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The epithelial sodium channel (ENaC) is a heterotrimer and is widely distributed

throughout the kidneys, blood vessels, lungs, colons, and many other organs.

The basic role of the ENaC is to mediate the entry of Na+ into cells; the ENaC also

has an important regulatory function in blood pressure, airway surface liquid

(ASL), and endothelial cell function. Aldosterone, serum/glucocorticoid kinase 1

(SGK1), shear stress, and posttranslational modifications can regulate the activity

of the ENaC; some ion channels also interact with the ENaC. In recent years, it

has been found that the ENaC can lead to immune cell activation, endothelial cell

dysfunction, aggravated inflammation involved in high salt-induced

hypertension, cystic fibrosis, pseudohypoaldosteronism (PHA), and tumors;

some inflammatory cytokines have been reported to have a regulatory role on

the ENaC. The ENaC hyperfunction mediates the increase of intracellular Na+,

and the elevated exchange of Na+ with Ca2+ leads to an intracellular calcium

overload, which is an important mechanism for ENaC-related inflammation.

Some of the research on the ENaC is controversial or unclear; we therefore

reviewed the progress of studies on the role of ENaC-related inflammation in

human diseases and their mechanisms.

KEYWORDS

epithelial sodium channel, inflammation, hypertension, cardiovascular stiffening, cystic
fibrosis, colitis, tumor
1 Introduction

The epithelial sodium channel (ENaC) is non-voltage-gated and amiloride-sensitive

epithelial Na+ channel (1). The classic ENaC is composed of a, b, and g subunits; the a
subunit can be replaced by the d subunit in non-renal tissues (2). The most important

function of the ENaC is to maintain the physical and cellular Na+ homeostasis by
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mediating Na+ reabsorption in the kidneys, colon, lungs, and skin.

ENaC dysfunction is associated with a variety of diseases: ENaC

overexpression in the kidneys manifests as increased blood volume

and hypertension (3), impaired ENaC in the colon manifests as

inflammation of intestinal mucosa and diarrhea (4), and

dysfunction of the ENaC in the lungs leads to pneumonia and

respiratory distress (5). The expression and activity of the ENaC are

regulated by a variety of factors; hormones such as renin-

angiotensin-aldosterone system (RAAS), insulin, and vasopressin

can maintain Na+ metabolic homeostasis by regulating the ENaC.

The self-inhibitory effect of Na+ on the ENaC is an important piece

of negative feedback, as the regulation of the ENaC by mechanical

signals is critical in vascular smooth muscle cells (6).

ENaC activation leads to an increased influx of Na+, which in

turn provides potential energy for cellular material exchange.

Increased Na+/Ca2+ exchanges lead to elevated intracellular Ca2+,

which activates Ca2+-related inflammatory signaling pathways (7).

Activated ENaC promotes K+ efflux, and increased K+ efflux

activates NOD-like receptor family pyrin domain containing 3

(NLRP3) inammasome, which can activate immune cells and

promote inflammatory cytokine expression (8). Increased

intracellular Na+ promotes the inward flows of glucose and

glutamine, which facilitate tumor growth and migration.

Increased intracellular Na+ promotes isolevuglandin (IsoLG)-

adduct formation and oxidative stress, leading to T-cell activation

(9). ENaC-mediated inflammation has an important role in the

development of hypertension, vascular sclerosis, pneumonia, cystic

fibrosis, nephritis, ulcerative colitis, and tumors. Recently, ENaC

activates immune system has been widely reported, while some

inflammatory cytokines also have a modulatory effect on the ENaC.

