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Background: The aging process affects all systems of the human body, and the

observed increase in inflammatory components affecting the immune system

in old age can lead to the development of age-associated diseases and

systemic inflammation.

Results: We propose a small clock model SImAge based on a limited number of

immunological biomarkers. To regress the chronological age from cytokine data,

we first use a baseline Elastic Net model, gradient-boosted decision trees models,

and several deep neural network architectures. For the full dataset of 46

immunological parameters, DANet, SAINT, FT-Transformer and TabNet models

showed the best results for the test dataset. Dimensionality reduction of these

models with SHAP values revealed the 10 most age-associated immunological

parameters, taken to construct the SImAge small immunological clock. The best

result of the SImAge model shown by the FT-Transformer deep neural network

model has mean absolute error of 6.94 years and Pearson r = 0.939 on the

independent test dataset. Explainable artificial intelligence methods allow for

explaining the model solution for each individual participant.

Conclusions: We developed an approach to construct a model of

immunological age based on just 10 immunological parameters, coined

SImAge, for which the FT-Transformer deep neural network model had proved

to be the best choice. The model shows competitive results compared to the

published studies on immunological profiles, and takes a smaller number of

features as an input. Neural network architectures outperformed gradient-

boosted decision trees, and can be recommended in the further analysis of

immunological profiles.
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1 Introduction

1.1 Background

The immune system plays an important role in protecting the

human organism from various infections. An increase in

inflammatory components affecting the innate and adaptive arms

of the immune system (1–4) is observed in old age, which may be

associated with the development of various age-associated diseases

(5, 5–7) and systemic inflammation (8–13). This chronic

inflammation, caused by the metabolic products of damaged cells

and environmental influences, has been associated with aging and

leads to progressive damage of many tissues (14, 15). This

phenomenon of increased levels of circulating inflammatory

mediators is called inflammaging (16–18). However, there are no

standard biomarkers to fully characterize it (19, 20).

The aging process is extremely complex and involves all body

systems, so there have been many attempts to characterize it and

estimate its rate from different perspectives: combining clinical

parameters, predicting the risk of mortality or cognitive

deterioration (21–25). A broad class of aging biomarkers are

various chronological age predictors, or clocks. Epigenetic clocks,

which attempt to predict a person’s age based on DNA methylation

data (26–29), are the most common. Recently, the inflammatory

clocks have been also developed (30–32). Both genetic factors

involved in the formation of immune composition (33–35) and

environmental factors (36, 37) can lead to significant individual

differences in immune characteristics. An individual’s immune

status continuously changes over time; therefore, immune age can

vary even among healthy individuals of the same chronological age

(38, 39). Understanding the relationship between biological aging

and an individual’s immunological profile and predisposition to

age-associated diseases may facilitate the development of tools to

slow aging and improve longevity (40).

One of the first immunological age biomarkers is Inflammatory

Biologic Age, which uses 9 inflammatory markers to construct an

aggregate age estimate based on data from over 3,000 subjects using the

KlemeraDoubal method (21). This inflammatory age acceleration has

been shown to be associated with increased risks of cardiovascular

disease and mortality. The original work compares mean values with

standard deviations of clinical and inflammatory ages; no error values

are given, so an explicit comparison with other approaches is difficult.

Another aggregated biomarker of immunological aging is IMM-AGE,

which reflects multidimensional changes in immune status with age

and is significantly associated with mortality. The association of IMM-

AGE score with cardiovascular disease has also been shown (30).

Aggregating information on cellular phenotyping and cytokine

responses in a fairly wide age range of individuals (40-90 years),

IMM-AGE demonstrates a P value of 10−60 for linear regression with

age. However, this score does not explicitly estimate age. Another

recently developed metric for human immunological age is iAge, an

inflammatory aging clock (31). It uses information on cytokines,

chemokines and growth factors from a thousand of healthy and

diseased subjects ranging from age 8 to 96 years to produce an

aggregated age estimate using a guided autoencoder. This nonlinear
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method, a type of deep neural network, eliminates the noise and

redundancy of the raw data while preserving important biological

information. Nevertheless, the model still requires the entire input data

to be fed to the input, and therefore is not entirely compact. Despite a

quite considerable average error of 15.2 years, the model manifests

associations with multimorbidity, immune aging, frailty, and

cardiovascular aging. Another example is the ipAGE model, which is

sensitive to age-associated acceleration in chronic kidney disease (32).

Constructed using the classic Elastic Net approach and relying on 38

immunological biomarkers, ipAGE demonstrates a mean absolute

error of 7.27 years and root mean squared error of 8.33 years for the

test subset of the control group and detects immunological biomarkers

significantly differentially expressed between cases and controls.

Notably, the model better assesses the phenotype of accelerated aging

in patients with end-stage renal disease by quantifying inflammaging

than various epigenetic clock models. It, however, has limitations due

to the small training sample size and the lack of cross-validation.

Another class of aggregated immunological biomarkers constructs age

estimates based on peptides or plasma proteins data (41, 42). Such

models are characterized by a large dimensionality of input data,

ranging from hundreds or thousands of human plasma proteins to

several million peptide features, that may be difficult to assess in

clinical applications.

All the described immunological age predictors use different

quantitative measures, and the input data for all of the models are

tabular: the rows contain samples (individual participants) and the

columns contain features (immunological measures). One of the most

common methods for constructing age predictor models (clocks) for

different types of data is Elastic Net. This model is used as the basis for

multiple age predictor models based on epigenetic (26–29),

immunological (32, 42), transcriptomic (43), metabolomic (44–46),

microRNA (47), and proteomic (48) data. The more advanced

methods like gradient boosting are also actively used to construct age

predictors, particularly from epigenetic (49) or gut microbiome (50)

data. In the last few years, deep learning methods, including neural

networks, autoencoders, and other approaches are also actively used to

construct various clock models, to name epigenetic (51),

immunological (31), transcriptomic (52), gut microbiome (53) and

hematological (54–56).

Linear models, like Elastic Net, are easily interpretable and widely

used in age prediction tasks. Despite this, they have a number of

drawbacks: assume linear relationships between dependent and

independent variables, do not take into account possible nonlinear

relationships, and are sensitive to outliers (57). In this regard, making

use of the gradient-boosted decision trees (GBDT) and neural network

approaches has considerable potential, in particular for tabular data.

Among GBDTs the most frequent choice for classification and

regression problems for tabular data is XGBoost (58), LightGBM

(59) and CatBoost (60), cf. also (61, 62). Several neural network

architectures have been developed specifically for tabular data, as to

compete with GBDTmodels. The increasing number of heterogeneous

data estimation tasks with both continuous and categorical features, for

which the traditional approaches are not always well applied, calls for

flexible solutions, in particular based on deep neural networks that can

capture complex nonlinear dependencies in the data (63).
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Regularization-based approaches (64, 65), different transformer

architectures (66–68), and hybrid methods that combine the

advantages of tree models and neural networks (69) have been

developed to handle tabular data. Despite the many approaches that

have been proposed, there is still no consensus on which methods

perform best for tabular datasets (61–63, 68).

Simple linear models are easy to interpret, the importance of

individual features is determined by the values of the corresponding

coefficients; most of the treelike models are also interpretable. For

neural network models the situation is more complicated: not all

existing models allow to obtain the importance ranking of individual

attributes. This can be mitigated by explainable artificial intelligence

(XAI) approaches that can determine the contribution of individual

features to the final prediction of almost any model (70–76).

Explainability can also be used to reduce the dimensionality of

models. Discarding unimportant, noisy features can often reduce

the input dimensionality of a model and improve the results. Global

and local types of explainability are especially interesting (77–79).

Global explainability helps to interpret the behavior of the model as a

whole: which features have the greatest influence on the prediction of

certain classes (for classification) or specific values (for regression).

Local explainability helps to determine why the model made its

prediction for a particular sample, and how this was influenced by the

feature values for that sample. This type of model explainability meets

the need of personalized medicine.
1.2 Study design and novelty

The primary goal of this work is to develop a small clock based

on a limited number of immunological biomarkers. We use the

classic Elastic Net model as the baseline, as the most common

method for constructing age predictors on various types of

biological data. To explore more advanced tools for chronological

age regression on tabular data we make use of gradient-boosted

decision trees (GBDT), which stand among the most well-proven

approaches specifically for tabular data. In many problems GBDT

models showed similar or better results in comparison with deep

learning models, but required less tuning and showed better

computational performance (61). Nevertheless, we also considered

several neural network architectures designed to solve problems on

tabular data.

Linear models, in particular Elastic Net, are easy to interpret,

whereas tree and neural network models are highly nonlinear, are

much more complex, and require methods of explainable artificial

intelligence for interpretability. Accordingly, we first apply XAI

methods to determine the most important features for age

prediction models based on immunological data. We also use the

obtained ranking to build portable models that consist of a small

number of immunological biomarkers. As a rationale, they are

much easier to implement with regard to practical applications,

particularly, in regard to cost. Above that, XAI methods have the

potential of explaining the model decision for each particular

sample (person), meeting the challenges of personalized medicine.
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2 Results

2.1 Data description

2.1.1 Participants
The study that involved a control group of 300 healthy

volunteers recruited in the Nizhny Novgorod region in 2019-2021

(train/validation dataset, 260 samples) and 2022-2023 (test dataset,

40 samples) was performed at Lobachevsky State University of

Nizhny Novgorod. Exclusion criteria were fairly loose, limiting

chronic diseases in the acute phase, oncological diseases, acute

respiratory viral infections, and pregnancy only. The sex

distribution has a significant predominance of women: 173

women and 87 men are in the train and validation datasets, 27

women and 13 men in the test dataset. The age distribution was also

not uniform, with an overall age range from 19 to 101 years,

participants from the age group of 30-60 years prevailed

(Figure 1A). Separate test dataset included 43 ESRD (end-stage

renal chronic disease) patients on hemodialysis recruited in 2019-

2021 at “FESPHARM NN” hemodialysis centers in the Nizhny

Novgorod region, Russia (32), who did not survive until May 2023

because of the effects of the underlying disease.

2.1.2 Features
Figure 1B displays 46 immunological biomarkers considered in

this study for all control samples (both train/validation and test

datasets). They were obtained using Luminex xMAP technology for

blood plasma samples (see Section 4.1 for details). To examine the

possible correlations between these immunological parameters and

their correlation with age, Pearson correlation coefficients and p-

values for testing noncorrelation (Benjamini-Hochberg FDR-

corrected p-value< 0.05) were calculated for each pair of features.

CXCL9 has proved to be the most correlated with age, in agreement

with the earlier studies (31, 32, 80, 81). Recent evidence suggests

that CXCL9 is an important marker of inflammation and plays a

key role in the development of age-associated diseases, such as

neurodegeneration (82), chronic kidney disease (32), glaucoma (83)

and various inflammatory diseases (84–86). In addition, there

emerged a whole group of interleukin biomarkers that are

significantly correlated with each other (the most strongly

correlated pairs are IL2 vs IL17A, IL2 vs IL15, IL17A vs IL15

with Pearson correlation coefficients almost equal to one). The

relationship between IL2 and IL15 has been demonstrated (87),

including cancer therapy (88, 89), as well as the relationship

between IL2 and IL17A (90, 91), and between IL15 and IL17A (92).

All data used in the present work, such as immunological

biomarker values, age, status (healthy control or ESRD) and sex

of participants, are summarized in Supplementary Table 1.
2.2 Experiment design

The aim of this study is to develop a machine learning model that

solves the problem of regression of chronological age (in other words,

clocks) on a reduced set of the most significant immunological
frontiersin.org
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biomarkers (Small Immuno Age - SImAge). Initially, there are 46

immunological markers available, and the goal is to effectively reduce

their number in such a way so that the accuracy of the age predictor

model does not decrease significantly. On the implementation side, a

number of manufacturers (i.e. Merck KGaA, Bio-Rad) are able to

produce custom panels with a pre-selected set of biomarkers (for

example, specific 10 immunological parameters instead of 46), that

can significantly reduce its cost.

