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A risk score combining
co-expression modules related
to myeloid cells and alternative
splicing associates with response
to PD-1/PD-L1 blockade in
non-small cell lung cancer

Yichao Han1†, Si-Yang Maggie Liu2,3†, Runsen Jin1,
Wangyang Meng1, Yi-Long Wu3* and Hecheng Li1*

1Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,
Shanghai, China, 2Department of Hematology, the First Affiliated Hospital, Jinan University,
Guangzhou, China, 3Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital
(Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
Background: Comprehensive analysis of transcriptomic profiles of non-small

cell lung cancer (NSCLC) may provide novel evidence for biomarkers associated

with response to PD-1/PD-L1 immune checkpoint blockade (ICB).

Methods: We utilized weighted gene co-expression network analysis (WGCNA)

to analyze transcriptomic data from two NSCLC datasets from Gene Expression

Omnibus (GSE135222 and GSE126044) that involved patients received ICB

treatment. We evaluated the correlation of co-expression modules with ICB

responsiveness and functionally annotated ICB-related modules using pathway

enrichment analysis, single-cell RNA sequencing, flow cytometry and alternative

splicing analysis. We built a risk score using Lasso-COX regression based on hub

genes from ICB-related modules. We investigated the alteration of tumor

microenvironment between high- and low- risk groups and the association of

the risk score with previously established predictive biomarkers.

Results:Our results identified a black with positive correlation and a blue module

with negative correlation to ICB responsiveness. The black module was enriched

in pathway of T cell activation and antigen processing and presentation, and the

genes assigned to it were consistently expressed on myeloid cells. We observed

decreased alternative splicing events in samples with high signature scores of the

blue module. The Lasso-COX analysis screened out three genes (EVI2B, DHX9,

HNRNPM) and constructed a risk score from the hub genes of the two modules.

We validated the predictive value of the risk score for poor response to ICB

therapy in an in-house NSCLC cohort and a pan-cancer cohort from the KM-

plotter database. The low-risk group had more immune-infi ltrated

microenvironment, with higher frequencies of precursor exhausted CD8+ T

cells, tissue-resident CD8+ T cells, plasmacytoid dendritic cells and type 1

conventional dendritic cells, and a lower frequency of terminal exhausted

CD8+ T cells, which may explain its superior response to ICB therapy. The
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significant correlation of the risk score to gene signature of tertiary lymphoid

structure also implicated the possible mechanism of this predictive biomarker.

Conclusions: Our study identified two co-expression modules related to ICB

responsiveness in NSCLC and developed a risk score accordingly, which could

potentially serve as a predictive biomarker for ICB response.
KEYWORDS

non-small cell lung cancer, immune checkpoint blockade, responsiveness,
transcriptomic analysis, myeloid cells, alternative splicing
1 Introduction

Lung cancer is the leading cause of cancer-related deaths

globally, with an estimated 2.2 million new cases and 1.8 million

deaths in 2020 (1). Non-small cell lung cancer (NSCLC) is the

major subtype of lung cancer, accounting for approximately 80% of

all cases (2). In recent years, there have been significant

breakthroughs in the use of immune checkpoint blockade (ICB)

as a form of immunotherapy for NSCLC. Therapeutic antibodies

against programmed cell death-1 (PD-1) and programmed cell

death-ligand 1 (PD-L1) are one of the most important forms of

ICB and are approved as the first-line treatment for patients with

advanced or metastatic NSCLC (3). PD-(L)1 blockade has shown

remarkable survival benefits in NSCLC (4). However, durable

responses to anti-PD-(L)1 therapy are limited to a subset of

patients, leading to ongoing trials evaluating ICB-based

combination strategies (5). Therefore, it remains a pressing

challenge to characterize the underlying factors associated with

ICB response and identify the optimal biomarkers to screen

responsive patients, which would improve treatment outcomes

and reduce unnecessary side effects.

PD-L1 expression is a well-established biomarker for predicting

response to PD-(L)1 blockade and is extensively used in clinical

practice (6). According to multiple guidelines, patients with PD-L1

expression >= 50% but lacking driver mutations should receive anti-

PD-(L)1 treatment (3, 7). However, PD-L1 expression is an

imperfect predictor of ICB response. For instance, some PD-L1-

negative patients may benefit from ICB therapy, while some PD-L1-

positive patients may not have a durable response (8). Another well-

known biomarker is tumor mutational burden (TMB), which is a

measure of the number of somatic mutations per megabase (Mb) in

a cancer (9). TMB-high tumors are thought to produce more

neoantigens that are recognized by the immune system and have

a better response to ICB therapy (10). However, the evidence

supporting TMB as a predictor of ICB efficacy in NSCLC is

mostly retrospective and TMB has not yet been standardized or

widely adopted in clinical practice (11). Some studies have

investigated biomarkers at the transcriptomic level, such as a T-

cell-inflamed gene-expression profile (GEP), which was calculated

by summing the normalized expression of 18 genes associated with

T cell activation and inflammation (12). Several pan-cancer studies,
02
including one involving NSCLC patients, have validated the

predictive value of T-cell-inflamed GEP (13, 14). Other

transcriptomic signatures, such as effector T cell signature and

IFNg signature, have also been investigated as potential biomarkers

for ICB response (15, 16). Nevertheless, these signatures are based

on screening results of hundreds of transcripts or pre-identified

gene sets, and may not capture the full range of transcriptomic

features related to ICB responsiveness.

Herein, our aim was to identify biomarkers that could predict the

response to PD-(L)1 blockade in NSCLC by analyzing RNA

sequencing (RNA-seq) data in an unsupervised manner. We

integrated two RNA-seq datasets of NSCLC from Gene Expression

Omnibus (GEO), specifically GSE135222 and GSE126044, where

samples were collected before anti-PD-(L)1 treatment and clinical

data regarding response to ICBs were available (17, 18). Using

weighted gene co-expression network analysis (WGCNA), we

identified two ICB-relevant modules. One module was related to

myeloid cells and had a positive correlation to ICB responsiveness,

while the other module was related to alternative splicing and had a

negative correlation. To further characterize the biological details of

the ICB-relevant modules, we conducted pathway enrichment

analysis and alternative splicing analysis using TCGA-NSCLC

datasets (TCGA-LUAD and TCGA-LUSC). Additionally, we

analyzed the cellular expression distribution by utilizing data of

single-cell RNA (scRNA) sequencing from GSE148071 (19) and

flow cytometry that we conducted ourselves. Subsequently, we used

Lasso-COX regression to screen out three hub genes (EVI2B, DHX9,

HNRNPM) from the two modules and created a risk score that could

separate patients with NSCLC into high-risk and low-risk groups for

poor ICB response. The risk score was validated using our ICB-

treated NSCLC cohort in Guangdong Lung Cancer Institute (GLCI)

