure 3B). Immune checkpoint inhibitors are the most

established and widely used in the immunotherapy of tumors.

Therefore, we performed submap analysis on the correlation

between COX-2 and the immune checkpoint inhibitors response.

The results showed that a high COX-2 level was correlated with anti-

CTLA4 response (Figure 3C). In addition, we also used the GDSC

database to analyze the sensitivity of chemotherapeutic drugs at

different COX-2 levels. We found the high COX-2 group in GC
Frontiers in Immunology 06
presented lower drug sensitivity to Gefitinib, Afatinib, Erlotinib,

XAV939, AZD1332, Sapitinib, Wnt-C59, CDK9, Ibrutinib,

AZD3795, Osimertinib and P22077 (Figure 3D).
3.4 NETs promote gastric cancer
metastasis by regulating COX-2

We measured COX-2 expression in low- and high-

concentration NETs stimulation (0.25 and 0.5mg/ml) and

compared it with the control group to explore the relationship

between NETs and COX-2. Compared with cells not stimulated by

NETs, the COX-2 mRNA expression was increased after the pre-

stimulation of NETs-conditioned medium, and the COX-2 mRNA

was correlated with the NETs concentration positively (Figure 4B).

To observe COX-2 expression in cells stimulated by NETs, we

performed immunofluorescence analysis, and the fluorescence

intensity of COX-2 was significantly increased when cells were

pretreated with NETs. We observed that COX-2 (green

fluorescence) was mainly located in the nuclear membrane of

AGS cells, and was pervasively expressed in the cytoplasm.

Compared to the dim green fluorescence of the control group, the

fluorescence intensity of COX-2 in AGS cells pretreated with NETs

was significantly increased, suggesting that NETs stimulation

regulates the COX-2 expression, similar to that in HGC-27 cells

(Figure 4A). We employed Transwell assay to research the function

of COX-2 in cells stimulated by NETs. We used cells stimulated by

NETs alone as the control group, the gastric cancer cells without

COX-2 knockdown (shCOX-2) were transfected with the shNC,

and the control group maintained the same concentration of NETs

stimulation as the experimental groups. In the experimental group

of cells transfected with shCOX-2, the amount of cells moving

through the polycarbonate membrane reduced after NETs

stimulation. In the other experimental group cocultured with

selective COX-2 inhibitors (NS398), the amount of cells moving

through the polycarbonate membrane further reduced. After the

polycarbonate membrane was covered with Matrigel, the results of

the invasion experiment were consistent with the above migration

assay (Figure 4C). To verify the correlation between NETs

stimulation and COX-2, we then employed experiments in vivo.

We subcutaneously inoculated HGC-27 cells to nude mice under

the same conditions, and injected Dnase-1 into the experimental

group of animals to inhibit NETs. Compared with the control, the

COX-2 in experimental group significantly reduced following the

treatment with Dnase-1 (Figures 4D, E).
3.5 TLR2 is the pivot for NETs to
regulate COX-2

TLR/MyD88-related pathways widely exist in many cancers, like

liver cancer (29) and colon cancer (30, 31), regulating the tumor

inflammatory microenvironment and development. Previous studies

on intestinal tumors (32) and gastric cancer (33) showed that TLR/
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MyD88 signaling could regulate its downstream COX-2/PGE2 axis.

To detect the upstream pathway in which COX-2 expression is

regulated by NETS, we screened TLR signals to determine the

target of NETs regulation. Studies have shown that TLR2, 4 and 9

are the three most important receptors that regulate the progression
Frontiers in Immunology 07
of various cancers among the TLR receptors (TLR1-10). TLR2/4 are