In this review, we discuss the roles and mechanisms of ENaC-

related inflammation in human diseases.
2 The epithelial sodium channel

2.1 Structure

The sequences of ENaC subunits and degenerin (DEG) from

the nematode Caenorhabditis elegans are similar, so they are named

the DEG/ENaC family, which also includes the mammalian acid-

sensing ion channel (ASIC) (10). Canonical ENaC is a heterotrimer

composed of a, b, and g subunits; the d subunit can replace the a
subunit to form a heterotrimer in non-renal tissues (2). The dbg
channel is less sensitive to proteolytic activation (11) and has a

higher IC50 for amiloride than the abg channel (12); the d subunit

can also be found in primates and xenopus but is not expressed in

mice or rats (13–15). Non-canonical ENaC is composed of two

subunits or only homomeric subunits; apart from homomeric

gENaC, all non-canonical ENaCs are amiloride sensitive and

mediate Na+ absorption in oocytes (2). The a, b, g, and d
subunits are separately encoded by SCNN1A, SCNN1B,

SCNN1G, and SCNN1D, respectively (16).

ENaC subunits have two transmembrane domains, intracellular

N and C termini, and a large extracellular domain. The ion
Frontiers in Immunology 02
selectivity filter can specifically discriminate Na+; the filter is

located in the middle of the transmembrane domains (17). The

extracellular domain has protease cleavage sites, which can

eliminate the inhibitory effects of the ENaC; it plays an important

role in regulating ENaC activation (18, 19). The N-terminal

ubiquitylation of the a and g subunits is related to ENaC

endocytosis and degradation (20); both the HGxxR sequence in

the N-terminal and the PPPxY sequence in the C-terminal have

regulatory effects on the ENaC. Mutations in the HGxxR sequence

or the PPPxY sequence leading to abnormal function of ENaC are

associated with the occurrence of Liddle syndrome (21) and

pseudohypoaldosteronism (PHA) (22).
2.2 Distribution

The ENaC is firstly found in the apical surface of epithelial cells

(23). The abg channel is expressed in many organs, such as in the

kidneys (distal convoluted tubule, connecting tubule, collecting

duct) (24), skin (keratinocyte, sweat gland) (25), vascular system

(endothelium, smooth muscle) (26), lungs (alveolar cell, airway cell)

(27), colon (28), and tongue (29).The dENaC has also been found in

many non-renal organs, such as in the ovaries, brain, liver, lungs,

heart, and vessel (13, 16, 30) (Figure 1).
2.3 Function

The ENaC is critical for epidermal differentiation.

Hyperplasia, dehydration, disorder of lipid synthesis and

secretion can be found in the aENaC KO mice skin, which leads

to death soon after birth (31). Inhibition of the ENaC or blockage

of its synthesis can significantly reduce the process of wound

healing; the ENaC contributes to wound healing by its activity as a

Na+ channel and mediator of mechanotransduction (32). The

ENaC’s primary role in the colon is the recollection of Na+,

reducing salt loss in the feces. It is interesting to note that the

ENaC is mainly expressed in the distal colon, not in the small

intestine or proximal colon (33). A low-salt diet induces increased

expression of b and g subunits but not of a subunits (34). The

ENaC controls Na+ absorption in the inner ear, which is very

important to maintain hearing; dysregulation of the ENaC in the

hair cells can lead to hearing loss and vertigo (35). The ENaC can

sense mechanical signals in the vascular system such as shear

stress (36). The ENaC also has an effect on endothelial stiffness

and the release of nitric oxide (NO) (37). The ENaC is critical in

infant respiratory epithelium, which can help to remove fluid from

the respiratory tract during fetal life; it then plays an important

role in maintaining normal airway surface liquid (ASL) (38).

Suppression or mutation of the ENaC leads to the development

of pulmonary edema or cystic fibrosis (39); surprisingly,

symptoms of ENaC overexpression are similar to those of cystic

fibrosis (40), although the exact mechanism is not yet

clear (Figure 1).
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2.4 Regulation

There are many factors that can regulate the ENaC, including ions,

mechanical signals, hormones, phospholipids, posttranslational

modifications, and other proteins. The ENaC can be regulated by

extracellular Na+ and intracellular Na+. An increase of Na+ leads to

EnaC allosteric change and reduction in channel open probability; this

phenomenon is called feedback inhibition (18). Increased extracellular

Na+ leads to the downregulation of ENaC expression in renal

epithelium, whereas in vascular endothelium it leads to increased

ENaC expression, and the exact mechanism of the difference in

responses is unclear (41). The ENaC provides a mechanosensory

function in vascular endothelium and smooth muscle cells; shear

stress can activate the ENaC then regulate NO release and vessel

vasodilation (42). Hypovolemia or reduced glomerular filtration rate

can stimulate the RAAS, further activate the ENaC, and lead to

increased Na+ reabsorption, which in turn raises blood pressure (43).