(20) and a pan-cancer immunotherapy cohort sourced from the KM-

plotter database (21). We analyzed the tumor microenvironment

(TME) and found that low-risk samples had more immune cell

infiltration, with increased frequencies of precursor exhausted CD8+

T cells (Tpex), tissue-resident CD8+ T cells (Trm) and decreased

frequency of terminal exhausted CD8+ T cells (Tex), contributing to

the mechanism of ICB responsiveness. Furthermore, we found a close

association between the risk score and the signature of tertiary

lymphoid structure (TLS) through correlation analysis. Our study

sheds light on the co-expression modules associated with ICB
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responsiveness and proposed a novel risk score, which could help us

understand the mechanism of ICB treatment and optimize the

biomarkers to predict response to ICB therapy in NSCLC.
2 Materials and methods

2.1 Data collection

The RNA-seq data of two training datasets, GSE135222 (n=27)

and GSE126044 (n=16), were obtained from GEO. Pre-treatment

NSCLC samples were analyzed in these studies, and clinical data on

ICB response and progression-free survival (PFS) were available

(Supplementary Table 1). Validation datasets were used to perform

functional annotation of key modules.We downloaded RNA-seq data,

somatic variant data and clinical information of TCGA-LUAD

(n=513) and TCGA-LUSC (n=501) from GDC TCGA data portal

(https://portal.gdc.cancer.gov/) and UCSC Xena browser (https://

xena.ucsc.edu/) (Supplementary Table 2). We downloaded

alternative splicing data from TCGA SpliceSeq (https://

bioinformatics.mdanderson.org/TCGASpliceSeq/) (22). We also

obtained RNA-seq data of Genotype-Tissue Expression (GTEx)

project from UCSC Xena browser. For scRNA-seq data, we used

GSE148071 (n=42) from GEO, which included advanced NSCLC

samples. We validated the correlation with ICB responsiveness in two

transcriptomic datasets. We collected one dataset of pre-treatment

RNA-seq data and corresponding clinical information from 56

NSCLC patients with anti-PD-(L)1 monotherapy from GLCI, as

described previously (Supplementary Table 3) (20). The other

dataset was a pan-caner cohort from Kaplan-Meier Plotter database

(KM-plotter, https://kmplot.com/analysis/), which contained 8 tumor

types (melanoma, head and neck squamous cell carcinoma, NSCLC,

bladder cancer, glioblastoma, hepatocellular carcinoma, esophageal

adenocarcinoma and urothelial cancer) (21). We filtered samples in

KM-plotter by options of pre-treatment and anti-PD-(L)1 therapy.
2.2 Definition of anti-PD-(L)1
responsiveness

ICB response data in GSE135222 and GSE126044 were available

in the form of response by RECIST 1.1 (23) and PFS. We defined

responsiveness as the best overall response of complete response

(CR), partial response (PR) or stable disease (SD) >= 6 months,

while irresponsiveness as progressive disease (PD) or stable disease

(SD) < 6 months. ICB response data in the form of overall survival

(OS) was available in the GLCI NSCLC and KM-plotter pan-cancer

validation datasets.
2.3 RNA-seq normalization and integration

All RNA-seq data were normalized to TPM (transcript per

million). To integrate the two training datasets, we used the

‘ComBat’ function in the sva R package (version 3.46.0) to correct

for batch effects (24). We performed principal component analysis
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(PCA) to evaluate the successful batch correction. For WGCNA

analysis, we used genes with the top 75% expression variance across

samples, which resulted in 3316 genes being kept as input.
2.4 Co-expression network construction

WGCNA was analyzed using the R package WGCNA (version

1.71) (25). To perform quality control of samples and genes, we used the

WGCNA function ‘goodSamplesGenes’. We checked sample outliers

using hierarchical clustering via the R package flashClust (version 1.1.2)

(26). We applied the WGCNA function ‘pickSoftThreshold’ to pick the

optimal soft thresholding power (b) ranging from 1 to 30 to achieve

scale free topology (R2 > 0.85) with networkType set as “signed”. A

weighted adjacency matrix was calculated using the WGCNA function

‘adjacency ’ with parameters set as fol lows: power=b ,
networkType=“signed”, corType=“bicor”. We used biweight

midcorrelation (bicor) because it is considered more robust in

analyzing similarity in gene expression matrices with less sensitivity to

outliers (26). The adjacency matrix was converted to a topological

overlapmatrix (TOM) based dissimilarity using the function ‘TOMdist’.

We conducted hierarchical clustering for dissimilarity followed by

dynamic tree cutting using the ‘cutreeDynamic’ function to identify

modules with similar expression profiles. Module eigengene (ME) was

computed using the WGCNA function ‘moduleEigengenes’ as the first

principal component of the expression matrix of each module. Similar

modules were combined using the WGCNA function

‘mergeCloseModules’ with a cutHeight value of 0.25. We performed

module preservation using theWGCNA function ‘modulePreservation’.
2.5 Identification of modules related to ICB
responsiveness and their hub genes

To quantify the correlation of modules to clinical traits, we

calculated the Pearson correlation between module eigengenes and

each clinical trait. We further analyzed modules with significant

relevance to anti-PD-(L)1 responsiveness. Specifically, we calculated

module membership or eigengene-based connectivity (kME) as the

correlation of each gene to the corresponding module eigengene,

and gene significance (GS) as the Pearson correlation between genes

and ICB responsiveness. The kME and GS of module genes were

displayed by the WGCNA function ‘verboseScatterplot’. Genes with

kME > 0.5 and |GS| > 0.35 were defined as hub genes, which are

most interconnected in a module and related to ICB responsiveness.

Top 30 hub genes were visualized using the software Cytoscape

(version 3.8.2) (27). We performed tumor purity adjustment by

calculating the partial Pearson correlation using the R package

ppcor (version 1.1) (28).
2.6 Gene set variation analysis (GSVA) and
survival analysis

GSVA was used to evaluate the module score of samples via the

R package GSVA (version 1.42.0) (29). Kaplan-Meier analysis was
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performed based on the module eigengenes or GSVA scores using

the R package survminer (version 0.4.9).
2.7 Pathway enrichment analysis and gene
set enrichment analysis

We analyzed Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) using the ‘enrichGO’ and

‘enrichKEGG’ functions from the R package clusterProfiler

(version 4.2.2) based on the genes assigned to the ICB-related

modules (30). We performed GSEA analysis against GO and

KEGG using the clusterProfiler function ‘gseGO’ and ‘gseKEGG’

with module genes ranked by their kME values.
2.8 scRNA-seq analysis

For scRNA-seq analysis, we used the R package Seurat (version

4.1.0) (31) according to the original paper (19). Firstly, we

normalized the library size using the Seurat function

‘NormalizeData’. We then detected the top 2000 most variable

genes using the function ‘FindVariableFeatures’, and scaled the

variable genes by regressing out the unwanted sources of variation

via the function ‘ScaleData’. We performed PCA analysis using the

function ‘RunPCA’ and selected the top PCs to calculate nearest

neighbors and cluster cells using the Seurat function

‘FindNeighbors’ and ‘FindClusters’. Cell clusters were visualized

with the uniform manifold approximation and projection (UMAP)

map and annotated by marker genes suggested in the original paper.