dominant in gastrointestinal cancers, like esophageal cancer, GC, and

colon cancer, while TLR9 signaling is more common in other kinds of

cancers, like breast cancer, prostate cancer, and renal cell carcinoma

(34). Therefore, we screened TLR2, 4 and 9 after the cells were
A

B

D

C

FIGURE 3

COX-2 is associated with immunocyte infiltration and immunotherapy. (A) The GSVA analysis of the processes related to the immune reaction. (B)
The relationship between the expression of COX-2 and neutrophil infiltration in gastric cancer was analyzed by MCPcounter algorithm, single
sample genome enrichment analysis (ssGSEA) and TIMER database. (C) The submap analysis between immunotherapy responses (anti-PD-1 and
anti-CTLA-4) and COX-2 levels in TCGA-STAD. (D) The evaluation of drug sensitivity in different COX-2 levels based on GDSC database.
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pretreated with NETs. The experimental group of cells was pre-

stimulated by co-culture with NETs in the medium, and then TLR2/

4/9 expression were measured compared with the control. After

NETs stimulation, the Ct value of TLR4/9 did not change

significantly, but the Ct value of TLR2 decreased markedly,
Frontiers in Immunology 08
indicating that NETs stimulation up-regulated TLR2 expression

(Figure 5A). To observe TLR2 expression stimulated by NETs, we

performed immunofluorescence analysis. In AGS cells, TLR2 (red

fluorescence) was located on the cell membrane, and its fluorescence

intensity was increased in cells pre-stimulated with NETs. The same
A B

D

C

E

FIGURE 4

NETs promote gastric cancer metastasis by regulating COX-2. (A) Representative images of COX-2 distribution and expression in two gastric cancer
cell lines after NETs stimulation. The COX-2 expression was evaluated by statistical fluorescence intensity. (***p<0.001 vs. Control; n=3). (B) The
mRNA expression of COX-2 in two gastric cancer cell lines changed with the NETs concentration. (*p<0.05; **p<0.01; n=3) (C) The number of cells
stimulated by NETs passing through Transwell chambers was measured by migration and invasion assays and observed after crystal violet staining.
NS398 addition and shCOX-2 transfection were used to simulate the inhibition of COX-2 in different degrees. Each group maintained the same
concentration of NETs. (*p<0.05; **p<0.01; ***p<0.001; n=3) (D, E) The expression of COX-2 in subcutaneous tumor was decreased after the nude
mice were intraperitoneal injected Dnase-1. We use the positive rate of immunohistochemistry to measure the expression of COX-2. Subcutaneous
tumor specimens are shown on (E). (**p<0.01 vs. Control; n=3). All results are presented as mean ± SD.
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phenomena were observed in HGC-27 cells (Figure 5C). We then

measured TLR2 expression in vivo. NETs in tumor tissues was

inhibited by Dnase-1 intraperitoneal injection during the tumor

formation of HGC-27 cells in mice and compared with the
Frontiers in Immunology 09
untreated control group. In the experimental group in which NETs

were inhibited, the expression of TLR2 was significantly decreased.

Figure 5B showed the immunohistochemistry results. We have

previously shown that COX-2 and TLR2 are affected by NETs
A

B

D E

C

FIGURE 5

TLR2 is the pivot for NETs to regulate COX-2 (A) The mRNA expression of TLRs in two gastric cancer cell lines after NETs stimulation. (*p<0.05 vs.
Control; NS, no significance; n=3) (B) The expression of TLR2 in subcutaneous tumors was decreased after the nude mice were intraperitoneal
injected Dnase-1. (***p<0.001 vs. Control; n=3) (C) Representative images of TLR2 distribution and expression in two gastric cancer cell lines after
NETs stimulation. The expression of TLR2 was evaluated by statistical fluorescence intensity. (*p<0.05; **p<0.01; n=3) (D) TLR2 inhibitor C29 affects
the expression of COX-2 in gastric cancer cells stimulated by NETs, the distribution and expression of COX-2 are illustrated in the figure. The
expression of target gene was evaluated by its fluorescence intensity. (**p<0.01; ***p<0.001; n=3) (E) TLR2 inhibitor (C29) affects the mRNA
expression of COX-2 in gastric cancer cells stimulated by NETs, which were measured by real-time PCR. (*p<0.05; **p<0.01; n=3). All results are
presented as mean ± SD.
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stimulation, but the specific relationship between them needs to be