The developed workflow is shown in Figure 2. The first step is to

train the models using all available immunological biomarkers

(Figure 2, step 1). We used a variety of machine learning models,

ranging from classical linear regression with Elastic Net

regularization [a popular choice in age regression tasks (26, 27,

32, 43, 45, 48)] to GBDT and various DNN (deep neural network)

architectures specifically designed for tabular data. Although GBDT

models are well established in regression problems for tabular data,

DNNmodels remain a competitive choice. Beside classical MLP, we

also consider more modern approaches, e.g. models based on the

Transformer architecture and/or implementing an attention

mechanism, that have shown their effectiveness for many
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problems on tabular data (68). Both GBDT and DNN models

employed in this paper are the state-of-the-art models that

compete for better results in many studies (61, 63, 67, 68). One of

the goals of this study is to find out which class of models is the best

in our specific problem setting with a limited number of samples.

The detailed description of the used models is given in Section 4.2.

5-fold cross-validation and hyperparametric search were used to

determine the model with optimal parameters that provided the

lowest mean absolute error (MAE) on the validation dataset

(Section 4.3). After that, the best model (with lowest validation

MAE) was tested on the separate test dataset. The main metric for

model comparison is the MAE on this test dataset, upon which the

final ranking of the models is based. The value of the Pearson

correlation coefficient was also tracked along with the MAE both

during cross-validation with hyperparametric search and during

testing the model on the independent dataset. This allows us to

avoid situations, when a small error is achieved only for the most

representative age range.

After several top baseline models were identified, we selected

the most important features (Figure 2, step 2) according to their
A

B

FIGURE 1

Information about the data analyzed in this study. (A) Stacked histogram showing distribution of samples by age and group: train/validation, test
control, test ESRD. (B) Relationships between all immunological biomarkers and age for all control participants (from both train/validation and test
datasets): Pearson correlation coefficient (top triangle) and the p-value for testing non-correlation (bottom triangle) were calculated for each pair of
features. All p-values were adjusted using Benjamini-Hochberg FDRcorrection (p-value< 0.05).
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importance in global explainability described by SHAP values

(Section 4.4). For this purpose, the best models with the lowest

MAE for the test dataset were first identified. Then the features were

ranked by their averaged absolute SHAP values, calculated for train/

validation datasets together, in these best models, yielding top 10

features in result.

To build the best portable model for predicting human

immunological age (SImAge), we used the same types of models

that emerged at the previous step (Top-3 models). However, the

models took only the 10 best parameters determined earlier as an

input. 5-fold cross-validation with hyperparametric search was also
Frontiers in Immunology 05
performed to find the best small model (Section 4.3). As for the first

step (but for 10 features, not 46) the best model was tested on the

independent dataset, and Pearson correlation coefficient was

tracked with MAE. As a result, we chose a model with the best

MAE on the test dataset, and coined it SImAge (Figure 2, step 3).

Then, we investigated the predictions produced by the SImAge

model (Figure 2, step 4). Using SHAP values (Section 4.4), we

estimated the contribution of certain immunological biomarker

values to the model predictions for individual participants. The

cumulative contribution of the individual features to the predictions

with positive and negative age acceleration was determined.
FIGURE 2

The main steps of the performed analysis. Step 1: Building baseline machine learning models on a complete list of 46 immunological biomarkers. For
each type of models 5-fold cross-validation and hyperparametric search are used to determine the best model with optimal parameters in terms of
MAE and Pearson correlation coefficient on validation dataset. Then, these best models are tested on the independent test dataset and the final
model ranking is built according to MAE on the test dataset. The actual splits are shown in the histogram. Step 2: Identification of the most
important features from the best baseline models. Averaged absolute SHAP values for the best models, calculated for train/validation datasets
together, are used to select the most important immunological biomarkers for building small models. Step 3: Building small models on a short list of
selected immunological biomarkers. As for Step 1, 5-fold cross-validation with hyperparametric search is used for determining the best model on
validation dataset. SImAge is the best model on the selected biomarkers in terms of MAE on the test dataset. Step 4: Analysis of age predictions
produced by SImAge. The contribution of individual immunological parameter values to individual participant predictions (using local explainability
and SHAP values) is measured, as well as the importance of features in groups of people with age acceleration (immunological age obtained by
SImAge model is higher than chronological age) and age deceleration (SImAge is lower than chronological age).
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2.3 Baseline results

We implemented the models from three conceptually different

classes to solve the problem of regression of chronological age from

immunological profile data: (i) the classical linear Elastic Net model,

(ii) Gradient Boosted Decision Trees: XGBoost (58), LightGBM

(59), CatBoost (60) and (iii) Deep Neural Networks: simple

Multilayer Perceptron (MLP), Neural Additive Models (NAM)

(93), Neural Oblivious Decision Ensembles (NODE) (69), Deep

Abstract Networks (DANet) (94), TabNet (65), Automatic Feature

Interaction Learning via Self-Attentive Neural Networks (AutoInt)

(66), Self-Attention and Intersample Attention Transformer

(SAINT) (67), Feature Tokenizer and Transformer (FT-

Transformer) (68). A detailed description of these models is given

in Section 4.2.

For each model, an experiment with a particular configuration of

model parameters included 5 cross-validation splits (details in

Methods, Section 4.3). Within each split, an individual model was

trained on the training dataset (80%) and validated on the validation

dataset (20%). Based on 5 splits, the mean and standard deviation of

MAE and Pearson correlation coefficient on the validation dataset

were calculated. This experiment was repeated many times with

different combinations of model parameters during hyperparametric

search, whose main aim is to determine the optimal combination of

parameters with the minimal MAE (more details in the methods,

Section 4.3). Besides this, the minimal MAE and corresponding

Pearson correlation coefficient values for the best split was saved.

Then the models were tested on the independent test dataset and the

ranking of the models were built according to the result of this

testing. This step of the analysis is represented schematically within

the overall study design in Figure 2, step 1.

Table 1 shows the results of solving the age prediction problem

for all baseline models trained on the full set of 46 immunological

biomarkers. Despite that GBDT models and neural network

architectures show similar results on the validation dataset, on the

test dataset DNNs have a significant advantage DANet, SAINT, FT-

Transformer and TabNet models show the highest results (MAE on

test dataset less than 8 years), with a large gap between them and all
Frontiers in Immunology 06
other considered models. GBDT models on test dataset show MAE

of more than 10 years, which may indicate their weaker ability to

generalize compared to DNNs. It is interesting to note that three out

of four top models implement an attention mechanism (SAINT,

FT-Transformer, and TabNet). In all cases, the results of the best

models significantly outperform the classical linear regression

model with ElasticNet regularization, usually implemented in age

prediction problems.
2.4 Feature selection and
dimensionality reduction

Linear machine learning models, like Elastic Net, are easy to

interpret: the greater the absolute value of the feature’s weight

coefficient, the more important this feature is. The considered

GBDT models have a built-in functionality to determine the

feature importance, unlike most of the considered neural network

architectures (only NAM and TabNet architectures have such built-

in functionality). The same model-agnostic approach, based on the

calculation of SHAP (SHapley Additive exPlanations) values, is

used to obtain the feature importance in all the analyzed models

(95). This is a game theoretic approach to explaining the results of

any machine learning model, which links the optimal credit

allocation to local explanations using classical Shapley values

from game theory and related extensions (details in Methods,

Section 4.4) (96).

SHAP values can show how each individual feature affects the

final prediction of the model (age estimation in our case), positively

or negatively. Using this approach, the feature importance values

(corresponding to mean absolute SHAP values, calculated for train/

validation datasets together) were calculated for 4 best models

(DANet, SAINT, FT-Transformer, TabNet). Figure 3A shows the

stacked histogram for all immunological features and their feature

importance values. As a result, the most robust 10 immunological

parameters with the highest summarized averaged absolute SHAP

values were selected. These biomarkers are then used to construct a

portable immunological clock. This step of the study is shown
TABLE 1 Results of age prediction by baseline models using all 46 immunological biomarkers.

Type Model Test
MAE

Test
r

Validation
<MAE> ± STD

Validation
<r> ± STD

Validation
Best MAE

Validation
Best r

Linear Elastic Net 15.09 0.607 12.95 ± 1.28 0.584 ± 0.194 11.71 0.738

GBDT
XGBoost
LightGBM
CatBoost

10.85
11.44
11.44

0.881
0.886
0.893

8.97 ± 0.56
8.16 ± 0.98
8.93 ± 1.70

0.838 ± 0.022
0.857 ± 0.033
0.831 ± 0.062

8.22
6.81
6.94

0.859
0.904
0.904

DNN

MLP
NAM
NODE
DANet
TabNet
AutoInt
SAINT

FT-Transformer

10.77
9.57
10.96
7.16
7.91
12.65
7.24
7.45

0.825
0.897
0.879
0.956
0.914
0.698
0.942
0.937

8.78 ± 0.84
9.78 ± 0.98
10.09 ± 1.30
8.86 ± 1.73
8.68 ± 0.90
10.59 ± 1.03
9.73 ± 1.16
9.65 ± 1.29

0.838 ± 0.016
0.802 ± 0.053
0.773 ± 0.048
0.813 ± 0.053
0.825 ± 0.036
0.760 ± 0.046
0.792 ± 0.059
0.806 ± 0.047

7.55
8.12
8.67
6.63
7.46
9.33
7.82
7.49

0.856
0.873
0.841
0.904
0.884
0.789
0.867
0.880
For each model, the average MAE and Pearson correlation coefficient rwith corresponding standard deviations, as well as the best MAE and r for the validation dataset are given. For each model,
the best MAE and r for the test dataset are given. The best models with the lowest MAE values on the test dataset are highlighted in bold. Angular brackets represent average values.
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schematically as a part of the general flowchart in Figure 2, step 2. In

the literature, the following biomarkers from the Top-10 IL6 (97,

98), CSF1 (99), PDGFA (100), CXCL10 (101) were associated with

aging, while the rest CXCL9 (31), CCL22 (102), PDGFB (103),

VEGFA (104) were associated with different age-related and

inflammatory pathological conditions.
Frontiers in Immunology 07
Figure 3B shows the relative distribution of the 10 selected

immunological biomarker values and chronological age. The

diagonal elements illustrate the distribution of each individual

feature, the scatter plots in the upper triangle and the probability

density functions in the lower triangle illustrate the relationship

between each pair of features. Expectantly, there is a clear
A

B

FIGURE 3

The 10 most important immunological features that were selected for the construction of the small immunological clocks. (A) Ranking of the
features according to their averaged absolute SHAP values in the best models: DANet (blue), TabNet (orange), SAINT (green), FT-Transformer (red).
The 10 selected biomarkers with the highest importance values are taken for building small models. (B) Relative distribution of 10 most important
immunological biomarker values and chronological age. The diagonal elements illustrate the distribution of each individual feature, the scatter plots
in the upper triangle and the probability density functions in the lower triangle illustrate the relationships between each pair of features.
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proportional relationship between PDGFA and PDGFB, since both

biomarkers belong to the group of platelet-derived growth factor

(PDGF), growth factors for fibroblasts, smooth muscle cells and glia

cells (105). The values of the Pearson correlation coefficients and

the corresponding p-values for these biomarkers can be found in

Figure 1B. It should also be noted that the biomarkers from the

above-mentioned set of mutually correlated interleukins are not

found among the 10 selected features.
2.5 Small immunological clocks

Portable chronological age regression models are constructed for

the selected 10 most significant immunological features. We restrict

our attention to the 4 models that demonstrated the best baseline

results on the test dataset: DANet, SAINT, FT-Transformer, TabNet.

Like in the baseline experiments, for each model we performed

5-fold cross-validation with hyperparametric search to find the best

models with optimal parameters giving the lowest MAE on the

validation dataset. Next, all best models were tested on the

independent dataset and the SImAge model was determined as

the model with the lowest MAE on the test dataset using 10

immunological biomarkers. This step of the pipeline is reflected

in the general flowchart in Figure 2, step 3.