Gene expression of each cluster was demonstrated by dot plots and

heatmaps using the Seurat function ‘DotPlot’ and ‘DoHeatmap’.

Analysis of subpopulations was done in similar steps. If necessary,

we corrected batch effect using the R package harmony (version

0.1.1) (32). Similar cells were grouped as metacells based on the

MetaCell algorithm using the ‘MetacellsByGroups’ function from

the R package hdWGCNA (version 0.2.11) (33), therefore solving

the problem of transcript drop-out. We performed single-cell level

correlation analysis based on the metacell gene matrix.
2.9 Human specimen and ethics statement

The collection of specimen complies with all related ethical

regulations and was approved by the Ethics Committee of Ruijin

Hospital, Shanghai Jiao Tong University School of Medicine

(KY2018-104). We obtained tumor tissues that were surgically

removed from 10 patients who had been pathologically diagnosed

with NSCLC. These patients did not receive any treatment before

surgery (Supplementary Table 4).
2.10 Tissue processing and flow cytometry

Fresh tumor tissues were processed immediately after

collection. The tissues were mechanically minced and subjected to
Frontiers in Immunology 04
enzymatic digestion using 1 mg/mL type IV collagenase

(Worthington Biochemical, NJ, USA) with 150 mg/mL DNase I

(Worthington Biochemical, NJ, USA) for 60 min in a 37°C rotating

incubator. The dissociated samples were filtered using a 70 mm
strainer, washed and resuspended with fluorescence activated cell

sorting (FACS) buffer. Cells were incubated with 5 mL TruStain FcX

block antibody (BioLegend, CA, USA) in 100 µL FACS buffer for 10

min on ice and then stained with fluorochrome-conjugated

antibodies and Fixable Viability Dye eFluor 780 (Invitrogen, CA,

USA) for 30 min on ice. Antibodies used were: anti-human CD45–

FITC(HI30), CD3–BV650(OKT3), CD19–PE/Dazzle(HIB19),

CD15–AF700(HI98), CD14–BV605(M5E2), HLA-DR–BV785

(L243), CD11c–BV510(3.9), CD53–PE(HI29), all from BioLegend,

and Paired immunoglobulin-like receptor a (PILRa)–AF647
(2175D) from R&D (MN, USA). Stained cells were fixed with 1×

Intracellular (IC) fixation buffer (Invitrogen, CA, USA) for 30 min

on ice. Samples were acquired on a LSRFortessa flow cytometer (BD

Biosciences, CA, USA) and data were analyzed with FlowJo

software version 10.4.0 (BD Biosciences, CA, USA).
2.11 Analysis of alternative splicing
(AS) events

Data on alternative splicing in NSCLC (LUAD and LUSC) were

obtained from the online database of TCGA SpliceSeq. The Percent

Spliced In (PSI) value was calculated to quantify the rate of every

splicing event, and we included AS events where the percentage of

samples with PSI values was over 75%. Seven types of alternative

splicing were identified: Alternate Promoter (AP), Alternate

Terminator (AT), Exon Skip (ES), Retained Intron (RI), Alternate

Acceptor site (AA), Alternate Donor site (AD) and Mutually

Exclusive Exons (ME). Differentially expressed AS events (DEAS)

analysis was performed using Wilcoxon rank-sum test to compare

the AS events from two groups. AS events with |log2FC| > 1 and P <

0.05 were considered as significantly changed AS events.
2.12 Risk score construction

Three genes with the highest kME were selected from each ICB-

related module. Lasso-penalized Cox (Lasso-Cox) regression was

performed using the R package glmnet (version 4.1-3) based on all

genes to create a risk score for ICB responsiveness (34). We

performed 5-fold cross-validation using the function ‘cv.glmnet’ to

get the l.min value, which is the optimal penalization coefficient (l)
value. The risk score was calculated as follows: risk score = sum

(mRNA expression level of the screened genes × corresponding beta

coefficient). We validated the established risk score using Kaplan-

Meier analysis with the GLCI cohort and KM-plotter pan-cancer

cohort. The time-dependent receiver operating characteristic (ROC)

curve for survival data was analyzed using the R package survivalROC

(version 1.0.3.1) at indicated time points. According to the risk score,

samples were separated into high- and low-risk groups.
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2.13 Tumor microenvironment
deconvolution

We used multiple methods to deconvolute the TME

composition of TCGA NSCLC samples. The estimate score was

calculated using the R package estimate (version 1.0.13) to infer the

stromal and immune composition in each sample (35). We used the

CIBERSORTx online tool (https://cibersortx.stanford.edu/) with

LM22 profile and a scRNA-seq profile for immune cell

deconvolution (36). To further dissect the immune cell subsets in

NSCLC samples, we customized the scRNA-seq profile based on the

Bernard_Thienpont dataset (37–39). We also used the TIMER2.0

online tool (http://timer.cistrome.org/) to perform the

deconvolution analyses with TIMER, quanTIseq, and xCell (40–42).
2.14 Somatic variant analysis

Somatic variant results from MuTect2 pipeline were used as

input for the R package maftools (version 2.10.5) (43). We included

clinically relevant frequently mutated genes for comparisons

between high- and low-risk groups, and we drew plots via the

maftools functions ‘coOncoplot’ and ‘coBarplot’. TMB was

calculated using the maftools function ‘tmb’.
2.15 Statistical analysis

R software (version 4.1.2) was used for all statistical analysis.

The Wilcoxon rank-sum test was used where indicated. The log-

rank test was used to estimate the difference in Kaplan-Meier

survival analysis. A P value < 0.05 was considered statistically

significant (*: P < 0.05, **: P < 0.01, ***: P < 0.001, ****: P < 0.0001).
3 Results

3.1 Identification of co-expression modules
related to ICB responsiveness in NSCLC

To fully characterize the transcriptomic profiles related to ICB

responsiveness in NSCLC, we conducted the study as described in

Figure 1. We integrated pre-treatment RNA-seq data from two public

datasets, checking and correcting for batch effects (Supplementary

Figures 1A, B). We selected 3316 genes with high variance and retained

all 43 samples after quality control (Supplementary Figure 1C). We set

the soft thresholding power b to 18 as the smallest value to achieve scale

free topology, resulting in a scale free topology index R2 of 0.89 and

mean connectivity of 5.80 (Figures 2A, B). 11 modules were eventually

detected as illustrated by the cluster dendrogram (Figure 2C) and TOM

heatmap (Figure 2D).