further confirmed. The immunofluorescence result indicated COX-2

was decreased by TLR2 inhibitor (C29) in tumor cells treated with

NETs. Compared with the control stimulated with NETs alone, the

fluorescence intensity of COX-2 in cells pretreated with C29
Frontiers in Immunology 10
significantly decreased after NETs stimulation (Figure 5D). As

determined by PCR, the COX-2 mRNA in C29 treatment group

was more decreased than that in group stimulated with NETs only

(Figure 5E). These results interpret the connection between TLR2 and

COX-2 downstream of NETs stimulation.
A

B

DC

FIGURE 6

NETs act on COX-2 via TLR2 to promote GC metastasis. (A) The number of cells affected by NETs passing through membrane was measured by
migration and invasion assays with the intervention of C29 and PGE2, which were observed after staining. (*p<0.05; **p<0.01; ***p<0.001;
****p<0.0001; n=3) (B, C) Dnase-1 was injected into mice to inhibit NETs. HGC-27 cells transfected with shCOX-2 or negative control shNC were
implanted in the spleen of mice. The proportion of liver tissue replaced by hepatic metastatic tumor was counted as the liver replacement area (HRA
%). (**p<0.01; ***p<0.001; n=3) (D) The illustration of NETs promoting gastric cancer metastasis by regulating COX-2. (This picture is authorized by
the Figdraw platform. ID: SUWSO44938). All results are presented as mean ± SD.
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3.6 NETs promote GC metastasis by acting
on COX-2 through TLR2

As the main function of COX-2 is to convert arachidonic acid

into prostaglandin E2 (PGE2), PGE2 can be measured to quantify

the content of COX-2 under the same conditions (35). To further

prove the function of NETs in regulating COX-2 through TLR2 in

gastric cancer, we used PGE2 to perform rescue experiments. We

employed Transwell assay to detect the metastasis potential of cells

in the control group and each experimental group stimulated by

NETs. As the control group, we employed gastric cancer cells that

had only been activated by NETs, whereas the C29-pretreated cells

were used as the experimental group 1. PGE2 was added to gastric

cancer cells after TLR2 inhibition to simulate COX-2 up-regulation,

called experimental group 2. In the migration assay, the amount of

migrated cells in experimental group pretreated with C29 before

NETs stimulation decreased, but after the addition of PGE2, the

amount increased. The invasion assay showed a similar trend

(Figure 6A). We then employed a liver metastasis model in nude

mice. Figure 6B shows the multifaceted view of nude mouse liver

and HE staining of metastatic tumor sections. We used the hepatic

replacement area (HRA) to assess the severity of liver metastasis.

The results showed that the inhibition of NETs with Dnase-1 during

liver metastasis formation could lead to a significant decrease in

HRA compared to the control. After the COX-2 knockdown in

HGC-27 cells, we discovered the HRA was further reduced

(Figure 6C). These results suggest a NETs/TLR2/COX-2/PGE2

pathway in GC, through which NETs promote metastasis.
4 Discussion

Neutrophils contribute to the innate immunity of the human

body. Their main role is to respond to the recruitment of

the inflammatory chemokine and then engulf pathogenic

microorganisms in the infected area of the human body (36–39).

In the tumor microenvironment (TME), neutrophils support tumor

progression primarily through their pro-inflammatory effects, and

they also interact with other immune cells. Studies showed that

neutrophils cause the immune escape by inhibiting the T cells

production (40), leading to tumor progression by affecting the

recruitment of tumor-associated macrophages (TAMs) (41).

During cancer progression, tumor cells enter the peripheral blood

circulation and result in colonization and metastasis in various

organs throughout the body. Metastasis is often accompanied by

inflammatory reactions (42–44). In this progression, the

neutrophils secretion plays a crucial part, promoting angiogenesis

factors secretion and extracellular matrix (ECM) degradation which

lead to tumor spread (45–48). Additionally, NETs has been proved

to facilitate tumor metastasis in many cancers, whereas the

underlying mechanisms are still unclear (49–53).

NETs formation is mainly dependent on ROS produced by

NADPH oxidase. NETs use citH3, NE, MPO as their markers (18).