Table 2 shows the results for the DANet, SAINT, FT-

Transformer and TabNet models, which received 10 selected

biomarkers as input. The best result was obtained for the FT-

Transformer model as highlighted in the table. The FT-

Transformer architecture is an adaptation of the transformer

architecture specifically for tabular data. Features are first converted

into embeddings, which are processed by Transformer layers with

special self-aware blocks (more details can be found in Section 4.2). It

should be noted that the other models demonstrated reasonably close

performance. Comparing the results to those obtained on the full set

of parameters, we conclude that the selected 10 immunological

parameters can serve a solid basis to obtain a valid age estimation.

The best model predicting age on a small number of

immunological biomarkers SImAge (FT-Transformer) has a

MAE=6.94 years and Pearson correlation coefficient 0.939 on the

test dataset. Parameters of this model are presented in

Supplementary Table 2. Figure 4A shows the predicted versus

chronological age for all datasets: train, validation, test controls,

test ESRD. It can be seen that samples from the datasets of controls
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(train, validation, test controls) are located along the bisector of

SImAge=Age, while ESRD samples have significantly higher

SImAge prediction than their chronological age. Figure 4B

illustrates the distribution of SImAge acceleration in train,

validation, test controls and test ESRD datasets, which is defined

as the residual relative to linear approximation for all controls

datasets. It can be seen that ESRD group has a significant SImAge

acceleration (p-value=4.58e-08) in relation to the control group.

We also analyzed MAE of the SImAge model for different age

ranges, taking into account all control participants (from train,

validation and test datasets). The results were slightly different

between the groups, but no age-related dependency of the MAE

value was observed. Significant differences between males and

females were not also found. The detailed results are given in

Supplementary Table 3.

The test dataset with ESRD patients, who died from the effects

of the underlying disease, was considered to address the sensitivity

of the proposed small immunological clock to mortality. As shown

above (Figure 4), there is a significant positive age acceleration in

this group, it persists in all age ranges and is present in both sexes

(Supplementary Table 3). This can be evidence that significant

positive acceleration for age estimates of the proposed clocks may

be a sign of higher mortality risks. Further investigations are

required to validate its association to the other cause of mortality.
2.6 Model predictions analysis

In addition to characterizing feature importance, SHAP values

can also be used to highlight local explainability, increasing the

transparency of a particular prediction of the model. SHAP values

also help to explain the result for a given sample, and to determine

the contribution of individual feature values to the prediction.

SHAP values show how a particular value of a selected feature

for a certain sample changes the basic prediction of the model (the

average prediction of the model in the background dataset, which is

train and validation datasets together in our case). This approach is

most clearly illustrated with waterfall plots, which show summation

of SHAP values towards an individual prediction (Figure 5). It

manifests which features affected the change in model predictions

relative to the mean value in each case, and characterizes the

cumulative positive and negative contributions of all the features

(which can lead to a rather large model error). Figure 5A shows an
TABLE 2 Results of age prediction by models based on 10 selected immunological biomarkers.

Model Test
MAE

Test
r

Validation
<MAE> ± STD

Validation
<r> ± STD

Validation
Best MAE

Validation
Best r

DANet 7.19 0.942 8.92 ± 1.00 0.830 ± 0.034 7.36 0.881

TabNet 8.08 0.910 8.86 ± 1.30 0.830 ± 0.042 7.67 0.873

SAINT 8.05 0.912 8.97 ± 1.41 0.825 ± 0.049 8.21 0.863

FT-Transformer 6.94 0.939 8.74 ± 1.05 0.831 ± 0.033 7.21 0.888
For each model, the average MAE and Pearson correlation coefficient (r) with corresponding standard deviations, as well as the best MAE and r for the validation dataset are given. For each
model, the best MAE and r for the test dataset are given. The best model with the lowest MAE value on the test dataset is highlighted in bold. Angular brackets represent average values.
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example case of the correct model prediction for a control sample

with a small age, while Figure 5B shows it for a control sample with

a large age. In both cases we can see that the most important and

age-correlated biomarker CXCL9 significantly shifts the model

prediction (small values shift negatively, large values shift

positively), with PDGFA(B) also in the top, and CCL22

significant for a young person, IL6 contributing for the older one.

Figures 5C, D shows control examples of model predictions with

large negative and large positive age accelerations, respectively.

Interestingly, in these particular cases, the highest influence on

the age mismatch was caused by CD40LG value, which is only fifth

by importance in the ranking (see Figure 3A). Figures 5E, F shows

ESRD examples of model predictions with small and large positive

age accelerations, respectively. CXCL9 has the highest influence on

both predictions with IL6 and CSF1 standing next in the line.

Further on, we investigated the cumulative effect of individual

features in predicting significant positive and negative age

acceleration. All participants were divided into 3 groups with

different types of age acceleration (acceleration was calculated as

the difference between SImAge and chronological age: Acceleration =

SImAge –Age): with absolute value of age acceleration less thanMAE

(weak acceleration), with value of age acceleration less than -MAE

(significant negative acceleration), with value of age acceleration

greater than MAE (significant positive acceleration). ESRD

participants were also analyzed (Figure 6A). For each group, the

total contribution of individual immunological parameters to the

final prediction was analyzed (the average value of absolute SHAP

values was calculated). For all samples CXCL9 has the highest

contribution, exceeding other immunological parameters by more

than twice (Figure 6B, cyan, lime and gold bar plots). For all control

samples CD40LG and PDGFB(A) follow CXCL9, with CCL22 and

IL6 standing next. For ESRD samples IL6 and CSF1 are second and

third, slightly outperforming PDGFB(A) (Figure 6B, crimson bar

plot). CSF1 and IL6 were previously found to be associated with

kidney function and chronic kidney disease (CKD) (32, 106–108).
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3 Discussion

3.1 Conclusion

In this paper we developed a small SImAge immunological

clock that predicts a person’s age based on a limited set of

immunological biomarkers. The clock shows competitive results

compared to the best known high-dimensional models such as

IMM-AGE (30), iAge (31), ipAge (32), and takes a smaller number

of features as an input.

As a baseline model, we considered Elastic Net which is one of

the most common approaches in constructing clock models based

on biomedical data of different types, and also implemented various

GBDT and DNN models, broadly employed in machine learning

tasks on tabular data. Before the development of specialized

architectures, the suitability of deep neural networks for tabular

data was questioned, and it was pointed out that GBDT models

often outperform them. GBDT models are also easier to optimize

than deep neural networks (61–63, 68). However, the field

continues to evolve and a growing number of neural networks are

emerging that can compete with GBDT models. In our study we

built 12 different models with cross-validation and hyperparametric

search for 46 immunological parameters, which were additionally

tested on the independent dataset. Here DNN models show better

ability to generalize, outperforming GBDT models on the

independent test dataset, while Elastic Net significantly

underperformed both of them. As a result, the errors of the best

models turned out to be lower than those of iAge and ipAGE. The

next step was to reduce the model dimensionality. Since not all

models are able to calculate feature importance, a unified approach

based on SHAP values was used. For the best models, we ranked the

features according to their summarized average SHAP values.

Accordingly, 10 immunological features most robust for different

models were selected. In particular, CXCL9 has been shown to play

a key role in age-related chronic inflammation (31), CCL22
A B

FIGURE 4

Results for the best model predicting age on a small number of immunological biomarkers (SImAge). (A) Scatter plot representing result of SImAge
prediction for train (green), validation (blue), test controls (orange) and test ESRD (red) datasets versus chronological age. The black solid line is the
bisector of SImAge=Age. (B) Violin plots showing distribution of SImAge acceleration in train (green), validation (blue), test controls (orange) and test
ESRD (red) datasets. SImAge acceleration is calculated as residuals relative to linear approximation for all controls together (train, validation, test controls).
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increases expression of pro-inflammatory mediators and decreases

expression of anti-inflammatory mediators (102), IL-6 is associated

with mortality risk and physical and cognitive performance (97,

109).Based on the data of 10 selected immunological parameters,

new models (4 types of models that showed the best results for the

full data set - DANet, SAINT, FT-Transformer and TabNet) were

built and evaluated. The FT-Transformer model showed the

smallest MAE with a result of 6.94 years and Pearson r = 0.939,

which is even smaller than the result for the complete data. This can
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be explained by filtering out the least significant noisy features,

leaving only the most significant ones for age prediction. The

proposed model shows significant positive age acceleration in the

ESRD group in comparison to healthy controls, which may be

evidence of an increased mortality risk. Local explainability

methods based on SHAP values can be applied to the resulting

model to obtain an individual trajectory for predicting a certain age

value for each individual participant, both control and ESRD. As a

result, abnormal values of certain parameters can be observed,
A B

D

E F

C

FIGURE 5

The local explainability of the SImAge model based on SHAP values is illustrated by waterfall plots. The bottom part of each waterfall plot starts with
the expected value of the model output E[f(X)] (the average prediction of this model on the background dataset). Each row shows by how much in
the positive (red) or negative (blue) direction each feature shifts the prediction relative to the expected value to the final model prediction for that
sample f(X). (A) Example of a control sample with low age acceleration and young age. (B) Example of a control sample with low age acceleration
and old age. (C) Example of a control sample with a high negative age acceleration. (D) Example of a control sample with high positive age
acceleration. (E) Example of an ESRD sample with low age acceleration. (F) Example of an ESRD sample with high positive age acceleration.
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particularly those contributing to the increase in predicted age,

which may indicate the need for an in-depth medical examination.

Also, subgroups of participants with different types of age

acceleration were analyzed separately, and it was shown that

CXCL9 has the highest contribution in all control and ESRD

groups. Previously, its contribution to accelerated cardiovascular

aging (31), age acceleration in Chagas disease patients (81) was

shown. CCL22 contributes the most in the group with high negative

age acceleration.

Thus, we proposed an approach to build a small model of

immunological age - SImAge - using the FT-Transformer DNN

model, which showed the highest result among all the tested models

based on 10 immunological parameters. The obtained model shows the

lowest error among the published studies on immunological profile,

while taking a smaller number of features as an input. Further work may

include expanding the list of models tested, expanding the analyzed data

through open sources, and testing the SImAge model for participants

with different diseases (including age-associated and/or immunological

diseases). Small size immunological panels can also prove cost efficient in

practice. Another direction for further improvements based on the

employed models could be the application of ensemble approaches

that combine the results of several models, making the final prediction

more robust. However, in this case, an increase in computational cost is

inevitable, tackling which is a challenge.
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3.2 Limitations

The proposed analysis has several limitations at its various stages.

Firstly, although the developed age predictor shows better results than

in (31), the size of our dataset is significantly smaller. This could be

relevant for machine learning methods, in particular, since they

typically perform better on large amounts of data. Nevertheless, it

is interesting that machine learning techniques, which are primarily

focused on big data, perform well on relatively limited data sets, like

in our case. The second limitation concerns the obtained parameters

of the machine learning models, that they are only locally optimal

within the proposed limited hyperparametric search. It is possible

that more optimal parameters exist for certain models, which may

lead to a completely different ranking of the best models. Next, there

are various dimensionality reduction and feature selection

algorithms, while we exploited only one of them. Finally, the field

of neural network architectures is actively developing and this paper

necessarily considers only a limited list of the most popular ones. At

the same time it should be noted that some architectures, such as

TabTransformer (110) and its modifications, are not considered in

the paper, since they are focused on working with categorical features.