Aldosterone is one of the main regulators of the ENaC; especially in the

distal nephron, aldosterone binds to the mineralocorticoid receptor

(44), then the complex translocates into the nucleus and promotes

associated gene expression (45) (Figure 2). Insulin can reduce

internalization and ubiquitylation of ENaC, phosphorylation of

insulin receptor activates SGK1 kinase by phosphatidylinositol3-

kinase (PI3K), which in turn modulates ENaC activity (45–47).

Vasopressin increases the expression of the b and g subunits, but

fewer effects on thea subunit have been proven in vivo and in vitro; this
Frontiers in Immunology 03
effect may be achieved by vasopressin receptors (48). Several

phospholipids have been reported to have a regulatory effect on the

ENaC. Phosphatidylinositol (4, 5)-bisphosphate (PIP2) and

phosphatidylinositol (3–5)-triphosphate (PIP3) have a direct positive

regulatory role on the C-terminal of b and gENaC (49). Thus, many

substances that have a regulatory effect on PIP2 and PIP3 can indirectly

modulate ENaC activity, such as phospholipase C (49), myristoylated

alanine-rich C-kinase (50), and phospholipase b3 (51).

Posttranslational modifications have an important modulatory

effect on the ENaC. Nedd4-2 (neural precursor cell expressed

developmentally downregulated protein 4-2) can promote specific

lysine residues ubiquitination in the N-terminal regions of a and

gENaC, ultimately promoting ENaC endocytosis and degradation

(52). Dexamethasone promotes ENaC expression by regulating DNA

methylation, which may be a potential therapeutic mechanism for

cystic fibrosis (53). Extracellular signal-regulated kinase (Erk) has

been reported to phosphorylate PY motifs in bENaC, rapidly

modulating ENaC activity (54). Deubiquitylating enzymes (DUBs

and USPs) can reduce a and gENaC ubiquitylation and

internalization enhance ENaC stability and activity (55). N- and C-

terminal regions on b or gENaC can be palmitoylated on specific

cysteine residues, which can reduce channel open possibility (this is

one of the mechanisms of Na+ self-inhibition (56)). Proteases can

activate ENaC by cleaving inhibitory fragments; for example, golgi-

resident protease furin can release inhibitory fragments in a and

gENaC, and prostasin and low-dose trypsin can also activate ENaC
FIGURE 1

Distribution of ENaC in organs and related diseases. ENaC is associated with hypertension, cardiovascular fibrosis and sclerosis in the cardiovascular system.
In the kidney, colon, and skin, ENaC affects water absorption by regulating Na+ transport, which is related to the development of hypertension, diarrhea,
renal inflammation, colitis, scytitis and folliculitis. ENaC dysfunction is associated with pneumonia, cystic fibrosis, taste dysfunction, otitis, cerebral edema,
corneal ulceration and opacification. ENaC also has an important role in the progression and metastasis of tumor.
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through a similar mechanism (57). WNK lysine deficient protein

kinase 1 (WNK1) has been proven to activate the ENaC by SGK1

pathway (58), while WNK4 has an inhibitory effect on the ENaC (59)

(Figure 2). Amiloride hydrochloride is a specific inhibitor of the

ENaC, with an IC50 of 1mM, and is widely used in clinical treatments

and in the basic research of the ENaC (60).
2.5 Effect on other ions and channels