We found the up-regulation of NETs in gastric tumor by measuring

the expression of citH3 and MPO, and these two markers

demonstrated the basic morphology and localization of NETs in
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frozen tumor sections in immunofluorescence analysis (Figure 1B).

Previous researches demonstrate NETs exist in the extra-tumor

matrix (ECM) of gastric tumors, while the main mechanism which

promotes metastasis is precisely the remodeling of ECM (54). We

found that the metastatic potential of gastric cancer cells was

enhanced after the stimulation of NETs by Transwell assay

(Figure 1D). The researches have demonstrated that both normal

human endothelial cells and tumor epithelial cells treated with

NETs showed mesenchymal changes (55–57), which indicates that

NETs may take part in the metastasis of GC completely, including

the proliferation of endothelial cells and the distant spread of tumor

cells. This was also verified in an animal model in this study.

After intraperitoneal injection of Dnase-1 in mice, the hepatic

replacement area (HRA) decreased significantly, indicating that

NETs inhibition delayed the metastasis in some extent (Figure 6B).

Previous studies show that NETs plays a supporting part in the

progression of GC, including that NETs promote the formation of a

hypercoagulable state, and NETs are also found in peritoneal

metastases; however, the mechanism by which NETs affect GC is

still unclear (52, 58, 59). With further research, NETs have been

shown to induce many pro-inflammatory factors in tumor

microenvironment, like IL-8, TNF, and PDL1, during the

regulation of cancer. The interaction between these factors and

NETs also plays a crucial part in tumor metastasis (60, 61).

Similarly, inflammatory factors are significant in development of

GC. Inflammatory factors, like COX-2 and IL-6, jointly form the

inflammatory network in gastric cancer (62, 63), and the function of

COX-2 in colon tumor metastasis has been confirmed in vivo (64).

Thus far, we have found an interesting phenomenon: the mode

which NETs regulate tumor development overlaps with the

function of inflammatory factors in gastric cancer, which raises

the question about whether NETs can affect tumor progression by

regulating these inflammatory factors.

As a member of the tumor inflammatory microenvironment,

COX-2 is localized to the nuclear membrane and endoplasmic

reticulum (65), and it plays a critical part in many cancers (66–69).

For example, COX-2 can regulate intestinal cell adhesion and up-

regulate the activity of matrix metalloproteinase to enhance

metastasis (70, 71). In addition, the overexpression of COX-2

enhanced the chemotaxis of breast cancer cells to IL-11, thus up-

regulating the bone metastasis of tumor (72). In colorectal cancer,

adding COX-2 inhibitor to the tumor perioperative combination

regimen can inhibit liver metastasis of mice (73). However, the

research on COX-2 and inflammatory cells in tumor process has

mainly focused on tumor-associated macrophages (TAMs).

Researches have demonstrated that M2 TAMs can advance tumor

angiogenesis and invasion by regulating COX-2 and up-regulating

the matrix metalloproteinase, prostaglandin E receptor (EP1), and

other oncogenes (74–76); however, there are few studies on their

relationship with neutrophils. Additionally, as a pro-inflammatory

factor, COX-2 expresses both in tumor and stromal cells, but the

tumor-promoting effect of COX-2 are mainly in tumor (77, 78). We

detected that stimulation with different concentrations of NETs

could regulate the level of COX-2 in AGS and HGC-27 cells

(Figure 4B). Bioinformatics analysis revealed a crucial role of

COX-2 in TME (Figures 2D, E), and its level was closely
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associated with the deposition of neutrophils (Figure 3B). In