Taking only continuous data (like our immunological biomarkers)

they reduced to relatively simple MLPs, whose variations are

presented in the paper.
A

B

FIGURE 6

Feature importance for control samples with different types of age acceleration and ESRD samples. (A) Distribution of samples into groups: control
samples with absolute value of age acceleration less than MAE (lime), control samples with value of age acceleration less than -MAE (cyan), control
samples with value of age acceleration greater than MAE (gold), ESRD samples (crimson). (B) For each considered group, the bar plot illustrates the
global importance of each feature, which is calculated as the average absolute value for that feature across all participating samples.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1177611
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kalyakulina et al. 10.3389/fimmu.2023.1177611
4 Methods

4.1 Data details

All possible inconveniences and risks were explained to each

participant, as well as the details of the procedure. Each participant

signed an informed consent and filled out a personal data

processing consent, taking into account the principle of

confidentiality, which implies the accessibility of personal data

only to the research group. The study was approved by the local

ethical committee of Lobachevsky State University of Nizhny

Novgorod. All research procedures were in accordance with the

1964 Declaration of Helsinki and its later amendments.

The analysis was performed on plasma using the K3-EDTA

anticoagulant, without hemolysis and lipemia. Plasma was thawed,

spun (3000 rpm, 10 min) to remove debris, and 25 μl was collected

in duplicate.

Plasma with antibody-immobilized beads was incubated with

agitation on a plate shaker overnight (16–18 h) at 2–8°C. The

Luminex® assay was run according to the manufacturer’s

instructions, using a custom human cytokine 46-plex panel (EMD

Millipore Corporation, HCYTA-60 K-PX48). Assay plates were

measured using a Magpix (Milliplex MAP). Data acquisition and

analysis were done using a standard set of programs MAGPIX®.

Data quality was examined based on the following criteria: standard

curve for each analyte has a 5P R2 value > 0.95. To pass assay

technical quality control, the results for two controls in the kit

needed to be within the 95% of CI (confidence interval) provided by

the vendor for> 40 of the tested analytes. No further tests were done

on samples with results out of range low (< OOR). Samples with

results out of range high (> OOR) or greater than the standard

curve maximum value (SC max) were not tested at higher dilutions.
4.2 Age estimation models

This study considers various machine learning models for solving

the problem of regression of chronological age using immunological

profile data. All of these models focus on tabular data, for which the

features have already been extracted and there is no inherent position

information, which means arbitrary column order. A peculiarity of

our data representation is that all of the considered immunological

features are continuous (no categorical or ordinal features).

Elastic Net is a relatively simple model and a popular choice for

constructing various kinds of biological clocks on tabular data such

as epigenetic (26–29), immunological (32, 42), transcriptomic (43),

metabolomic (44–46), microRNA (47), and proteomic (48) data.

In the last few years, a number of papers have been published

comparing the effectiveness of applying GBDT and DNN to

different tabular data. However, no consensus has yet been

reached: some papers suggest that the result depends on the

dataset size (62), some papers conclude that GBDT for tabular

data works better (61, 63), and some papers propose completely

new DNN architectures that perform better than GBDT (67, 68).
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The following subsections present the basic concepts of the

models used to predict age from immunological data.

4.2.1 Linear model: elastic net
Elastic net is an extension of linear regression that adds L1

(Lasso) and L2 (Ridge) regularization penalties to the loss function

during training. The Ridge penalty shrinks the coefficients of

correlated predictors towards each other while the Lasso tends to

pick one of them and discard the others. Linear regression assumes

a linear relationship between input immunological features (x1,x2,

…,xN) and target variable – chronological age (y are ground truth

values and ŷ are predictions):

ŷ i = b0 +o
M

j=1
xjib

j = b0 + xTi b , (1)

where i is the sample index (i = 1,…,N). bj (j = 0,…,M) are

coefficients in the linear model, which are found via optimization

process that seeks to minimize loss function:

loss =
1
2No

N

i=1
(yi  −  (b0  +  xTi  b))

2 + l½a bk k1PenaltyL1  +  (1 

−  a)PenaltyL2�, (2)

where PenaltyL1   =   oM
j=1 jb jj, PenaltyL2   =   

1
2o

M
j=1 (b

j)2,

hyperparameter l ≥ 0 controls the overall strength of both

penalties to the loss function and (0 ≤ a ≤ 1) is a compromise

between Ridge (a = 0) and Lasso (a = 1). In the performed

experiments, equal contribution of both penalty types is set (a =

0.5) and only the parameter l is varied.

The implementation of the algorithm was taken from the

sklearn library version 1.1.2 (111). The range of varying

parameters and their precise values for the best models are

presented in Supplementary Table 2 (sheet “ElasticNet”).

4.2.2 Gradient boosted decision trees: XGBoost,
LightGBM, and CatBoost

XGBoost (eXtreme Gradient Boosting) (58), LightGBM (Light

Gradient Boosting Machine) (59), and CatBoost (Categorical

Boosting) (60) are all GBDT (Gradient Boosted Decision Tree)

algorithms. These models are based on ensemble learning, a

technique that combines predictions from multiple models to

produce predictions that are potentially more stable and better

generalizable. By averaging individual model errors, the risk of

overtraining is reduced while maintaining strong prediction

performance. XGBoost, LightGBM, and CatBoost are variations

of boosting algorithms, which build models sequentially using all

data, with each model improving upon the error of the previous

one. The differences between the three models lie in the splitting

method and type of tree growth.

4.2.2.1 Splitting method

XGBoost uses a pre-sorting algorithm which takes into account

all features and sorts them by value. After that, a linear scan is

performed to select the best split with the highest information gain.
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The histogram-based modification groups them into discrete bins

and finds the split point based on these bins.

LightGBM offers gradient-based one-side sampling (GOSS)

which selects the split using all instances with large gradients

(higher errors) and random instances with small gradients

(smaller errors). To keep data distribution, GOSS uses a constant

multiplier for instances with small gradients. As a result, GOSS for

learned decision trees achieves a balance between the speed of

reducing the number of data points and preserving accuracy.

Catboost offers Minimal Variance Sampling (MVS) technique,

which is a weighted sampling version of Stochastic Gradient

Boosting (SGB) (112). The weighted sampling occurs at tree-level,

not at split-level. The observations for each boosting tree are

sampled to maximize the accuracy of the split scoring.

4.2.2.2 Tree growth

XGBoost splits trees up to a certain maximum depth (specified

by a hyperparameter) and then starts pruning the tree backwards

and removes splits beyond which there is no positive gain. It uses

this approach since a split with no loss reduction can be followed by

a split with loss reduction.

LightGBM uses leaf-wise tree growth: it chooses to grow a leaf

that minimizes losses, allowing an unbalanced tree to grow.

Catboost builds a balanced tree: at each level of such a tree, it

chooses the feature-split pair that leads to the lowest loss, and it is

used for all nodes in the level.

These models also differ in imputing of missing values,

processing of categorical features and computing feature

importance, which is not relevant in this study: in our dataset

there are no missing values and categorical features, and the feature

importance is computed in a universal way for all models using

SHAP values.

Software implementations of these models are used from the

corresponding packages: XGBoost version 1.6.2, LightGBM version

3.3.2, CatBoost version 1.1. The range of varied parameters as well

as their description and precise values for the best models are

presented in Supplementary Table 2 (sheets “XGboost”,

“LightGBM”, “CatBoost”). In all GBDT models, the maximum

number of rounds of the training process was set to 1000, and the

number of early stopping rounds was set to 100 (models stopped the

training process if the evaluation metric in the test dataset was not

improving for 100 rounds).

4.2.3 Deep neural networks
Several implementations of neural network architectures

focused on tabular data are used in this work. The concepts and

basic elements of the deep neural network architectures used in this

work, taking into account the basic details of their software

implementations, are presented in Figure 7. For training all

neural network models, the Adam optimization algorithm was

used (113), whose main hyperparameters (learning rate and

weight decay) were selected for each model individually during

the hyperparametric search. Their ranges and precise values for the

best models are presented in Supplementary Table 2.
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For all models, the maximum number of epochs has been set to

1000, and for early stopping the number of epochs has been set to

100 (models stopped the training process if the evaluation metric on

the test dataset was not improving for 100 epochs). All models were

implemented in the PyTorch Lightning framework (114), which is a

lightweight PyTorch (115) wrapper for high-performance AI

research. Feature importance for all models were calculated using

SHAP values and corresponding global explainability methods (95)

(see Section 4.4 for details).

4.2.3.1 Common elements

Element-wise addiction, multiplication and concatenation (of

output vectors) are used in many neural network architectures to

variously accumulate outputs of several previous layers at once.

Dropout is a special layer that provides regularization and prevents

co-adaptation of neurons by zeroing out randomly selected neurons

(116). It works only during training and is turned off in

evaluation mode.

Mask layers are used for instance-wise feature selection in

several considered models (TabNet and DANet).

Linear (or fully-connected, or dense) layer applies a linear

transformation to the input data with an optional bias. It is often

used in the final stages of neural networks (but not only in them) to

change the dimensionality of the output of the preceding layer, so

that the model can easily determine the relationship between the

data values in which the model operates.

Normalization layers bring all input values to the same scale

with a mean equal to zero and variance equal to one. This improves

productivity and stabilizes neural networks.

Embedding layers transform input continuous features into a

new embedding space of a different dimensionality, using both

linear and nonlinear transformations. During the neural network

training, similar samples can be clustered in this space.

Activation functions are used to activate neurons from hidden

layers and to introduce different nonlinearities in the decision

boundary of the neural networks. In many used models the type

of activation function is a hyperparameter.

EntMax (117) and SparseMax (118) are modifications of

activation functions that transform continuous vectors into a

discrete probability distribution, resulting in a sparse output.

They are used to implement the attention mechanism in some

models, allowing to take into account the influence of only the most

important features.

The designations of the described general blocks in the general

scheme of the neural network concepts used in this work are shown

in Figure 7A.

4.2.3.2 Multilayer perceptron

A simple neural network architecture, consisting of several dense

blocks, which in turn consist of linear, dropout, and activation layers, as

shown in Figure 7B. The software implementation of the neural

network is adapted from the pytorch-widedeep library version 1.2.1.

The main hyperparameters are the architecture of dense blocks,

activation function type, and probability of dropout. Exact values of
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the varied parameters are presented in the Supplementary Table 2

(sheet “MLP”).

4.2.3.3 Neural additive model

In this architecture (93), a separate dense block consisting of

linear layers and activation functions is constructed for each input

feature. All these independent dense blocks are trained jointly and
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can learn arbitrarily complex relations between their input and

output features. The main advantage of this method is its ease of

interpretability, as each input function is processed independently

by a different neural network. A scheme of the architecture is shown

in Figure 7C.

The software implementation of the neural network is adapted

from the NAM library version 0.0.3 implementing this architecture
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FIGURE 7

Main concepts of neural network architectures used for chronological age regression on immunological parameters. (A) Blocks and layers used in
many architectures. (B) Multilayer Perceptron (MLP) – the simplest neural network architecture composed of a sequence of dense layers. (C) Neural
Additive Model (NAM) – the architecture where a separate neural network is built for each input feature. (D) Neural Oblivious Decision Ensembles
(NODE) – the architecture that combines ensembles of oblivious decision trees with the benefits of both end-to-end gradient-based optimization
and the power of multi-layer hierarchical representation learning. (E) Deep Abstract Network (DANet), based on special abstract layers that learn to
explicitly group correlative input features and generate features for semantics abstraction. (F) TabNet architecture, which implements a sequential
attention mechanism to select the most important features. (G) AutoInt, SAINT, and FT-Transformer are conceptually similar neural network
architectures, based on adaptation of Transformer architecture for the tabular domain.
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for the PyTorch framework. The hyperparameters of the network

are the architecture of dense blocks, activation function type,

probability of dropout and additional regularization parameters

(93). Exact values of the varying parameters are given in the

Supplementary Table 2 (sheet “NAM”).

4.2.3.4 Neural oblivious decision ensembles

This architecture (69) combines decision trees and deep neural

networks, so that they can be trained (via gradient-based

optimization) in an end-to-end manner. This method is based on

so-called oblivious decision trees (ODTs), a special type of decision

tree that uses the same splitting function and splitting threshold in

all internal nodes of the same depth [as in CatBoost (60)]. It uses

EntMax transformation (117), which effectively performs soft

splitting feature selection in decision trees within the NODE

architecture. A scheme of the architecture is shown in Figure 7D.