The ENaC’s fundamental function is to regulate the transport of

Na+; increased intracellular Na+ can further influence other ions and

channels (41). ENaCmediates the influx of Na+, which is pumped out of

cells via the Na+/K+-ATPase (NKA) (61). ReabsorbedNa+ can create the

driving force to excrete K+ through apical secretory K+ channels (62, 63);

these are important pathways for K+ excretion, but the ability of ENaC

to directly secrete k+ is limited, because ENaC is more (>100-fold)

selective toNa+ thanK+ (12). The ENaC has been shown to interact with

the HCO3
−/Cl− exchanger and to some extent can affect blood HCO3

−

and Cl− levels (64, 65). The ENaC mediates increased intracellular Na+

and facilitates the exchange of Na+ with Ca2+ through the Na+–Ca2+

exchanger (NCX), which causes a Ca2+ overload and further activates

downstream signaling pathways (7, 8). Some hormones or kinases have

regulatory effects on multiple ion channels, which may lead to the ENaC

indirectly affecting other ions and channels, as both SGK1 and

aldosterone have effects on the ion channels of Na+, K+, Ca2+, and Cl−

(66, 67). Reports about the effects of the ENaC on other ions and

channels are lacking, and therefore need further study.

Pendrin is a Cl−/HCO3
− exchanger that can be seen in the

intercalated cells. The function of ENaC is downregulated in

pendrin-null kidney (68). In H+/K+-ATPase type 2 (HKA2)-null
Frontiers in Immunology 04
mice, the expression of a and gENaC, pendrin are upregulated, but

the expression of Na+/Cl− cotransporter (NCC) is downregulated

(69). The ENaC has a regulatory effect on the NCC, and gENaC
knockout leads to impaired excretion of K+ and increased NCC

activation (70). ZIP2/SLC39A2 is a splice isoform of the Zn2+

importer, and when inversely correlated with intracellular Zn2+

can induce ENaC expression and activation in cystic fibrosis (71).

HKalpha2 is one of the H+/K+ ATPase subunits in the colon, and

decreased ENaC-mediated Na+ reabsorption has been observed in

HKalpha2 homozygous knockout mice (72). The cystic fibrosis

transmembrane conductance regulator (CFTR) can mediate Cl−

and HCO3
− efflux. Na+ enters cells through the ENaC and is

pumped out by NKA; this generates a transepithelial electrical

gradient of Cl−, which is absorpted into cells by CFTR, and

decreased Cl− in cytosolic increases ENaC expression and Na+

reabsorption (73, 74). Na+/H+ exchanger (NHE3), bumetanide-31

sensitive Na+/K+-2Cl− transporter (NKCC2), NCC, and the ENaC

work together in the kidneys to regulate the reabsorption and

secretion of Na+ and K+ (75).

3 Role of epithelial sodium channel-
related inflammation

3.1 Epithelial sodium channel-related
inflammation in cardiovascular system

High salt exposure increases Na+ entry into cells through the

ENaC, and increased intracellular Na+ acts as a driving force to

promote NCX for Ca2+ exchange in antigen-presenting cells (APCs).

Elevated intracellular Ca2+ increases ROS production and activates
FIGURE 2

Mechanism of aldosterone regulating ENaC. Aldosterone binds to mineralocorticoid receptors in the cytoplasm and promotes the expression of
SGK1. SGK1 can deregulate the inhibition of ENaC by WNK4 and Nedd4-2 ubiquitinates, also can directly activate ENaC. Aldosterone binds to
aldosterone receptors on the cell membrane to activate PKC and NADPH oxidase, then promotes the production of ROS. ROS activates ENaC via
PIP3 and relieves the inhibition of ENaC by the arachidonic acid metabolic pathway.
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NLRP3 inflammasome, leading to T-cell activation and the release of

inflammatory cytokines, which promotes Na+ reabsorption and

hypertension (7). Increased Na+ leads to IsoLG-adduct formation

and the expression of tumor necrosis factor (TNF)a, interleukin (IL)-
6, and IL-1b. IsoLG-adducts as neoantigens can activate T cells (9),

while the inhibition of NADPH-oxidase reduces monocyte activation

and IsoLG-adduct formation (76) (Figure 3). It has been found that

aENaC is overexpressed in neutrophils in hypertensive patients (77).