In order to elucidate the clinical association of the modules, we

calculated the Pearson correlation between each clinical trait and

module eigengenes, which represent a weighted average expression of

each module (Figure 2E). The black module had a positive

correlation, while the blue module had a negative correlation to
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anti-PD-(L)1 responsiveness (Supplementary Table 5). The relevance

of assigned genes in the two modules to ICB responsiveness was

verified by the module membership to gene significance correlation

plots (Figures 2F, G). We analyzed the preservation of the identified

modules in the TCGA NSCLC dataset, which has a large sample size.

The high Zsummary and low medianRank of both black and blue

modules suggested they were strongly preserved in NSCLC

(Figure 2H, Supplementary Figure 1F).
3.2 The black module has a positive
correlation with ICB responsiveness

Firstly, we conducted an in-depth study of the black module to

investigate its role in ICB responsiveness. Top 30 genes ranked by

kME in the black modules were analyzed using the software

Cytoscape, which revealed a co-expression network (Figure 3A).

We further verified the co-expression pattern among the top 10

genes by heatmap and scatter plots (Figure 3B). To account for the

confounding factor of tumor purity, we performed a purity

adjustment, and the co-expression pattern was preserved

(Supplementary Figure 2A). The top 10 genes were consistently

downregulated in tumor versus normal tissues (Supplementary

Figure 2B). Pathway enrichment analysis of the genes in the black

module revealed T cell activation and antigen processing and

presentation pathways, suggesting a potential mechanism for the

module’s relation to ICB responsiveness (Figure 3C; Supplementary

Figure 2C). The GSEA analysis also showed an enrichment of

antigen processing and presentation and T cell activation

pathways (Figure 3D; Supplementary Figures 2D-F). To confirm

the positive correlation of the black module with ICB

responsiveness, we performed Kaplan-Meier analysis in the

training dataset. We found that a high eigengene of black module

demonstrated an improvement of PFS after ICB therapy

(Figure 3E). Furthermore, patients with high GSVA scores of the

black module (GSVA_black) had better PFS (Figure 3F). We

validated the OS benefits from ICB therapy in patients with high

GSVA_black scores in cohorts of NSCLC in GLCI and pan-cancer

from KM-plotter (Figures 3G, H).
3.3 Genes of the black module show
preferable expression in myeloid cells

Given the black module’s association with T cell activation and

antigen presentation, we explored the cellular expression of its

assigned genes using the NSCLC scRNA-seq data. We found that

the top 10 genes ranked by kME were predominantly expressed in

immune cells, but not in cancer cells, alveolar cells, epithelial cells,

fibroblasts and endothelial cells (Figures 4A, B). Among immune

cells, myeloid cells showed the highest expression of the module

genes, including neutrophils, macrophages, monocytes,

conventional dendritic cells (cDCs) and plasmacytoid dendritic

cells (pDCs). Using a metacell expression matrix, we analyzed the

correlations among the 10 genes based on all the cell types and

found strong correlations among each gene pair (Figure 4C). It
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indicates that the specific expression of the black module genes in

myeloid cells largely contributes to its co-expression pattern

(Supplementary Figure 3B). In addition, the positive correlations

of some gene pairs were observed in the neutrophils and cDCs

(Figure 4D). To confirm the co-expression pattern of the black

module genes at protein level, we performed flow cytometry

analysis on NSCLC samples. We selected two representative genes

CD53 and PILRA for flow cytometry analysis, because they were

among the hub genes of the black module and had commercially

available fluorochrome-conjugated antibodies. We found that both

CD53 and PILRa had a higher expression in macrophages, cDCs

and neutrophils other than T cells, B cells and non-immune CD45-

cells (Figure 4E; Supplementary Figures 3D, E). Moreover, the mean

fluorescent intensities (MFI) of CD53 and PILRa were positively

correlated in cDCs (Figure 4F). Our findings suggest that the black
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module genes show preferable expression in myeloid cells, which

may contribute to their association with ICB responsiveness.
3.4 The blue module has a negative
correlation with ICB responsiveness

We then explored the correlation between the blue module with

ICB responsiveness. A co-expression network was visualized using

the top 30 hub genes ranked by kME in the blue modules

(Figure 5A). The heatmap and scatter plots illustrated that the

top 10 hub genes were positively related to each other (Figure 5B).

After adjusting for tumor purity, the co-expression pattern was

preserved (Supplementary Figure 4A). Notably, the top 10 genes

were mostly upregulated in tumor versus normal tissues
FIGURE 1

Flowchart of the study. In brief, we integrated two RNA sequencing datasets of NSCLC, GSE135222 and GSE126044, where samples were taken
before PD-(L)1 blockade treatment. We used weighted gene co-expression network analysis and correlation analysis to identify modules related to
PD-(L)1 responsiveness. We then characterized the biological function of the PD-(L)1-relevant modules using TCGA-NSCLC datasets, single-cell RNA
sequencing data from GSE148071, and flow cytometry data analyzed in-house. Next, we constructed a risk score using Lasso-COX regression that
could optimally predict PD-(L)1 responsiveness. We validated the risk score in our PD-(L)1-treated NSCLC cohort at the Guangdong Lung Cancer
Institute (GLCI) and a pan-cancer immunotherapy cohort using the KM-plotter database. We compared the composition of the tumor microenvironment
and mutational changes between the groups categorized by the risk score. Additionally, we correlated the association between the risk score and
previously reported predictors to reveal potential mechanisms.
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(Supplementary Figure 4B). The blue module was enriched in

pathways related to RNA splicing (Figure 5C; Supplementary

Figure 4C), which was verified by GSEA analysis (Figure 5D;

Supplementary Figures 4D–F). To confirm the negative

correlation of blue module with ICB responsiveness, we

performed Kaplan-Meier analysis and found that the patients
Frontiers in Immunology 07
with a high eigengene of blue module had worse PFS after ICB

therapy (Figure 5E). Furthermore, patients with high GSVA scores

of the blue module (GSVA_Blue) had shorter PFS (Figure 5F). We

validated the results in the cohorts of NSCLC in GLCI and pan-

cancer from KM-plotter, where the OS was decreased in patients

with high GSVA_Blue scores (Figures 5G, H).
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FIGURE 2