The software implementation of the neural network is adapted

from the PyTorch Tabular package version 0.7.0 (119). The

hyperparameters of the network are number of NODE layers,

numbers of ODTs in each NODE layer, the depth of ODTs, sparse

activation function type. Exact values of varying parameters are

presented in Supplementary Table 2 (sheet “NODE”).

4.2.3.5 Deep abstract network

The architecture (94) is focused around abstract layers, the

main idea of which is to group correlated features (through a sparse

learnable mask) and create higher level abstract features from them.

The DANet architecture consists of stucking such abstract layers

into blocks. The blocks are combined one by one, and each block

has a shortcut connection that adds raw features back to each block.

A scheme of the architecture is shown in Figure 7E.

The software implementation of the neural network is adapted

from the supplementary code repository of the corresponding

article (94). The hyperparameters of the network are number of

abstract layers to stack, number of masks, the output feature

dimension in the abstract layer, and dropout rate in the shortcut

module. Exact values of the varying parameters are presented in the

Supplementary Table 2 (sheet “DANet”).

4.2.3.6 TabNet

The architecture (65) consists of sequential modules (steps),

each of which implements a sequential attention mechanism that

selects the most significant features. Attentive transformers learn

the relationship between the relevant features and decide which

features to pass using the SparseMax (or EntMax) functions. In the

feature transformer block, all the selected features are processed to

generate the final output. Each feature transformer is composed of

several normalization layers, linear layers and several Gated Linear

Unit (GLU) blocks (120), that control which information should

pass through the network. The scheme of the architecture is shown

in Figure 7F.

The software implementation of the neural network is adapted

from the pytorch-widedeep library version 1.2.1. The hyperparameters
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of the network are width of the decision prediction layer, number of

decision steps, number of GLU blocks, parameters of batch

normalization, and relaxation parameters. Exact values of the

varying parameters are presented in Supplementary Table 2

(sheet “TabNet”).

4.2.3.7 AutoInt

This model tries to automatically learn the interactions between

features and create a better representation, and then use that

representation in downstream tasks. The model first transforms

the features into embeddings, and then applies a series of attention-

based transformations to the embeddings. The output of the model

is the sum of the outputs of the multi-head self-attention

mechanism and the residual connection block. A scheme of the

architecture is shown in Figure 7G.

The software implementation of the neural network is adapted

from the PyTorch Tabular package version 0.7.0 (119). The

hyperparameters of the network are different characteristics of

multi-headed attention layers, dropout rates, and linear layers

configuration in MLP. Exact values of the varied parameters are

presented in the Supplementary Table 2 (sheet “AutoInt”).

4.2.3.8 Self-attention and intersample
attention transformer

This hybrid architecture is based on self-attention, which

applies attention to both rows and columns, and includes an

enhanced embedding method (67). SAINT projects all features

into a combined dense vector space. These projected values are

passed as tokens into the transformer encoder, which performs a

special attention mechanism. A scheme of the architecture is shown

in Figure 7G.

The software implementation of the neural network is adapted

from the pytorch-widedeep library version 1.2.1 and uses Einstein

notation for operations on tensors [rearrange from einops python

package (121)]. The hyperparameters of the network are the

number of attention heads per transformer block, the number of

SAINT-transformer blocks, dropout rates, and linear layers

configuration in MLP. Exact values of the varying parameters are

presented in Supplementary Table 2 (sheet “SAINT”).

4.2.3.9 Feature tokenizer and transformer

Like the previous two models, it is an adaptation of the

transformer architecture (122) for the tabular domain. First, in

this architecture, the function tokenizer transforms features into

embeddings. Then the embeddings are processed by the

Transformer layer stack with special multi-head self-attention

blocks. A scheme of the architecture is shown in Figure 7G.

The software implementation of the neural network is adapted

from the pytorch-widedeep library version 1.2.1. The hyperparameters

of the network are number of attention heads per transformer block,

number of FT-Transformer blocks, dropout rates, and linear layers

configuration in MLP. Exact values of the varying parameters are

presented in Supplementary Table 2 (sheet “FT-Transformer”).
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4.3 Experiment details

4.3.1 Cross-validation and metrics
Cross-validation is a resampling procedure used to evaluate

machine learning models on a limited amount of data. In this paper,

we used a k-fold cross-validation procedure with k = 5. The mean

result over several splits is expected to be a more accurate estimate

of the true unknown underlying mean performance of the model in

the dataset, calculated using standard error.

The software implementation of the repeated k-fold cross-

validation procedure was used from the sklearn library version

1.1.2 (111). Stratification was performed as follows: the whole

age range was divided into four bins of equal length and the

samples inside each bin were divided into almost equal

five splits.

Various metrics such as MAE (32, 43, 45, 46, 52–54, 56), RMSE

(26, 45), correlation between chronological age and predicted age

(28, 46, 48), median error (27, 51), and others are used to evaluate

the efficiency of machine learning models in solving age estimation

problems. The most popular among them is MAE. In this work,

MAE was also chosen as the main observable metric. It is calculated

by the formula:

MAE =
1
No

N

i=1
∣ yi − ŷ i ∣, (3)

where yi– ground truth values of target metric (chronological

age), ŷ i– model predictions, N – number of samples. For this

metric two values will be given for each model: (i) the main metric

by which models are sorted – average MAE (± STD) for all 25

cross-validation splits; (ii) the secondary metric – MAE for the

best model (for one particular split, where the best results

were obtained).

Pearson correlation coefficient was also tracked along with the

MAE. This helps to avoid incorrect model performance, when it

predicts age with a low error only for the most representative age

range, and for all others, the error is high. In such cases, the

correlation coefficient is low. Pearson correlation coefficient is

calculated by the formula:

r = oN
i=1(y −my)(ŷ −mŷ )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

oN
i=1(y −my)

2oN
i=1(ŷ −mŷ )

2
q , (4)

where y - ground truth values of target metric (chronological

age), ŷ –model predictions,my–mean of the vector y,mŷ –mean of

the vector ŷ . For each model, average r (± STD) for all cross-

validation splits as well as r for the best split is given.

First, the original dataset was divided into training and

validation ones in an 80/20 ratio, and a cross-validation

procedure with hyperparametric search was performed to

identify the best model (with the lowest MAE) with optimal

parameters for each model type. The selected models were then

tested on the independent dataset, and the best MAE was selected

among them on the test dataset. In both cases, the value of the

Pearson correlation coefficient was also tracked for the

best models.
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4.3.2 Hyperparameters optimization
Each machine learning model considered in this paper has

certain hyperparameters. To obtain the best result, hyperparameter

search of the best combination was performed, which yielded the

minimum MAE value averaged over all the cross-validation splits.

The software implementation of hyperparameter optimization was

taken from the optuna python package version 3.0.2 (123), using the

Tree-structured Parzen Estimator (TPE) algorithm (124). TPE is an

iterative process that uses the history of evaluated hyperparameters to

create a probabilistic model that is used to propose the next set of

hyperparameters for evaluation. The total number of optimization

trials for each considered model was set to 200. The number of

random sampled startup trials was set to 50. The number of candidate

samples used to calculate the expected improvement was set to 10.

Supplementary Table 2 lists the varied hyperparameters for each

model with a description and range of variation.
4.4 SHAP values

SHAP (Shapley Additive ExPlanations) values are a game

theory approach to explain model predictions. SHAP values for a

regression problem have the same dimensionality as the original

dataset – they are computed for each sample and for each feature.

SHAP values show how a particular value of a selected feature for a

particular sample changed the baseline model prediction (the

average model prediction on the background dataset - train and

validation datasets together in our case).

The model output can be interpreted as the reward that will be

distributed among the group of features that helped obtain the

reward. SHAP values determine how the model output, the reward,

should be distributed among the features. Given the prediction of

model f on sample xithe method estimates SHAP values j(xi,f) by
finding an approximation to the model, gi(xi), one model per

sample xi. This model gi(xi) is locally accurate: its output

converges to f(xi) for this sample by summing up M attributions

jj(xi,f) for M features. The model gi(xi) is consistent: features that

are truly important to one model’s predictions versus another are

always assigned higher importance. The summarization of effects:

f (xi) ≈ gi(xi) = E½f (xi)� +o
M

j=1
fj(xi, f ), (5)

where E[f(xi)] is the expected reward across the training

samples (125). SHAP values can be computed as a weighted sum

of the contribution of a feature to the model prediction, taking into

account all possible permutations of other features introduced into

the model. This method requires significant computational

resources, so various estimators of SHAP values (explainers) are

implemented in the shap python package version 0.41.0 (95).

For GBDT and DNN models (95), presents special types of

explainers, TreeExplainer and DeepExplainer, respectively.

DeepExplainer does not support specific layers of some

architectures (for example, SparseMax and EntMax in TabNet

and Node). For this reason, the KernelExplainer is used as unified

as possible for all model types.
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4. Nikolich-Žugich J. The twilight of immunity: Emerging concepts in aging of the
immune system. Nat Immunol (2018) 19:10–9. doi: 10.1038/s41590-017-0006-x

5. Liu F, Lagares D, Choi KM, Stopfer L, Marinkovic´ A, Vrbanac V, et al.
Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis.
American Journal of Physiology. Lung Cell Mol Physiol (2015) 308:L344–357.
doi: 10.1152/ajplung.00300.2014
6. Crusz SM, Balkwill FR. Inflammation and cancer: Advances and new agents. Nat
Rev Clin Oncol (2015) 12:584–96. doi: 10.1038/nrclinonc.2015.105

7. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential
contribution to age-associated diseases. Journals Gerontol Ser A Biol Sci Med Sci (2014)
69 Suppl 1:S4–9. doi: 10.1093/gerona/glu057

8. Efeyan A, CombWC, Sabatini DM. Nutrient-sensing mechanisms and pathways.
Nature (2015) 517:302–10. doi: 10.1038/nature14190

9. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell
(2010) 140:883–99. doi: 10.1016/j.cell.2010.01.025

10. Hunter RL, Dragicevic N, Seifert K, Choi DY, Liu M, Kim HC, et al.
Inflammation induces mitochondria l dysfunct ion and dopaminergic
neurodegeneration in the nigrostriatal system: LPS effects nigrostriatal mitochondria.
J Neurochem (2007) 100:1375–86. doi: 10.1111/j.1471-4159.2006.04327.x
frontiersin.org

https://github.com/GillianGrayson/SImAge
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1177611/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1177611/full#supplementary-material
https://doi.org/10.1038/nri2471
https://doi.org/10.1002/path.2104
https://doi.org/10.1016/j.cell.2013.05.039
https://doi.org/10.1038/s41590-017-0006-x
https://doi.org/10.1152/ajplung.00300.2014
https://doi.org/10.1038/nrclinonc.2015.105
https://doi.org/10.1093/gerona/glu057
https://doi.org/10.1038/nature14190
https://doi.org/10.1016/j.cell.2010.01.025
https://doi.org/10.1111/j.1471-4159.2006.04327.x
https://doi.org/10.3389/fimmu.2023.1177611
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kalyakulina et al. 10.3389/fimmu.2023.1177611
11. Nathan C, Cunningham-Bussel A. Beyond oxidative stress: An immunologist’s
guide to reactive oxygen species. Nat Rev Immunol (2013) 13:349–61. doi: 10.1038/
nri3423

12. Oh J, Lee YD, Wagers AJ. Stem cell aging: Mechanisms, regulators and
therapeutic opportunities. Nat Med (2014) 20:870–80. doi: 10.1038/nm.3651

13. Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi J, Verschoor CP, et al.
Age-associated microbial dysbiosis promotes intestinal permeability, systemic
inflammation, and macrophage dysfunction. Cell Host Microbe (2017) 21:455–
466.e4. doi: 10.1016/j.chom.2017.03.002

14. Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility.
Cell (2015) 160:816–27. doi: 10.1016/j.cell.2015.02.010

15. Goldberg EL, Dixit VD. Drivers of age-related inflammation and strategies for
healthspan extension. Immunol Rev (2015) 265:63–74. doi: 10.1111/imr.12295