SGK1 in APCs mediates high salt-induced expression, and the

assembly of a and gENaC promotes the expression of IL-1b and

the formation of IsoLG-adducts in salt-sensitive hypertension. Less

endothelial dysfunction and blunted hypertension have been found

both in SGK1 knockout mice and mice with application of SGK1

inhibitors (78).

A high-sodium diet (>150 mM) increases ENaC expression

and promotes vascular endothelial cell stiffness and dysfunction

(79). The ENaC is a key molecule of endothelial dysfunction in

cardiovascular fibrosis and stiffening; activation of the ENaC on

vascular endothelial cells increases oxidative stress and

endothelial cell permeability, leading to impaired NO release

and the formation of an inflammatory microenvironment (80).

Aortic endothelium stiffness and dysfunction is reduced in

aENaC knockout mice, including decreased endoplasmic

reticulum stress and oxidative stress, and reduced endothelium

permeability and expression of proinflammatory cytokines;
Frontiers in Immunology 05
endothelium NO synthase is also activated (81). Estrogen

activates ENaC via SGK-1 in vascular endothelial cells, leading

to a higher risk of arterial stiffening in women, which can be

reduced by amiloride (82). Knockdown of aENaC in endothelial

cells leads to a decrease of cortical stiffness; conversely, aENaC

overexpression leads to an increase of cortical stiffness in vascular

endothelial cells and promotes oxidative stress and inflammation

in aortic tissues (83); this effect is related to AMP-activated

protein kinase a (AMPKa) and sirtuin 1-mediated endothelial

NO synthase (eNOS) activation (84). A high-fat diet leads to

activation of ENaC-mediated inflammation and increases

secretion of TNFa, IL-1b, IL-6, vascular cell adhesion molecule

(VCAM)-1 and intracellular adhesion molecule (ICAM)-1, which

in turn leads to endothelial dysfunction and vascular sclerosis.

Benzamil is a specific inhibitor of ENaC that can reduce the

inflammation induced by a high-fat diet (85).

The ENaC increases cardiac endothelium permeability,

promotes macrophage recruitment and M1 polarization, and

leads to ventricular fibrosis and remodeling in female mice.

Amiloride can attenuate the impaired left ventricular initial filling

rate and relaxation time (86). The ENaC causes endothelium-

dependent relaxation impairment in mice aorta through the ROS/

COX-2-mediated SGK-1/Nedd4-2 signaling pathway; blocking the

ENaC facilitates attenuation of hyperhomocysteinemia-induced

cardiovascular system disease (79).
FIGURE 3

Mechanism diagram of ENaC activating immune system. In antigen-presenting cells, ENaC mediates Na+ influx, which increases Na+ exchange with
Ca2+ via NCX. Elevated intracellular Ca2+ activates PKC and NADPH oxides to increase ROS production. ROS activates the NLRP3 inflammasome
and promotes IsoLG-adducts formation, meanwhile, increased intracellular Na+ promotes K+ efflux, which also activates the NLRP3 inflammasome.
NLRP3 inflammasome increases IL-1b, IL-18 production by activating caspase-1, IsoLG-adducts promotes T cells activation. ENaC expression is
regulated by SGK1, while estrogen and insulin have regulatory effects on SGK1.
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3.2 Epithelial sodium channel-related
inflammation in the respiratory system