WGCNA analysis and identification of key modules related to ICB responsiveness. (A) Analysis of scale independence for a range of soft threshold
powers with networkType set as “signed”. The red line represents the cutoff scale free topology index R2 = 0.85. (B) Analysis of mean connectivity
for a range of soft threshold powers. (C) Cluster dendrogram of the 3316 genes with 11 modules labeled by colors. (D) Heatmap of the topological
overlap matrix (TOM) displays the co-expression pattern of the 11 modules. (E) Heatmap of the module-trait correlations. Every cell shows the
Pearson correlation coefficient and P value. (F, G) Scatter plots illustrating the correlations between module membership (kME) and gene significance for
ICB responsiveness in the (F) black module and (G) blue module. (H) Analysis of module preservation in the TCGA NSCLC dataset. The Zsummary value
represents the module preservation index, with higher values indicating stronger evidence of module preservation. A Zsummary > 10 (red dotted line)
means strong evidence of module preservation, while a value < 2 (blue dotted line) means no evidence.
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3.5 Genes of the blue module are
associated with RNA alternative splicing

As indicated by the pathway enrichment analysis, the blue

module was associated with RNA alternative splicing. To

investigate this further, we performed DASE analysis based on the

NSCLC dataset from TCGA SpliceSeq database. Our results revealed
Frontiers in Immunology 08
that the group with a high GSVA_Blue score had a preference for

downregulated AS events, with 366 significantly downregulated AS

events and 77 significantly upregulated AS events (Figure 6A). The

heatmap also demonstrated that the GSVA_Blue score was relevant

to the dysregulated AS events (Figure 6B). The major types of

downregulated AS were AP, AT and ES (Figure 6C). As illustrated

by the UpSet plot, most genes only contained one type of AS
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FIGURE 3

The black module is positively related to ICB responsiveness. (A) Co-expression network of the top 30 hub genes in the black module displayed
using the software Cytoscape. The nodes are colored by the module membership (kME) and the edge thickness is proportional to the gene pair
Pearson correlation coefficients. (B) Plot showing the correlation matrix among the top 10 hub genes in the black module. The upper triangle
represents a heatmap of the Pearson correlation coefficients, and the lower triangle represents multiple scatter plots with a fitted regression line.
(C) Gene ontology (GO) enrichment analysis shows the top eight enriched pathways in the black module. (D) Gene set enrichment analysis (GSEA) plot
against GO demonstrates the enrichment of antigen processing and presentation (GO:0019882) in the black module. (E) Kaplan-Meier curve of PFS
comparing patients with high eigengene of the black module to those with low eigengene in the training cohort (n=43). (F) Kaplan-Meier curve of PFS
comparing patients with high GSVA scores of the black module (GSVA_black) to those with low scores in the training cohort (n=43). (G, H) Kaplan-Meier
curve of OS comparing patients with high black module scores to those with low scores in (G) the NSCLC validation cohort in GLCI (n=56) and (H) the
pan-cancer cohort from KM-plotter database (n=749). In the NSCLC cohort, black module scores were calculated using GSVA algorithm, while in the
pan-cancer cohort, they were calculated using the mean expression of the top 10 hub genes due to limitation of the KM-plotter online database. The P
values in (E-H) were derived from log-rank tests.
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(Supplementary Figure 5A). The top 5 most downregulated AS events

were FAM72A/AP/9575, FAM72A/AT/9577, CLDND1/65751/AT,

TACC1/AP/83437 and CABIN1/AP/61386 (Figures 6D, E). We

calculated the average PSI values of the top 5 AS events and found

that the group defined by a high average value was more likely to be
Frontiers in Immunology 09
ICB responsive, as suggested by the lower TIDE prediction score

(Figure 6F) (44). Our findings suggest that the genes of the blue

module are associated with RNA alternative splicing, and that

downregulated AS events may contribute to a negative correlation

with ICB responsiveness.
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FIGURE 4

Preferable expression of the black module genes in myeloid cells. (A-D) We investigate the single-cell level RNA expression of the black module
genes based on the scRNA-seq data of NSCLC (GSE148071). (A) Dot plot of all the cell types showing the expression of the top 10 hub genes in the
blackmodule. (B)Heatmap of all the cell types showing the expression of the top 10 hub genes in the black module. (C) Plot showing the correlation
matrix of all the cell types pooled among the top 10 hub genes in the black module. The upper triangle represents a heatmap of the Pearson correlation
coefficients, and the lower triangle represents multiple scatter plots with a fitted regression line. (D)Heatmap showing the correlationmatrix of
conventional dendritic cells (cDCs) and neutrophils among the top 10 hub genes in the black module. The upper triangle panel represents neutrophils and
the lower triangle panel represents cDCs. (E, F)We conducted flow cytometry to explore the black module at the protein level. (E) Representative contour
plot of flow cytometry comparing the fluorescent intensities of PILRa and CD53, which are the two representative hub genes of the black module, among
different cell types. (F) Scatter plot showing the Pearson correlation between mean fluorescent intensities (MFI) of PILRa and CD53 in cDCs.
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3.6 Integrative risk score of the black
and blue modules are associated with
ICB responsiveness

The contrary associations of the black and blue modules with

ICB responsiveness indicated their complementary characteristics

of predicting response to ICB therapy. Therefore, we attempted to
Frontiers in Immunology frontiersin.or10
develop a model that could predict ICB responsiveness based on

these modules. We firstly subtract the GSVA_blue score from the

corresponding GSVA_black score, resulting in a new GSVA_black-

blue score. The GSVA_black-blue score effectively stratified PFS

between patients with high and low scores in the training cohort

(Figure 7A). The favorable OS in the group with high GSVA_black-

blue score was also validated in the NSCLC cohort in GLCI
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FIGURE 5

The blue module is negatively related to ICB responsiveness. (A) Co-expression network of the top 30 hub genes in the blue module displayed using
the software Cytoscape. The nodes are colored by the module membership (kME) and the edge thickness is proportional to the gene pair Pearson
correlation coefficients. (B) Plot showing the correlation matrix among the top 10 hub genes in the blue module. The upper triangle represents a
heatmap of the Pearson correlation coefficients, and the lower triangle represents multiple scatter plots with a fitted regression line. (C)Gene ontology
(GO) enrichment analysis shows the top eight enriched pathways in the blue module. (D)Gene set enrichment analysis (GSEA) plot against GO
demonstrates the enrichment of RNA splicing (GO:0008380) in the blue module. (E) Kaplan-Meier curve of PFS comparing patients with high eigengene of
blue module to those with low eigengene in the training cohort (n=43). (F) Kaplan-Meier curve of PFS comparing patients with high GSVA scores of the
blue module (GSVA_blue) to those with low scores in the training cohort (n=43). (G, H) Kaplan-Meier curve of OS comparing patients with high blue
module scores to those with low scores in (G) the NSCLC validation cohort in GLCI (n=56) and (H) the pan-cancer cohort from KM-plotter database
(n=749). In the NSCLC cohort, blue module scores were calculated using GSVA algorithm, while in the pan-cancer cohort, they were calculated using the
mean expression of the top 10 hub genes due to limitation of the KM-plotter online database. The P values in (E-H)were derived from log-rank tests.
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(Supplementary Figure 6A). To create a signature predicting ICB