16. Franceschi C, Bonafe` M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al.
Inflamm-aging. An evolutionary perspective on immunosenescence. Ann New York
Acad Sci (2000) 908:244–54. doi: 10.1111/j.1749-6632.2000.tb06651.x

17. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al.
Inflammaging and antiinflammaging: A systemic perspective on aging and longevity
emerged from studies in humans. Mech Ageing Dev (2007) 128:92–105. doi: 10.1016/
j.mad.2006.11.016

18. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: A
new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol (2018)
14:576–90. doi: 10.1038/s41574-018-0059-4

19. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and
‘Garb-aging’. Trends Endocrinol metabolism: TEM (2017) 28:199–212. doi: 10.1016/
j.tem.2016.09.005

20. Morrisette-Thomas V, Cohen AA, Fülöp T, Riesco E, Legault V, Li Q, et al.
Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech
Ageing Dev (2014) 139:49–57. doi: 10.1016/j.mad.2014.06.005

21. Murabito JM, Zhao Q, Larson MG, Rong J, Lin H, Benjamin EJ, et al. Measures
of biologic age in a community sample predict mortality and age-related disease: the
framingham offspring study. Journals Gerontol: Ser A (2018) 73:757–62. doi: 10.1093/
gerona/glx144

22. Levine ME. Modeling the rate of senescence: Can estimated biological age
predict mortality more accurately than chronological age? Journals Gerontol Ser A Biol
Sci Med Sci (2013) 68:667–74. doi: 10.1093/gerona/gls233

23. Belsky DW, Caspi A, Houts R, Cohen HJ, Corcoran DL, Danese A, et al.
Quantification of biological aging in young adults. Proc Natl Acad Sci USA (2015) 112:
E4104–4110. doi: 10.1073/pnas.1506264112

24. Swindell WR, Ensrud KE, Cawthon PM, Cauley JA, Cummings SR, Miller RA,
et al. Indicators of “healthy aging” in older women (65-69 years of age). A data-mining
approach based on prediction of long-term survival. BMC Geriatrics (2010) 10:55.
doi: 10.1186/1471-2318-10-55

25. Newman AB, Boudreau RM, Naydeck BL, Fried LF, Harris TB. A physiologic
index of comorbidity: Relationship to mortality and disability. Journals Gerontol Ser A
Biol Sci Med Sci (2008) 63:603–9. doi: 10.1093/gerona/63.6.603

26. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-
wide methylation profiles reveal quantitative views of human aging rates. Mol Cell
(2013) 49:359–67. doi: 10.1016/j.molcel.2012.10.016

27. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol
(2013) 14:R115. doi: 10.1186/gb-2013-14-10-r115

28. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An
epigenetic biomarker of aging for lifespan and healthspan. Aging (2018) 10:573–91.
doi: 10.18632/aging.101414

29. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA methylation
GrimAge strongly predicts lifespan and healthspan. Aging (2019) 11:303–27.
doi: 10.18632/aging.101684

30. Alpert A, Pickman Y, Leipold M, Rosenberg-Hasson Y, Ji X, Gaujoux R, et al. A
clinically meaningful metric of immune age derived from high-dimensional
longitudinal monitoring. Nat Med (2019) 25:487–95. doi: 10.1038/s41591-019-0381-y

31. Sayed N, Huang Y, Nguyen K, Krejciova-Rajaniemi Z, Grawe AP, Gao T, et al.
An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity,
immunosenescence, frailty and cardiovascular aging. Nat Aging (2021) 1:598–615.
doi: 10.1038/s43587-021-00082-y

32. Yusipov I, Kondakova E, Kalyakulina A, Krivonosov M, Lobanova N, Bacalini
MG, et al. Accelerated epigenetic aging and inflammatory/immunological profile
(ipAGE) in patients with chronic kidney disease. GeroScience (2022) 44:817–34.
doi: 10.1007/s11357-022-00540-4

33. Orru V, Steri M, Sole G, Sidore C, Virdis F, Dei M, et al. Genetic variants
regulating immune cell levels in health and disease. Cell (2013) 155:242–56.
doi: 10.1016/j.cell.2013.08.041

34. Patin E, Hasan M, Bergstedt J, Rouilly V, Libri V, Urrutia A, et al. Natural
variation in the parameters of innate immune cells is preferentially driven by genetic
factors. Nat Immunol (2018) 19:302–14. doi: 10.1038/s41590-018-0049-7

35. Roederer M, Quaye L, Mangino M, Beddall MH, Mahnke Y, Chattopadhyay P,
et al. The genetic architecture of the human immune system: A bioresource for
autoimmunity and disease pathogenesis. Cell (2015) 161:387–403. doi: 10.1016/
j.cell.2015.02.046
Frontiers in Immunology 18
36. Tsang JS. Utilizing population variation, vaccination, and systems biology to
study human immunology. Trends Immunol (2015) 36:479–93. doi: 10.1016/
j.it.2015.06.005

37. Shen-Orr SS, Furman D. Variability in the immune system: Of vaccine
responses and immune states. Curr Opin Immunol (2013) 25:542–7. doi: 10.1016/
j.coi.2013.07.009

38. Kaczorowski KJ, Shekhar K, Nkulikiyimfura D, Dekker CL, Maecker H, Davis
MM, et al. Continuous immunotypes describe human immune variation and predict
diverse responses. Proc Natl Acad Sci USA (2017) 114:E6097–106. doi: 10.1073/
pnas.1705065114

39. Franceschi C, Salvioli S, Garagnani P, de Eguileor M, Monti D, Capri M.
Immunobiography and the heterogeneity of immune responses in the elderly: A focus
on inflammaging and trained immunity. Front Immunol (2017) 8:982. doi: 10.3389/
fimmu.2017.00982

40. Burch JB, Augustine AD, Frieden LA, Hadley E, Howcroft TK, Johnson R, et al.
Advances in geroscience: Impact on healthspan and chronic disease. Journals Gerontol
Ser A Biol Sci Med Sci (2014) 69 Suppl 1:S1–3. doi: 10.1093/gerona/glu041

41. Lehallier B, Shokhirev MN, Wyss-Coray T, Johnson AA. Data mining of human
plasma proteins generates a multitude of highly predictive aging clocks that reflect
different aspects of aging. Aging Cell (2020) 19:e13256. doi: 10.1111/acel.13256

42. Arvey A, Rowe M, Legutki JB, An G, Gollapudi A, Lei A, et al. Age-associated
changes in the circulating human antibody repertoire are upregulated in autoimmunity.
Immun Ageing (2020) 17:28. doi: 10.1186/s12979-020-00193-x

43. Meyer DH, Schumacher B. BiT age: A transcriptome-based aging clock near the
theoretical limit of accuracy. Aging Cell (2021) 20:e13320. doi: 10.1111/acel.13320

44. Ravera S, Podesta` M, Sabatini F, Dagnino M, Cilloni D, Fiorini S, et al. Discrete
changes in glucose metabolism define aging. Sci Rep (2019) 9:10347. doi: 10.1038/
s41598-019-46749-w

45. Hwangbo N, Zhang X, Raftery D, Gu H, Hu SC, Montine TJ, et al. A
metabolomic aging clock using human cerebrospinal fluid. J Gerontol: Ser A (2022)
77:744–54. doi: 10.1093/gerona/glab212

46. Robinson O, Chadeau Hyam M, Karaman I, Climaco Pinto R, Ala-Korpela M,
Handakas E, et al. Determinants of accelerated metabolomic and epigenetic aging in a
UK cohort. Aging Cell (2020) 19:e13149. doi: 10.1111/acel.13149

47. Huan T, Chen G, Liu C, Bhattacharya A, Rong J, Chen BH, et al. Age-associated
microRNA expression in human peripheral blood is associated with all-cause mortality
and age-related traits. Aging Cell (2018) 17:e12687. doi: 10.1111/acel.12687

48. Sathyan S, Ayers E, Gao T, Weiss EF, Milman S, Verghese J, et al. Plasma
proteomic profile of age, health span, and all-cause mortality in older adults. Aging Cell
(2020) 19:e13250. doi: 10.1111/acel.13250

49. Li X, Li W, Xu Y. Human age prediction based on DNA methylation using a
gradient boosting regressor. Genes (2018) 9:424. doi: 10.3390/genes9090424

50. Chen Y, Wang H, Lu W, Wu T, Yuan W, Zhu J, et al. Human gut microbiome
aging clocks based on taxonomic and functional signatures through multi-view
learning. Gut Microbes (2022) 14:2025016. doi: 10.1080/19490976.2021.2025016

51. Galkin F, Mamoshina P, Kochetov K, Sidorenko D, Zhavoronkov A.
DeepMAge: A methylation aging clock developed with deep learning. Aging Dis
(2021) 12:1252–62. doi: 10.14336/AD.2020.1202

52. Mamoshina P, Volosnikova M, Ozerov IV, Putin E, Skibina E, Cortese F, et al.
Machine learning on human muscle transcriptomic data for biomarker discovery and
tissue-specific drug target identification. Front Genet (2018) 9. doi: 10.3389/
fgene.2018.00242

53. Galkin F, Mamoshina P, Aliper A, Putin E, Moskalev V, Gladyshev VN, et al.
Human gut microbiome aging clock based on taxonomic profiling and deep learning.
iScience (2020) 23:101199. doi: 10.1016/j.isci.2020.101199

54. Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A, et al.
Deep biomarkers of human aging: Application of deep neural networks to biomarker
development. Aging (Albany NY) (2016) 8:1021–30. doi: 10.18632/aging.100968

55. Mamoshina P, Kochetov K, Putin E, Cortese F, Aliper A, Lee WS, et al.
Population specific biomarkers of human aging: A big data study using South
Korean, Canadian, and Eastern European patient populations. Journals Gerontol: Ser
A (2018) 73:1482–90. doi: 10.1093/gerona/gly005

56. Mamoshina P, Kochetov K, Cortese F, Kovalchuk A, Aliper A, Putin E, et al.
Blood biochemistry analysis to detect smoking status and quantify accelerated aging in
smokers. Sci Rep (2019) 9:142. doi: 10.1038/s41598-018-35704-w

57. Yan X, Su X. Linear Regression Analysis: Theory and Computing. Singapore:
World Scientific Pub. Co (2009).

58. Chen T, Guestrin C. (2016). XGBoost: A scalable tree boosting system, in:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. (New York, NY, USA: Association for Computing
Machinery), pp. 785–94. doi: 10.1145/2939672.2939785

59. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. LightGBM: A highly
efficient gradient boosting decision tree. Adv Neural Inf Process Syst (Curran Associates
Inc.) (2017) 30:3149–57. doi: 10.5555/3294996.3295074

60. Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. (2018).
CatBoost: Unbiased boosting with categorical features, in: Proceedings of the 32nd
International Conference on Neural Information Processing Systems. (Red Hook, NY,
USA: Curran Associates Inc).
frontiersin.org

https://doi.org/10.1038/nri3423
https://doi.org/10.1038/nri3423
https://doi.org/10.1038/nm.3651
https://doi.org/10.1016/j.chom.2017.03.002
https://doi.org/10.1016/j.cell.2015.02.010
https://doi.org/10.1111/imr.12295
https://doi.org/10.1111/j.1749-6632.2000.tb06651.x
https://doi.org/10.1016/j.mad.2006.11.016
https://doi.org/10.1016/j.mad.2006.11.016
https://doi.org/10.1038/s41574-018-0059-4
https://doi.org/10.1016/j.tem.2016.09.005
https://doi.org/10.1016/j.tem.2016.09.005
https://doi.org/10.1016/j.mad.2014.06.005
https://doi.org/10.1093/gerona/glx144
https://doi.org/10.1093/gerona/glx144
https://doi.org/10.1093/gerona/gls233
https://doi.org/10.1073/pnas.1506264112
https://doi.org/10.1186/1471-2318-10-55
https://doi.org/10.1093/gerona/63.6.603
https://doi.org/10.1016/j.molcel.2012.10.016
https://doi.org/10.1186/gb-2013-14-10-r115
https://doi.org/10.18632/aging.101414
https://doi.org/10.18632/aging.101684
https://doi.org/10.1038/s41591-019-0381-y
https://doi.org/10.1038/s43587-021-00082-y
https://doi.org/10.1007/s11357-022-00540-4
https://doi.org/10.1016/j.cell.2013.08.041
https://doi.org/10.1038/s41590-018-0049-7
https://doi.org/10.1016/j.cell.2015.02.046
https://doi.org/10.1016/j.cell.2015.02.046
https://doi.org/10.1016/j.it.2015.06.005
https://doi.org/10.1016/j.it.2015.06.005
https://doi.org/10.1016/j.coi.2013.07.009
https://doi.org/10.1016/j.coi.2013.07.009
https://doi.org/10.1073/pnas.1705065114
https://doi.org/10.1073/pnas.1705065114
https://doi.org/10.3389/fimmu.2017.00982
https://doi.org/10.3389/fimmu.2017.00982
https://doi.org/10.1093/gerona/glu041
https://doi.org/10.1111/acel.13256
https://doi.org/10.1186/s12979-020-00193-x
https://doi.org/10.1111/acel.13320
https://doi.org/10.1038/s41598-019-46749-w
https://doi.org/10.1038/s41598-019-46749-w
https://doi.org/10.1093/gerona/glab212
https://doi.org/10.1111/acel.13149
https://doi.org/10.1111/acel.12687
https://doi.org/10.1111/acel.13250
https://doi.org/10.3390/genes9090424
https://doi.org/10.1080/19490976.2021.2025016
https://doi.org/10.14336/AD.2020.1202
https://doi.org/10.3389/fgene.2018.00242
https://doi.org/10.3389/fgene.2018.00242
https://doi.org/10.1016/j.isci.2020.101199
https://doi.org/10.18632/aging.100968
https://doi.org/10.1093/gerona/gly005
https://doi.org/10.1038/s41598-018-35704-w
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.5555/3294996.3295074
https://doi.org/10.3389/fimmu.2023.1177611
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kalyakulina et al. 10.3389/fimmu.2023.1177611
61. Shwartz-Ziv R, Armon A. Tabular data: Deep learning is not all you need. Inf
Fusion (2022) 81:84–90. doi: 10.1016/j.inffus.2021.11.011

62. Grinsztajn L, Oyallon E, Varoquaux G. Why do tree-based models still
outperform deep learning on tabular data? arXiv:2207.08815 [cs.LG] (2022).
doi: 10.48550/arXiv.2207.08815

63. Borisov V, Leemann T, Seßler K, Haug J, Pawelczyk M, Kasneci G. Deep neural
networks and tabular data: A survey. arXiv:2110.01889 [cs] (2022). doi: 10.48550/
arXiv.2110.01889

64. Kadra A, Lindauer M, Hutter F, Grabocka J. Well-tuned simple nets excel on
tabular datasets. Adv Neural Inf Process Syst (Curran Associates Inc.) (2021) 34:23928–41.

65. Arik SO, Pfister T. (2021). TabNet: attentive interpretable tabular learning, in:
Proceedings of the AAAI Conference on Artificial Intelligence. (Washington, DC, USA:
AAAI Press) Vol. 35. pp. 6679–87. doi: 10.1609/aaai.v35i8.16826

66. Song W, Shi C, Xiao Z, Duan Z, Xu Y, Zhang M, et al. (2019). AutoInt:
automatic feature interaction learning via self-attentive neural networks, in:
Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. (New York, NY, USA: Association for Computing
Machinery), pp. 1161–70. doi: 10.1145/3357384.3357925

67. Somepalli G, Goldblum M, Schwarzschild A, Bruss CB, Goldstein T. SAINT:
improved neural networks for tabular data via row attention and contrastive pre-
training. J Emerg Technol Innov Res (2023) 10(7):arXiv:2106.01342. doi: 10.48550/
arXiv.2106.01342

68. Gorishniy Y, Rubachev I, Khrulkov V, Babenko A. Revisiting deep learning
models for tabular data. Adv Neural Inf Process Syst (Curran Associates Inc.) (2021)
34:18932–43.

69. Popov S, Morozov S, Babenko A. Neural oblivious decision ensembles for deep
learning on tabular data. arXiv:1909.06312 [cs.LG] (2019). doi: 10.48550/
arXiv.1909.06312

70. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In:
Fleet D, Pajdla T, Schiele B, Tuytelaars T, editors. Computer vision – ECCV 2014, vol.
8689 . Cham: Springer International Publishing (2014). p. 818–33. doi: 10.1007/978-3-
319-10590-153

71. Bach S, Binder A, Montavon G, Klauschen F, Muller¨ KR, Samek W. On pixel-
wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PloS One (2015) 10:e0130140. doi: 10.1371/journal.pone.0130140

72. Doshi-Velez F, Kim B. Towards A rigorous science of interpretable machine
learning. arXiv:1702.08608 [cs stat] (2017). doi: 10.48550/arXiv.1702.08608

73. Montavon G, Samek W, Muller KR. Methods for interpreting and
understanding deep neural networks. Digital Signal Process (2018) 73:1–15.
doi: 10.1016/j.dsp.2017.10.011

74. Lipton ZC. The Mythos of Model Interpretability: In machine learning, the
concept of interpretability is both important and slippery. Queue (2018) 16:31–57.
doi: 10.1145/3236386.3241340

75. Ribeiro MT, Singh S, Guestrin C. (2016). “Why should I trust you?”: explaining
the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. (New York, NY, USA:
Association for Computing Machinery), pp. 1135–44. doi: 10.1145/2939672.2939778

76. Shrikumar A, Greenside P, Kundaje A. (2017). Learning important features
through propagating activation differences, in: Proceedings of the 34th International
Conference on Machine Learning - Volume 70. (Norfolk, MA, USA: JMLR.org), pp.
3145–53.

77. Baehrens D, Schroeter T, Harmeling S, Kawanabe M, Hansen K, Muller¨ KR.
How to explain individual classification decisions. J Mach Learn Res (2010) 11:1803–31.
doi: 10.5555/1756006.1859912

78. Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks:
visualising image classification models and saliency maps. arXiv:1312.6034 [cs] (2014).
doi: 10.48550/arXiv.1312.6034

79. Samek W, Wiegand T, Muller¨ KR. Explainable artificial intelligence:
understanding, visualizing and interpreting deep learning models. arXiv:1708.08296
[cs stat] (2017). doi: 10.48550/arXiv.1708.08296

80. Bolomsky A, Schreder M, Zojer N, Ludwig H. The chemokine CXCL9 (MIG) is
an independent predictor of overall survival in newly diagnosed multiple myeloma.
Clin Lymphoma Myeloma Leukemia (2015) 15:e237–8. doi: 10.1016/j.clml.2015.07.506

81. de Araujo´ FF, Lima Torres KC, Viana Peixoto S, Pinho Ribeiro AL, Vaz Melo
Mambrini J, Bortolo Rezende V, et al. CXCL9 and CXCL10 display an age-dependent
profile in Chagas patients: A cohort study of aging in Bambui, Brazil. Infect Dis Poverty
(2020) 9:51. doi: 10.1186/s40249-020-00663-w

82. Koper O, Kaminska´ J, Sawicki K, Kemona H. CXCL9, CXCL10, CXCL11, and
their receptor (CXCR3) in neuroinflammation and neurodegeneration. Adv Clin Exp
Med (2018) 27:849–56. doi: 10.17219/acem/68846

83. Chua J, Vania M, Cheung CMG, Ang M, Chee SP, Yang H, et al. Expression
profile of inflammatory cytokines in aqueous from glaucomatous eyes. Mol Vision
(2012) 18:431–8.

84. Romagnani P, Rotondi M, Lazzeri E, Lasagni L, Francalanci M, Buonamano A,
et al. Expression of IP-10/CXCL10 and MIG/CXCL9 in the thyroid and increased levels
of IP-10/CXCL10 in the serum of patients with recent-onset Graves’ disease. Am J
Pathol (2002) 161:195–206. doi: 10.1016/S0002-9440(10)64171-5
Frontiers in Immunology 19
85. Egesten A, Eliasson M, Johansson HM, Olin AI, Morgelin¨ M, Mueller A, et al.
The cxc chemokine mig/cxcl9 is important in innate immunity against streptococcus
pyogenes. J Infect Dis (2007) 195:684–93. doi: 10.1086/510857

86. Fae´ KC, Palacios SA, Nogueira LG, Oshiro SE, Demarchi LMF, Bilate AMB,
et al. CXCL9/mig mediates T cells recruitment to valvular tissue lesions of chronic
rheumatic heart disease patients. Inflammation (2013) 36:800–11. doi: 10.1007/s10753-
013-9606-2

87. Ikemizu S, Chirifu M, Davis SJ. IL-2 and IL-15 signaling complexes: Different
but the same. Nat Immunol (2012) 13:1141–2. doi: 10.1038/ni.2472

88. Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and
death of normal and neoplastic lymphocytes: Implications for cancer therapy. Cancer
Immunol Res (2015) 3:219–27. doi: 10.1158/2326-6066.CIR-15-0009

89. Yang Y, Lundqvist A. Immunomodulatory effects of IL-2 and IL-15;
implications for cancer immunotherapy. Cancers (2020) 12:3586. doi: 10.3390/
cancers12123586

90. Vokaer B, Charbonnier LM, Lemaˆıtre PH, Spilleboudt C, Le Moine A. IL-17A
and IL-2-expanded regulatory T cells cooperate to inhibit th1-mediated rejection of
MHC II disparate skin grafts. PloS One (2013) 8:e76040. doi: 10.1371/
journal.pone.0076040

91. Aljabali MA, Kuts L. Serum levels of IL-2 and IL-17A are related to clinical type
and severity of alopecia areata.Wiadomosci´ Lekarskie (2022) 75:263–7. doi: 10.36740/
WLek202201220

92. Pandiyan P, Yang XP, Saravanamuthu SS, Zheng L, Ishihara S, O’Shea JJ, et al.
The role of IL-15 in activating STAT5 and fine-tuning IL-17A production in CD4 T
lymphocytes. J Immunol (Baltimore Md.: 1950) (2012) 189:4237–46. doi: 10.4049/
jimmunol.1201476

93. Agarwal R, Melnick L, Frosst N, Zhang X, Lengerich B, Caruana R, et al. Neural
additive models: interpretable machine learning with neural nets. arXiv:2004.13912
[cs.LG] (2020). doi: 10.48550/arXiv.2004.13912

94. Chen J, Liao K, Wan Y, Chen DZ, Wu J. DANets: deep abstract networks for
tabular data classification and regression. Proc AAAI Conf Artif Intell (2022) 36:3930–8.
doi: 10.1609/aaai.v36i4.20309

95. Lundberg SM, Lee SI. (2017). A unified approach to interpreting model
predictions, in: Proceedings of the 31st International Conference on Neural
Information Processing Systems. (Red Hook, NY, USA: Curran Associates Inc), pp.
4768–77.