Cystic fibrosis is a multisystem disease, characterized by

mutations of the CFTR gene and repeated pulmonary infections

(87). The ENaC has been shown to be overactive in cystic fibrosis,

resulting in increased Na+ and water absorption from the airway

lumen, eventually leading to mucus accumulation, bacterial

infection, and airway inflammation (5) (Figure 4). The ENaC

mediates Na+ influx and indirectly increases K+ efflux, which

leads to NLRP3 inflammasome activation, further causing

excessive IL-1b and IL-18 secretion (8). The bronchoalveolar

lavage fluid has a higher number of inflammatory cytokines and

chemokines, such as G-CSF, MCP-1, IL-5, and IL-6. In the bENaC
overexpressed mice model, neutrophil extracellular traps were

detected in the airways, even when there was no bacterial

infection (88). Overexpression of bENaC increases the secretion

of inflammatory cytokines and leads to conditions such as cystic

fibrosis in mice; inhibition of the ENaC or NLRP3 inflammasome

can improve the symptoms (8, 88) (Figure 3). bENaC transgenic

mice developed chronic airway inflammation earlier than control

group and had higher levels of CXC chemokines, MIP-2 and IL-13

(89). The pulmonary inflammation in mice overexpressing b and

gENaC was increased, as evidenced by a significant increase in

neutrophils, eosinophils, and lymphocytes (90). The application of

antisense oligonucleotides to inhibit the expression of the ENaC in

airway epithelial cells can reduce pulmonary inflammation (91).

The ENaC is involved in pulmonary inflammation of muco-
Frontiers in Immunology 06
obstructive lung diseases (92) and acute respiratory distress

syndrome (93); in similar molecular mechanisms, azithromycin

improves obstructive lung diseases by targeting the ENaC (94).

Inflammatory cytokines can also modulate the ENaC, leading to

increased pulmonary inflammation. IL-1a and IL-1b can induce

aENaC expression through the NF-kB signaling pathway in mouse

lung epithelial cells, where the extracellular signal-regulated kinase

(ERK) and mitogen-activated protein kinase (MAPK) signaling

pathway also plays a partial role (95). In small airway epithelial

cells of mice injected intraperitoneally with high-mobility group box-

1 protein (HMGB-1), the open probability of ENaC was increased,

and the levels of IL-1b, IL-10, IL-6, IL-27, IL-17A and interferon

(IFN)-b were significantly increased in the bronchoalveolar lavage

fluid of these mice (96). Transforming growth factor (TGF)-b can

mediate the internalization of bENaC through the TGF-b receptor 1

pathway in the alveolar epithelial cells, causing pulmonary edema in

acute lung injury (97). TGF-b can inhibit the antioxidant system by

internalization of the ENaC, activate the plasminogen activator

inhibitor 1 (PAI-1) and NF-kB signaling pathway, and lead to

inflammation and injury in the lung (98). ENaC activation can

decrease ASL and increase inflammation in the airway. Resolvin

D1 is a drug that can inhibit TNFa-mediated inflammation in

macrophages; it also inhibits the decrease of ASL caused by ENaC

activation while reducing IL-8 secretion by alveolar macrophages and

enhancing the phagocytic capacity (99). Resolvin E1 regulates the

expression of the ENaC and NKA through the PI3K/AKT/SGK1

signaling pathway that promotes alveolar fluid clearance and reduces

inflammation in the lungs (100). T-helper cell type 2 (Th2)-
FIGURE 4

Activated ENaC exacerbates cystic fibrosis airway inflammation. (A) In the normal airway, ENaC mediates uptake of Na+ in the airway epithelial cells,
CFTR mediates Cl- and HCO3- outflux, basolateral NKA expels Na+ out of cells, thus achieving a balance of intracellular ions transport and
maintaining ASL normal function. (B) In the cystic fibrosis airway, CFTR dysfunction leads to airway bacterial infection and ASL dehydration.
Proteases released by bacteria can activate ENaC, which increases Na+ into airway epithelial cells. Elevated intracellular osmotic pressure promotes
moisture absorption, exacerbates ASL dehydration and airway inflammation.
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dependent airway inflammation is related to reduced transcript levels

of a, b, and gENaC (101).

Nedd4-2 inhibits the function of the ENaC by ubiquitinating

lysine residues on the ENaC. Knockdown of Nedd4-2 ubiquitinates

leads to increased ENaC activity and aseptic lung inflammation,

which may be associated with fetal lethal lung disease (102).