responsiveness with a limited number of genes, we performed

Lasso-COX regression analysis on the six hub genes, each with

the three highest kME from the two modules (Figure 7B). The

algorithm screened out three genes, EVI2B, DHX9 and HNRNPM,

and we built the Lasso-COX model with l.min = 0.234 as the

optimal l coefficient (Figure 7C). The risk score derived from the

model was (-0.083 × expression level of EVI2B) + (0.126 ×

expression level of DHX9) + (0.050 × expression level of

HNRNPM). Higher risk scores indicated the patients were at

higher risk of poor clinical responses to ICB therapy with shorter

survival (Figure 7D). Also, the risk score could significantly divide

the training cohort into two groups, with better PFS in the low-risk

group (Figure 7E). The ROC curve of the training cohort

demonstrated that the areas under the curve (AUCs) in

predicting survival benefits after ICB treatment at 5, 10, and 15

months were 0.753, 0.676, and 0.809 (Figure 7F). We validated the

risk score in the NSCLC cohort in GLCI, where a lower risk of poor

ICB response was observed in the low-risk group (Figure 7G). The

Kaplan-Meier analysis of OS in the NSCLC validation cohort also

verified the predictive value of the risk score in recognizing patients

who failed to response to ICB therapy, yielding the AUCs at 5, 10,

and 15 months being 0.630, 0.674, and 0.741 (Figures 7H, I). Finally,

we validated the risk score in the pan-cancer cohort from the KM-

plotter database, where the OS of ICB-treated patients with low risk

scores was significantly prolonged (Figure 7J). Our results suggest

that the integrative risk score of the black and blue modules is

associated with ICB responsiveness, and the three-gene signature

may serve as a useful tool for predicting response to ICB therapy.
3.7 The low-risk group of NSCLC samples
shows an immune-active TME

To investigate the underlying causes of the associations with

ICB therapy, we compare the TME composition between the high-

risk and low-risk groups defined by the risk score. We analyzed the

TCGA NSCLC dataset, considering the large sample size and data

comprehensiveness. Firstly, we utilized the TIDE algorithm to

predict the ICB responsiveness of TCGA patients, and the lower

TIDE prediction score in the low-risk group indicated a higher

likelihood of patients to benefit from ICB treatment (Figure 8A).

The dichotomous results from TIDE prediction also demonstrated

an obvious shift of patients with low risk scores towards ICB

responders (Figure 8B). Next, we adopted the estimate score to

quantify the cellular composition, and the higher StromalScore and

ImmuneScore suggested a stromal- and immune-enriched TME

(Figure 8C). To further dissect the immune microenvironment, we

performed CIBERSORTx analysis using the LM22 signature. Most

immune cell subsets were significantly more infiltrated in the low-

risk group, including the myeloid cells where the black module

genes were expressed (Figure 8D). In addition, we performed

TIMER, quanTIseq, and xCell analyses, and the results also

showed more immune infiltration in the low-risk group

(Supplementary Figures 7B-D). Our findings suggest that the low-

risk group of NSCLC samples exhibit an immune-active TME,
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which may explain their increased likelihood of benefiting from

ICB treatment.

Next, we delved deeper into comparing T-cell and myeloid cell

subsets, which have been proved to play a large part in anti-tumor

immunity. We used the NSCLC scRNA-seq data to create a signature

for the estimation of T cell and myeloid cells subsets (Supplementary

Figure 7E). CD8+ T cells are well-known immune cell types that

determines ICB responsiveness. Tumor samples from ICB responders

were found to have a low frequency of terminal exhausted CD8+ T

cells (Tex) and high frequency of tissue-residentmemory CD8+ T cells

(Trm) (38), which was consistent with our result (Figure 8E). In

addition, the estimated frequency of precursor exhausted CD8+ T cells

(Tpex) and Type 17 CD8+ T cells (Tc17) was increased in the low-risk

group as well. Tpex, marked by TCF-1+, was considered to generate

effector CD8+ T cells in response to ICB therapy (45). The relevance of

CD4+ T cells with ICB responsiveness was less established. We

observed a decreased frequency of classic follicular helper T (Tfh)

cells and an increased frequency of IFNG+ Tfh/T helper 1 (Th1) cells

in the low-risk group (Supplementary Figure 7F). Frequencies of

regulatory T (Treg) cells were also upregulated except TNFRSF9- Treg

cells, which was a resting subtype of Treg cells. Our findings suggest

that the low-risk group of NSCLC samples have a more favorable T-

cell composition to mediate the anti-PD-(L)1 treatment.

Myeloid cells can modulate the anti-tumor immune reaction

directly or indirectly through regulating T cells. Among the

dendritic cells subsets, frequencies of type 1 cDCs (cDC1s) and

pDCs were significantly increased in the low-risk group (Figure 8F).

The frequency of classical CD14+ monocytes was upregulated while

that of non-classical CD16+ monocytes was downregulated in the

low-risk group. Moreover, C1QC+ macrophages and ISG15+

macrophages had higher frequencies, while PPARG+ lung-resident

alveolar macrophages had a lower frequency in the low-risk group.

These findings suggest that alterations of myeloid cell subsets in the

low-risk group may play a role in modulating the anti-tumor

immune response during ICB therapy.

We compared the mutational landscape of TCGA-LUAD and

LUSC cohorts between the two risk groups. Among the most

common somatic mutations of LUAD, TP53, KRAS, KEAP1 and

STK11 were less mutated in the low-risk group (Supplementary

Figures 8A, B). The frequencies of TP53 and CDKN2A were

decreased in the low-risk group of LUSC, while that of FAT1 was

increased (Supplementary Figures 8C, D). The TMB of LUAD and

LUSC had a decrease or a decrease trend in the low-risk groups

(Supplementary Figures 8E, F). Overall, the mutational changes in

the low-risk groups were not consistent with the trend towards a

better response to ICB treatment reported by the other studies.