96. Lipovetsky S, Conklin M. Analysis of regression in game theory approach. Appl
Stochastic Models Business Industry (2001) 17:319–30. doi: 10.1002/asmb.446

97. Maggio M, Guralnik JM, Longo DL, Ferrucci L. Interleukin-6 in aging and
chronic disease: A magnificent pathway. Journals Gerontol Ser A Biol Sci Med Sci (2006)
61:575–84. doi: 10.1093/gerona/61.6.575

98. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age
and age-related diseases: role of inflammation triggers and cytokines. Front Immunol
(2018) 9:586. doi: 10.3389/fimmu.2018.00586

99. Lira-Junior R, Akerman˚ S, Gustafsson A, Klinge B, Bostrom¨ EA. Colony
stimulating factor-1 in saliva in relation to age, smoking, and oral and systemic diseases.
Sci Rep (2017) 7:7280. doi: 10.1038/s41598-017-07698-4

100. Karlsson C, Paulsson Y. Age related induction of platelet-derived growth factor
A-chain mRNA in normal human fibroblasts. J Cell Physiol (1994) 158:256–62.
doi: 10.1002/jcp.1041580207

101. Bradburn S, McPhee J, Bagley L, Carroll M, Slevin M, Al-Shanti N, et al.
Dysregulation of C-X-C motif ligand 10 during aging and association with cognitive
p e r f o rman c e . Neu r o b i o l A g i n g ( 2 0 1 8 ) 6 3 : 5 4– 6 4 . d o i : 1 0 . 1 0 1 6 /
j.neurobiolaging.2017.11.009

102. Ren G, Al-Jezani N, Railton P, Powell JN, Krawetz RJ. CCL22 induces pro-
inflammatory changes in fibroblast-like synoviocytes. iScience (2021) 24:101943.
doi: 10.1016/j.isci.2020.101943

103. Keller A, Westenberger A, Sobrido MJ, Garc´ıa-Murias M, Domingo A, Sears
RL, et al. Mutations in the gene encoding PDGF-B cause brain calcifications in humans
and mice. Nat Genet (2013) 45:1077–82. doi: 10.1038/ng.2723

104. Sun T, Wei Q, Gao P, Zhang Y, Peng Q. Cytokine and chemokine profile
changes in patients with neovascular age-related macular degeneration after intravitreal
ranibizumab injection for choroidal neovascularization. Drug Design Dev Ther (2021)
15:2457–67. doi: 10.2147/DDDT.S307657

105. Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in
physiology and medicine. Genes Dev (2008) 22:1276–312. doi: 10.1101/gad.1653708

106. Zhang MZ, Yao B, Yang S, Jiang L, Wang S, Fan X, et al. CSF-1 signaling
mediates recovery from acute kidney injury. J Clin Invest (2012) 122:4519–32.
doi: 10.1172/JCI60363

107. Shimazui T, Nakada Ta, Tateishi Y, Oshima T, Aizimu T, Oda S. Association
between serum levels of interleukin-6 on ICU admission and subsequent outcomes in
critically ill patients with acute kidney injury. BMC Nephrol (2019) 20:74. doi: 10.1186/
s12882-019-1265-6

108. Su H, Lei CT, Zhang C. Interleukin-6 signaling pathway and its role in kidney
disease: an update. Front Immunol (2017) 8:405. doi: 10.3389/fimmu.2017.00405

109. Puzianowska-Kuznicka´ M, Owczarz M,Wieczorowska-Tobis K, Nadrowski P,
Chudek J, Slusarczyk P, et al. Interleukin-6 and C-reactive protein, successful aging,
frontiersin.org

https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/10.48550/arXiv.2207.08815
https://doi.org/10.48550/arXiv.2110.01889
https://doi.org/10.48550/arXiv.2110.01889
https://doi.org/10.1609/aaai.v35i8.16826
https://doi.org/10.1145/3357384.3357925
https://doi.org/10.48550/arXiv.2106.01342
https://doi.org/10.48550/arXiv.2106.01342
https://doi.org/10.48550/arXiv.1909.06312
https://doi.org/10.48550/arXiv.1909.06312
https://doi.org/10.1007/978-3-319-10590-153
https://doi.org/10.1007/978-3-319-10590-153
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.48550/arXiv.1702.08608
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.5555/1756006.1859912
https://doi.org/10.48550/arXiv.1312.6034
https://doi.org/10.48550/arXiv.1708.08296
https://doi.org/10.1016/j.clml.2015.07.506
https://doi.org/10.1186/s40249-020-00663-w
https://doi.org/10.17219/acem/68846
https://doi.org/10.1016/S0002-9440(10)64171-5
https://doi.org/10.1086/510857
https://doi.org/10.1007/s10753-013-9606-2
https://doi.org/10.1007/s10753-013-9606-2
https://doi.org/10.1038/ni.2472
https://doi.org/10.1158/2326-6066.CIR-15-0009
https://doi.org/10.3390/cancers12123586
https://doi.org/10.3390/cancers12123586
https://doi.org/10.1371/journal.pone.0076040
https://doi.org/10.1371/journal.pone.0076040
https://doi.org/10.36740/WLek202201220
https://doi.org/10.36740/WLek202201220
https://doi.org/10.4049/jimmunol.1201476
https://doi.org/10.4049/jimmunol.1201476
https://doi.org/10.48550/arXiv.2004.13912
https://doi.org/10.1609/aaai.v36i4.20309
https://doi.org/10.1002/asmb.446
https://doi.org/10.1093/gerona/61.6.575
https://doi.org/10.3389/fimmu.2018.00586
https://doi.org/10.1038/s41598-017-07698-4
https://doi.org/10.1002/jcp.1041580207
https://doi.org/10.1016/j.neurobiolaging.2017.11.009
https://doi.org/10.1016/j.neurobiolaging.2017.11.009
https://doi.org/10.1016/j.isci.2020.101943
https://doi.org/10.1038/ng.2723
https://doi.org/10.2147/DDDT.S307657
https://doi.org/10.1101/gad.1653708
https://doi.org/10.1172/JCI60363
https://doi.org/10.1186/s12882-019-1265-6
https://doi.org/10.1186/s12882-019-1265-6
https://doi.org/10.3389/fimmu.2017.00405
https://doi.org/10.3389/fimmu.2023.1177611
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kalyakulina et al. 10.3389/fimmu.2023.1177611
and mortality: The PolSenior study. Immun Ageing (2016) 13:21. doi: 10.1186/s12979-
016-0076-x

110. Huang X, Khetan A, Cvitkovic M, Karnin Z. TabTransformer: tabular data
modeling using contextual embeddings. arXiv:2012.06678 [cs.LG] (2020).
doi: 10.48550/arXiv.2012.06678

111. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: machine learning in python. J Mach Learn Res (2011) 12:2825–30.
doi: 10.5555/1953048.2078195

112. Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal (2002)
38:367–78. doi: 10.1016/S0167-9473(01)00065-2

113. Kingma DP, Ba J. Adam: A method for stochastic optimization.
arXiv:1412.6980 [cs.LG] (2014). doi: 10.48550/arXiv.1412.6980

114. Falcon W. The pyTorch lightning team. PyTorch Lightning (2019).
doi: 10.5281/ZENODO.3828935

115. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. (2019).
PyTorch: An imperative style, high-performance deep learning library, in: Proceedings
of the 33rd International Conference on Neural Information Processing Systems. (Red
Hook, NY, USA: Curran Associates Inc.) Vol. 721. pp. 8026–37.

116. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout:
A simple way to prevent neural networks from overfitting. J Mach Learn Res (2014)
15:1929–58. doi: 10.5555/2627435.2670313

117. Peters B, Niculae V, Martins AFT. (2019). Sparse sequence-to-sequence
models, in: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. (Stroudsburg, PA, USA: Association for Computational
Linguistics). pp. 1504–19. doi: 10.18653/v1/P19-1146
Frontiers in Immunology 20
118. Martins AFT, Astudillo RF. (2016). From softmax to sparsemax: A sparse
model of attention and multi-label classification, in: Proceedings of the 33rd
International Conference on International Conference on Machine Learning.
(Norfolk, MA, USA: JMLR.org) Volume 48.

119. Joseph M. PyTorch tabular: A framework for deep learning with tabular data.
arXiv:2104.13638 [cs.LG] (2021). doi: 10.48550/arXiv.2104.13638

120. Dauphin YN, Fan A, Auli M, Grangier D. (2017). Language modeling with
gated convolutional networks, in: Proceedings of the 34th International Conference on
Machine Learning. (Norfolk, MA, USA: JMLR.org) Volume 70, pp. 933–41.

121. Rogozhnikov A. (2022). Einops: clear and reliable tensor manipulations with
einstein-like notation, in: International Conference on Learning Representations (ICLR
2022).

122. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al.
Attention is all you need. Adv Neural Inf Process Syst (Curran Associates Inc.) (2017)
30:6000–10. doi: 10.5555/3295222.3295349

123. Akiba T, Sano S, Yanase T, Ohta T, Koyama M. (2019). Optuna: A next-
generation hyperparameter optimization framework, in: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. (New York,
NY, USA: Association for Computing Machinery. pp. 2623–31. doi: 10.1145/
3292500.3330701

124. Bergstra J, Bardenet R, Bengio Y, Kegl´ B. Algorithms for hyper-parameter
optimization. Adv Neural Inf Process Syst (Curran Associates Inc.) (2011) 24:2546–54.
doi: 10.5555/2986459.2986743

125. Molnar C. Interpretable machine learning: A guide for making black box models
interpretable. Morisville, North Carolina: Lulu (2019).
frontiersin.org

https://doi.org/10.1186/s12979-016-0076-x
https://doi.org/10.1186/s12979-016-0076-x
https://doi.org/10.48550/arXiv.2012.06678
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.5281/ZENODO.3828935
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.18653/v1/P19-1146
https://doi.org/10.48550/arXiv.2104.13638
https://doi.org/10.5555/3295222.3295349
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.5555/2986459.2986743
https://doi.org/10.3389/fimmu.2023.1177611
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kalyakulina et al. 10.3389/fimmu.2023.1177611
Glossary

AI Artificial Intelligence

AutoInt Automatic Feature Interaction Learning via Self-Attentive
Neural Network

CatBoost Categorical Boosting

CI Confidence Interval

CKD Chronic Kidney Disease

DANet Deep Abstract Network

DNA Deoxyribonucleic Acid

DNN Deep Neural Network

ESRD End-Stage Renal Disease

FDR False Discovery Rate

FT-
Transformer

Feature Tokenizer and Transformer

GBDT Gradient-Boosted Decision Tree

GLU Gated Linear Unit

GOSS Gradient-based One-Side Sampling

LightGBM Light Gradient Boosting Machine

MAE Mean Absolute Error

MLP Multilayer Perceptron

MVS Minimal Variance Sampling

NAM Neural Additive Model

NODE Neural Oblivious Decision Ensemble

ODT Oblivious Decision Tree

OOR Out Of Range

RMSE Root Mean Squared Error

SAINT Self-Attention and Intersample Attention Transformer

SGB Stochastic Gradient Boosting

SHAP Shapley Additive Explanations

STD Standard Deviation

TPE Tree-structured Parzen Estimator

XAI Explainable Artificial Intelligence

XGBoost eXtreme Gradient Boosting
F
rontiers in Imm
unology frontiersin.org21

https://doi.org/10.3389/fimmu.2023.1177611
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Small immunological clocks identified by deep learning and gradient boosting
	1 Introduction
	1.1 Background
	1.2 Study design and novelty

	2 Results
	2.1 Data description
	2.1.1 Participants
	2.1.2 Features

	2.2 Experiment design
	2.3 Baseline results
	2.4 Feature selection and dimensionality reduction
	2.5 Small immunological clocks
	2.6 Model predictions analysis

	3 Discussion
	3.1 Conclusion
	3.2 Limitations

	4 Methods
	4.1 Data details
	4.2 Age estimation models
	4.2.1 Linear model: elastic net
	4.2.2 Gradient boosted decision trees: XGBoost, LightGBM, and CatBoost
	4.2.2.1 Splitting method
	4.2.2.2 Tree growth

	4.2.3 Deep neural networks
	4.2.3.1 Common elements
	4.2.3.2 Multilayer perceptron
	4.2.3.3 Neural additive model
	4.2.3.4 Neural oblivious decision ensembles
	4.2.3.5 Deep abstract network
	4.2.3.6 TabNet
	4.2.3.7 AutoInt
	4.2.3.8 Self-attention and intersample attention transformer
	4.2.3.9 Feature tokenizer and transformer


	4.3 Experiment details
	4.3.1 Cross-validation and metrics
	4.3.2 Hyperparameters optimization

	4.4 SHAP values

	Code availability statement
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References
	Glossary



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