addition, ROS not only promotes the production of NETs, but

also has been shown to up-regulate COX-2 in inflammatory

environment (79, 80). Therefore, we speculate that NETs can

affect tumor progression through COX-2. Previous researches

showed that COX-2 was regulated by various inflammatory

mediators to promote tumor cells metastasis (81–84). We

observed the effects of COX-2 restraint on the invasion and

migration abilities of cancer cells in the NETs environment

(Figure 4C). The half-inhibitory concentration (IC50) of NS398

was 1.77mmol/L, so the 50mmol/L concentration of NS398 was able

to inhibit COX-2 protein more completely. However, the gene

knock-down technique was limited by the transfection efficiency,

and its inhibitory effect on COX-2 was reduced compared with

NS398. The results indicate NETs enhances the metastatic potential

of cells by regulating COX-2. In the following study, the liver HRA

was decreased compared to the control after the knockdown of

COX-2 in HGC-27 cells (Figure 6B). The finding may provide a new

option for the therapy and prophylaxis of distant metastases in

patients with advanced GC. We also found that COX-2 was

correlated with the sensitivity to immunotherapy and

chemotherapeutic agents, which may provide guidance for

medical treatment of GC (Figures 3C, D). For patients with high

COX-2 expression, the combination of COX-2 inhibitors and

immune checkpoint inhibitors may be an effective regimen.

TLRs are a class of transmembrane proteins located on the cell

membrane whose main function is to participate in the body’s

natural immunity. They are usually located on the surface of

dendritic cells and macrophages, but there are few studies on the

relationship between TLRs and NETs (85–87). Although most TLRs

are expressed in the cell membrane, the localization of some TLRs is

altered when normal epithelial cells are transformed into malignant

tumor cells, and they translocate from the cell membrane into the

cytoplasm (88). The inflammatory response is crucial for tumor

development and TLRs associate microbes with inflammatory

factors. It has been shown that in colitis-associated colon cancer,

inhibition of TLR-related signaling pathways suppresses the

inflammatory response and tumor progression (30, 31). Similarly,

in the inflammatory microenvironment of gastric cancer,

Helicobacter pylori activates downstream inflammatory factors,

like IL-6, IL-10, and COX-2, through TLRs (mainly TLR2 and

TLR4), thus initiating a series of inflammatory responses (33, 89,

90). Since we previously demonstrated the connection between

NETs and COX-2 in GC, we questioned whether NETs could

regulate COX-2 through TLRs, like Helicobacter pylori. We

measured the mRNA expression of three TLRs in AGS and HGC-

27 cells stimulated by NETs using real-time PCR (Figure 5A). The

result demonstrated a correlation between TLR2 and NETs. In

subsequent experiments, we inhibited TLR2 and introduced PGE2

to the NETs-stimulated environment. The Transwell assay

indicated that the metastatic potential of gastric cancer cells was

initially suppressed and then promoted, highlighting that TLR2 is

essential to the mechanism by which NETs regulates COX-2

(Figure 6A). Studies in hepatocellular carcinoma showed that
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TLR2 was involved in the immune escape initiated by HMGB1

and induced the senescence and autophagy of hepatocytes (91, 92).

Furthermore, TLR2 is highly expressed in breast cancer stem cells,

and TLR2 inhibition significantly attenuated the lung metastasis in

animal models (93). Besides, TLR2 is also a treatment target of

melanoma metastasis (94, 95). In addition to the infection by

Helicobacter pylori, various TLR2 ligands are expressed in GC like

HMGB1 and IL-11 (33, 96). IL-11 promoted tumor progression by

initiating gp130/Stat3 pathway through TLR2, and cancer

metastasis was inhibited by blocking the TLR2 signal in mice

(97). Similar to previous studies, our study also showed that

TLR2 is involved in tumor progression in gastric cancer, but we

demonstrated that NETs could also act as a ligand of TLR2 to

initiate downstream inflammatory factors.

In general, our results provide a multi-molecular mechanism by

which NETs promote gastric cancer metastasis, emphasize the

important role of NETs and COX-2, moreover provide potential

targets (NETs, TLR2, COX-2) for the clinical therapy and

prophylaxis of the metastasis (Figure 6D). Since NETs is a

reticular structure composed of many granule proteins, the

specific mechanism of NETs promoting metastasis, such as the

binding sites of NETs and the function of various granule proteins,

remains to be further explored. Furthermore, some studies reported

that COX-2-PGE2 has a positive feedback mechanism in tumors

and mediates immunosuppression of cancer (98). A similar

mechanism may exist in the process of NETs regulation of

metastasis, which will be our follow-up research.
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