Therefore, the mutational profiles are less important in evaluating

the significance of the risk score.
3.8 The correlation of the risk score with
established parameters that predicts
response to ICB therapy

We investigated the correlation between our risk score and

established parameters that predict anti-PD-(L)1 responsiveness. We
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computed the parameters reported by previous publication, including

single genes and gene signatures, and performed correlation analysis

with our risk score. The single genes included were CD274 (PD-L1),

CXCL9 (46), CXCL13 (47) and CD8A (48). We also included

signatures of T effector, IFNG, 6-gene GEP, 18-gene GEP, pan-

fibroblast TGFb response signature (F-TBRS) (49), TLS and TLS in

melanoma (TLS_M) (50). Multiple parameters were found to be
Frontiers in Immunology 12
significantly related to the risk score (Figure 8G). CD8A and CXCL9

were significantly associated with the risk score, while the signatures of

TLS/TLS_M and GEP_18 were the most significant ones correlated

with the risk score (Figure 8H, I; Supplementary Figures 7G-L). These

findings suggest that our risk score is strongly correlated with

established parameters that predict ICB responsiveness, especially

gene signatures of TLS/TLS_M and GEP_18.
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FIGURE 6

Alternative splicing (AS) events are downregulated in samples with high expression of blue module genes. (A) Volcano plot showing the differentially
expressed AS events (DEASs) comparing the group with high GSVA scores of the blue module (GSVA_blue) versus the low GSVA_blue group. AS
events with |log2FC| > 1 and P < 0.05 are considered significantly dysregulated. (B) Heatmap showing the scaled percent spliced in (PSI) values of the
top 20% of DEASs with the lowest P values. (C) Stacked bar plot showing the number of seven types of DEASs in the high GSVA_blue group. (D) Splice
graph illustrating the top 5 most downregulated AS events. The selected AS events are outlined by red, with exons shaded by expression level and splice
paths connected by arcs. (E) Box plot comparing the PSI values of the top 5 most downregulated AS events between the high and low GSVA_blue groups.
(F) Box plot comparing Tumor Immune Dysfunction and Exclusion (TIDE) prediction scores between the groups categorized by the average PSI values of
the top 5 most downregulated AS events. The group with low TIDE prediction scores is more likely to be ICB responsive. The P values in (E, F)were derived
fromWilcoxon rank-sum test. ****:P < 0.0001. In box plots, the central line is the median, and the limits are the upper and lower quartiles. AA, Alternate
Acceptor site; AD, Alternate Donor site; AP, Alternate Promoter; AT, Alternate Terminator; ES, Exon Skip; ME, Mutually Exclusive Exons; RI, Retained Intron.
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4 Discussion

In this study, we leverage WGCNA analysis to comprehensively

characterize the transcriptome of baseline NSCLC samples before

anti-PD(L)1 therapy. We identified two co-expression modules

related to ICB responsiveness that were preserved in NSCLC

samples. The black module was positively correlated to ICB
Frontiers in Immunology 13
responsiveness and enriched in pathways of antigen processing

and presentation and T cell activation. Data from scRNA-seq and

flow cytometry revealed that the genes in the immune-related black

module had a preferable expression pattern in myeloid cells. In

addition, the blue module was negatively associated with ICB

responsiveness, and samples with high expression of blue module

genes tended to downregulate AS events. The downregulated AS
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FIGURE 7

The risk score integrating the black and blue modules negatively associates with ICB responsiveness. (A) Kaplan-Meier curve of PFS comparing
patients with high GSVA_black-blue scores to those with low scores in the training cohort (n=43). The GSVA_black-blue score was calculated by
subtracting the GSVA_blue score of each sample from the corresponding GSVA_black score. (B) Lasso coefficient profiles of the six hub genes, each
three with the highest module membership (kME) from the black and blue modules. (C) The optimal penalization coefficient (l) was calculated using
5-fold cross-validation based on partial likelihood deviance, which yielded l.min = 0.234. (D) The distribution of the PFS and the expression of three
screened genes in the risk score based on the Lasso-COX model (training dataset). (E) Kaplan-Meier curve of PFS comparing patients with high risk
scores to those with low scores from the training dataset (n=43). (F) The receiver operating characteristic (ROC) curve of PFS showing the area
under the curve (AUC) of the risk score at 5, 10, 15 months in the training dataset. (G) The distribution of the OS and the expression of three
screened genes in the risk score (GLCI validation dataset). (H) Kaplan-Meier curve of OS comparing patients with high risk scores to those with low
scores from the GLCI validation dataset (n=56). (I) The ROC curve of OS showing the AUC of the risk score at 10, 20, 30 months in the GLCI
validation dataset. (J) Kaplan-Meier curve of OS comparing pan-cancer patients with high risk scores to those with low scores from the KM-plotter
validation dataset (n=749). The P values in (A, E, H, J) were derived from log-rank tests.
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events, mostly AP, AT and ES types, were positively associated with

ICB responsiveness. We established a three-gene risk score using

Lasso-COX regression analysis from the two ICB-related modules,

and validated its predictive value for ICB therapy failure in a

NSCLC dataset and a pan-cancer dataset. The risk groups defined
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by the risk score were compared to dissect the differences in the

TME profiles. The low-risk group, which was more responsive to

ICBs, was more stromal- and immune-infiltrated. Furthermore, the

low-risk group had higher frequencies of Tpex, Tc17, pDCs and

cDC1s, and featured as Texlo Trmhi, which could contribute to the
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FIGURE 8

The risk score is related to tumor microenvironment alteration and previously established parameters predicting ICB responsiveness. (A) Box plot
comparing Tumor Immune Dysfunction and Exclusion (TIDE) prediction scores between groups with high and low risk scores. The group with low
TIDE prediction scores is more likely to be ICB responsive. (B) Waterfall plot of TIDE prediction scores colored by ICB responsiveness. The left half
represents patients with high risk scores, and the right half represents patients with low risk scores. (C) Box plot showing the StromalScore and
ImmuneScore calculated by the estimate algorithm between high- and low-risk groups. (D) Box plot showing the cell abundance of major immune
cells between high- and low-risk groups using the CIBERSORTx tool run in absolute mode. The signature matrix used is the LM22 profile. (E, F) Box
plot showing the cell frequencies of (E) CD8+ T cell subsets and (F) myeloid cell subsets between high- and low-risk groups using the CIBERSORTx
tool run in relative mode. The signature matrix used is customized based on the Bernard_Thienpont NSCLC scRNA-seq. The mean frequencies of
Tpex in the high- and low-risk groups are 0.15% and 0.17%, respectively. (G) Forest plot showing the Pearson correlation between previously
reported parameters regarding ICB prediction and the risk score. (H, I) Scatter plots illustrating the correlations of (H) GEP_18 and (I) tertiary
lymphoid structure in melanoma (TLS_M) signatures versus the risk score. All the data in (A–I) were analyzed using the TCGA NSCLC dataset. The P
values in (A, C–F) were derived from Wilcoxon rank-sum test. ns: not significant, *:P < 0.05, **:P < 0.01, ****:P < 0.0001. In box plots, the central
line is the median, and the limits are the upper and lower quartiles.
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superior responsiveness. We also found that the risk score had a

significant correlation to the previously reported ICB-predictive

parameters, especially the TLS_M and GEP_18 signatures, which

partly accounted for its predictive value.