Upregulation of ENaC expression via the PI3K/Akt/Nedd4-2

signaling pathway can suppresse lipopolysaccharide-induced

inflammation in acute lung injuries (103). Bacterial proteases

contribute to increase ENaC activity, promote Na+ uptake by

airway epithelial cells, decrease ASL and mucociliary clearance of

airway, and exacerbate pulmonary inflammation (57, 104) (Figure 4).
3.3 Epithelial sodium channel-related
inflammation in the kidneys

RAAS activates the ENaC in the collecting duct through

increased reactive oxygen species (ROS); in particular, ROS raises

PIP3 and decreases inhibition of the ENaC by arachidonic acid (105)

(Figure 2). Renal inflammatory cytokines IL-1b, IL-6, TNFa, TGF-b,
and collagen III were increased in bENaC knockout mice, and mean

arterial blood pressure was elevated (106). When treated with a high

salt intake, male db/db mice (a mouse model of obesity and diabetes)

show higher renal fibrosis, albuminuria, and inflammatory cytokine

expressions, including IL-1b, TNFa, IL-6, and IL-17A, than female

mice, which is associated with ENaC dysregulation (107). IL-6 leads

to elevated a, b, and gENaC in mouse cortical-collecting duct cells,

which suggests that renal inflammation may lead to natriuresis via IL-

6 (108). A high salt intake induces increased a and gENaC

expression. Intracellular increased Na+ promotes IsoLG-adduct

formation, leading to renal inflammation and hypertension; this

process is SGK1 mediated. Inhibition of SGK1 in CD11c+ cells by

knockdown or pharmacological inhibition can reduce nicotinamide

adenine dinucleotide phosphate oxidase and ENaC expression, which

plays a protective role against renal inflammation and hypertension

(78, 109). The angiotensin-converting enzyme (ACE) has an

important role in regulating Na+ absorption and diabetic renal

inflammation. The ENaC expression is downregulated by 55% in

ACEN-domain knockout diabetic mice compared with diabetic wild-

type mice; IL-1b and TNFa are downregulated by 55% and 53%,

respectively (110). TIP peptide can mimic the lectin-like domain of

TNF and activate ENaC by binding a subunit. TIP peptide injected

intraperitoneally into nephrotoxic serum nephritis mice reduces

glomerular inflammation and proteinuria and decreases Th17 cell

infiltration (111).
3.4 Epithelial sodium channel-related
inflammation in the colon

IL-13 is increased in ulcerative colitis, which can inhibit the

ENaC and SGK1 through the JAK1/2-STAT6-MAPK signaling

pathways, and decreases Na+ reabsorption in the intestinal

epithelium (112). Elevated proinflammatory cytokines such as

TNFa and IFNg inhibit b and gENaC expression; therefore,
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reducing colonic Na+ absorption leads to diarrhea in ulcerative

colitis (113). In campylobacter jejuni-caused enteritis, b and gENaC
dysfunction causes Na+ malabsorption, which leads to diarrhea and

increased immune responses, and IFNg, TNFa, IL-13, and IL-1b
expressions are increased, which is confirmed by colonic biopsy

(114). Campylobacter concisus downregulates b and gENaC

through the IL-32-mediated ERK1/2 signaling pathway, impairs

intestinal mucosal barrier function, and leads to inflammation and

diarrhea (115). Aldosterone can upregulate gENaC expression

through the MEK1/2 signaling pathway; TNFa, IFNg, and IL-15

impair the promotion of aldosterone to gENaC in lymphocytic

colitis, resulting in impaired Na+ absorption and diarrhea (116).

The mechanism of reduced Na+ absorption in non-inflamed colon

is impaired gENaC, which is similar to the mechanism of

lymphocytic colitis (117).
3.5 Epithelial sodium channel-related
inflammation in tumors

Chronic inflammation plays an important role in

tumorigenesis, a high salt intake can lead to a microenvironment

of chronic inflammation in tissues, and elevated Na+ in some tumor

cells is associated with ENaC and ASIC overexpression (118). A

high salt intake plays an important role in the transmembrane

transport of glucose and glutamine, which helps to maintain the

high active cellular state of tumor cells and promote tumor growth

and metastasis (119). A high salt intake (0.15M NaCl) and IL-17

(0.1 nM) can upregulate gENaC, activate ROS, and reactive nitrogen
(RNS), thus promoting the growth of breast cancer cells, and also

promote inflammatory cytokine expression such as IL-6 and TNFa
(120). However, some studies show that a high expression of

aENaC inhibits breast cancer progression and migration, while a

low expression of aENaC promotes the proliferation of breast

cancer cells (121). The role of ENaC in tumor growth and

metastasis has been extensively studied, but the role of ENaC-

induced inflammation in tumors is lacking and needs

further research.
3.6 Epithelial sodium channel-related
inflammation in other areas

PHA is a multisystemic disease caused by ENaC mutations,

manifesting as sweat gland duct occlusion and eccrine glands

inflammation due to salt accumulation developing into miliaria

rubra, folliculitis, and atopic dermatitis-like skin lesions (122). The

barrier function disruption of skin epithelium leads to increased Na+

influx through ENaC, which activates fibroblasts via the COX-2/

PGE2 pathway, resulting in fibrosis and the increased secretion of

inflammatory cytokines. In vivo experiments verified that inhibition

of ENaC or COX-2 significantly reduces scar formation (123). In the

conditional bENaC meibomian gland knockout mouse model,

inflammatory cell infiltration is significantly increased,

inflammatory cytokine (IL-1b, IL-8, IL13, and Ym1) expression is

significantly higher, and the incidence of other ocular surface diseases
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such as corneal opacification, ulceration, neovascularization is

increased, which is one of the manifestations of PHA (124).

The ENaC is related to chronic rhinosinusitis, which manifests

as significantly decreased a and bENaC mRNA levels in chronic

rhinosinusitis patients (125). Lipopolysaccharide injected into the

middle ear cavity can decrease ENaC expression and induce middle

ear inflammation (126). Transtympanic injection of urban

particulate matter leads to inflammatory cell infiltration and

increased vascular space in the middle ear, along with decreased

ENaC expression, which is associated with development of otitis

(127). Inflammation can modulate ENaC-mediated Na+ uptake in

taste buds, IL-1b induces an increase in Na+ transport, and,

conversely, TNFa leads to a decrease in Na+ transport through

the ENaC, which is related to the modulation of taste function

during disease to limit Na+ consumption (128). Curcumin

maintains tight junction proteins’ integrity, promotes ENaC and

NKA expression, and decreases inflammation in hypoxia-induced

cerebral edema, as evidenced by decreased NF-kB and

inflammatory cytokines (IL-1, IL-2, IL-18, and TNFa) and an

increase in anti-inflammatory cytokine (IL-10) expression.

Migration of macrophages is important for phagocytosis of

pathogens and cellular debris. ENaC promotes the migration and

polarization of macrophages and amiloride reduces migration of

macrophages by inhibiting the ENaC. Inflammatory cytokines IFNg
and TNFa can reduce the expression of aENaC and decrease the

migration of macrophages (129).
4 Conclusions

The ENaC-mediated increase of intracellular Na+ can further

promote Ca2+ influx and K+ efflux; intracellular Ca2+ overload

activates downstream inflammatory signaling pathways, which is

a key pathogenic mechanism of ENaC-related inflammation. There

are several posttranslational modifications that have been reported

to have a regulatory effect on the ENaC, but more research is still

needed to demonstrate the regulatory role of other modifications.

ENaC dysfunction disrupts intracellular ion homeostasis; the role of

the ENaC on other ions and channels and the consequent changes

in physiological function are not well studied. Regulation of ENaC

expression by extracellular Na+ is reversed in the renal epithelium

and vascular endothelium; the exact mechanism needs further
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investigation. The role of ENaC-related inflammation in tumor

growth and migration needs further investigation.
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