Previous studies have shown that there are no significant

differences in response to anti-PD-(L)1 treatment in NSCLC

patients based on race or age (51, 52). However, a large meta-

analysis has illustrated that Asian patients experience greater

benefits from anti-PD-(L)1 therapy compared to non-Asian

patients (53). As our dataset primarily consists of Asian patients,

further validation of our results in non-Asian NSCLC datasets is

necessary. Research has shown that the effectiveness of anti-PD-(L)

1 treatment may be influenced by gender (54, 55). Conforti et al.

performed a meta-analysis of randomized clinical trials, and found

that men with NSCLC experience a significantly greater benefit

from ICB therapy compared to women, even in patients with high

PD-L1 expression levels (56). However, our study demonstrates that

the two ICB-related modules do not have any correlation with

gender, as depicted in Figure 2E.

Several hub genes in the black modules, which was positively

correlated with ICB responsiveness, have been studied and may

shed light on the mechanism of ICB responsiveness. CD53, with the

highest kME of the black module, is a member of tetraspanins.

Dunlock et al. showed that CD53 knockout mice experienced

impaired tumor rejection due to the restrained T cell proliferation

and activation, but did not thoroughly study the function of CD53

in myeloid cells (57). CD53-mediated anti-tumor immunity could

be a factor that promotes the response to ICB treatment.

Lysosomal-associated protein transmembrane 5 (LAPTM5) in

macrophages acts a positive modulator to transmit inflammatory

signaling and produces proinflammatory cytokines in return, such

as TNF-a, and IL-12 (58). Due to the anti-tumor role of TNF-a and

IL-12, the expression of LAPTM5 in macrophages could be a

potential mechanism to improve ICB efficacy. Zheng et al.

reported that PILRa on myeloid cells interacts with CD8a to

maintain CD8+ T cell quiescence (59). This PILRa-CD8a
interaction could likely enhance the pools of naïve and memory

CD8+ T cell and further maintain ICB therapy responsiveness.

Alternative splicing is a mechanism of a single gene to produce

diverse transcripts and is dysregulated in multiple cancers (60).

Splicing events of tumor-specific mRNA frequently introduces

neoepitopes that can be presented by major histocompatibility

complex class I (MHC-I) and subsequently recognized by T cells

(61). Tumor-specific splicing events may serve as a predictive

biomarker for ICB responsiveness. Compared to the neoantigens

derived from mutations, splicing-derived neoantigens are more

commonly detected and may become the ideal target for novel

tumor immunotherapy (62, 63). DHX9, the top hub gene with the

highest kME in the blue module, has been found to be relevant to

defection of alternative splicing in tumor cells and promotes the

formation of R-loop structures of nucleic acids (64). HNRPM

belongs to the heterogeneous nuclear ribonucleoproteins

(hnRNP) family and is able to modulate alternative splicing via

exon skipping or exon inclusion (65, 66).

The risk score created by the Lasso-COX model identified

NSCLC patients with low risk scores who may benefit from ICB
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therapy. The low-risk group was more immune-infiltrated,

consistent with the immunologically hot tumor type (67). CD8+ T

cells become exhausted with poor effector functions in cancer where

antigen stimulation persists (68), while the CD8+ Trm cells are

native tissue defenders with protective functions against tumor cells

(69). A pan-cancer study identified a tumor type defined by a low

frequency of terminal Tex and a high frequency of Trm, and

this Texlo Trmhi feature was associated with ICB responsiveness

(38). Recent studies have shown that Tpex cells, defined as

TCF1+PD-1+CD8+ T cells, can give rise to Tex cells and are

believed as the key cell subset that responds to ICB therapy (45).

Our estimated frequency of Tpex was relatively low, consistent with

other reports, but its increase in the low-risk group is a potential

cause of ICB responsiveness. Tc17, a CD8+ T cell subset producing

IL-17, was also implicated as a player in the ICB treatment (38). The

association of CD4+ T cells with ICB responsiveness is not well

characterized, and our results regarding the alteration of Tfh and

Treg cells in the low-risk group need further investigation.

Several types of myeloid cells were found to be different between

the high- and low-risk groups. Patients with a high signature of

dendritic cells in the pre-treatment samples were more likely to

have ICB responses, suggesting that the anti-tumor impact of anti-

PD-(L)1 is mediated by DCs (70). Blocking the PD-1/PD-L1

interaction between pDCs and effector cells abolished the

immune suppression of pDCs on T cells and NK cells (71).

Dahling et al. found that cDC1s could provide a niche to main

Tpex cells and prevent their overactivation dependent on MHC-I

interactions, and this shielding effect on Tpex was associated with

ICB responsiveness (72). Macrophages have diverse subsets

revealed by robust results of scRNA-seq and defined by marker

genes as SPP1+, C1QC+, PPARG+, and ISG15+macrophages. C1QC+

macrophages are mutually exclusive to SPP1+ macrophages, and

they co-expressed other C1q genes, HLA-DR, APOE, and MRC1

(73). Interestingly, C1q genes and APOE were included in a TLS

signature of renal cell cancer associated with better ICB response,

indicating a potential role of C1QC+ macrophages in helping to

eliminate tumor cells in ICB therapy (74). ISG15+ macrophages

upregulated multiple interferon-induced genes and M1-like

markers, but they are also suppressive through tryptophan

degradation (75). Therefore, the anti-tumor role of ISG15+

macrophages require further studies. PPARG+ macrophages are

lung-resident alveolar macrophages, but their function in the TME

is not well clarified yet.

The risk score is most closely related to the signature of TLS,

providing an underlying mechanism of ICB responsiveness in the

low-risk group. TLS is ectopic lymphoid aggregates in the tumor

that feature B cells surrounded by T cells, similar to the secondary

lymphoid organs. Multiple studies have demonstrated the value of

TLS as a biomarker associated with benefits from ICB treatment in

various types of tumors, including NSCLC, renal cell carcinoma,

melanoma (50, 74, 76). The immune cell subsets changed in our

study, such as the C1QC+ macrophages discussed earlier, may also

contribute to the composition of TLS.

In conclusion, our analysis revealed two ICB-related co-

expression modules in baseline NSCLC samples prior to ICB

therapy. The black module, which was positively associated with
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ICB responsiveness, had pathway enrichment of antigen processing

and presentation and T cell activation, with its assigned genes mostly

expressed in myeloid cells. The blue module had a negative

correlation with ICB responsiveness and was associated with

decreased alternative splicing events. A risk score constructed based

on the two modules could be a surrogate marker to predict the risk

for poor benefits from ICB treatment. Tumors with low risk scores

were more immune-infiltrated. T cell composition changed in the

low-risk group in favor of anti-tumor immunity, with increased Tpex,

Trm and Tc17 and decreased terminal Tex. The higher frequencies of

pDCs, cDC1s, C1QC1+macrophages and ISG15+macrophages in the

low-risk group could also be potential mechanisms that promote

response to ICB therapy. In addition, the strong correlation to TLS

formation makes the risk score more robust. Our study provides a

perceptive insight into the transcriptomic profile of NSCLC and a

clinically translatable predictor for ICB responsiveness. However,

further studies are needed to validate the results.
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