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HIV targets associated with
viremic control and viral load
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Background: High HIV viral load (VL) is associated with increased transmission

risk and faster disease progression. HIV controllers achieve viral suppression

without antiretroviral (ARV) treatment. We evaluated viremic control in a

community-randomized trial with >48,000 participants.

Methods: A massively multiplexed antibody profiling system, VirScan, was used

to quantify pre- and post-infection antibody reactivity to HIV peptides in 664

samples from 429 participants (13 controllers, 135 viremic non-controllers, 64

other non-controllers, 217 uninfected persons). Controllers had VLs <2,000

copies/mL with no ARV drugs detected at the first HIV-positive visit and one

year later. Viremic non-controllers had VLs 2,000 copies/mL with no ARV drugs

detected at the first HIV-positive visit. Other non-controllers had either ARV

drugs detected at the first HIV-positive visit (n=47) or VLs <2,000 copies/mL with

no ARV drugs detected at only one HIV-positive visit (n=17).
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Results:We identified pre-infection HIV antibody reactivities that correlated with

post-infection VL. Pre-infection reactivity to an epitope in the HR2 domain of

gp41 was associated with controller status and lower VL. Pre-infection reactivity

to an epitope in the C2 domain of gp120 was associated with non-controller

status and higher VL. Different patterns of antibody reactivity were observed over

time for these two epitopes.

Conclusion: These studies suggest that pre-infection HIV antibodies are

associated with controller status and modulation of HIV VL. These findings

may inform research on antibody-based interventions for HIV treatment.
KEYWORDS

HIV, controllers, viral load, antibodies, pre-infection
Introduction

High HIV viral load (VL) is associated with increased

transmission risk and faster disease progression. HIV controllers

have low VLs without antiretroviral treatment (ART; elite

controllers: <50 copies/mL; viremic controllers: <2,000 copies/
02
mL) (1–3). HIV control develops early in infection (3, 4) and is

associated with improved health outcomes (3, 5). Understanding

the factors that lead to HIV control may inform the design of

therapeutic HIV vaccines and antibody-based treatment strategies.

Many HIV controllers are infected with replication-competent

viruses (6, 7) suggesting that host factors play a role in HIV control.
GRAPHICAL ABSTRACT
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Control is associated with class I HLA-B*57 and HLA-B*27 alleles

(8), suggesting a role for CD8+ T cell responses. CD8+ T cell

depletion in non-human primate models of elite control leads to

viral rebound (9–11). Controllers also have more effective HIV-

specific CD8+ T cell responses than non-controllers (12, 13) with

increased cytotoxicity toward infected cells (13–15). Humoral

immunity was initially not thought to play a major role in HIV

control because early research described controllers with low titers

of HIV-specific antibodies (16) and neutralizing antibodies (nAb)

(2, 17–19), consistent with reduced antigen exposure. However,

subsequent studies demonstrated higher levels of antibody

dependent cellular cytotoxicity (ADCC) (20) and potent broadly

neutralizing antibody (bnAb) responses (21, 22) in a subset of

controllers. Antibody isotype diversity and polyfunctionality are

also associated with control (23, 24). Using a massively multiplexed

antibody profiling system (VirScan), we previously identified seven

primary antibody targets in HIV controllers with established

infection (25).

HIV-specific antibody responses develop in some persistently

uninfected persons after viral exposure. In female sex workers, these

antibodies exhibit cross-clade viral neutralization activity (26–28)

and may (29) or may not (30) be associated with resistance to

subsequent infection. In men who have sex with men, nAbs can

develop following repeated oral HIV exposure (31, 32). Pre-existing

ADCC in exposed infants is associated with lower rates of HIV

acquisition (33, 34) and reduced morbidity after infection (33). The

role of pre-infection antibodies in HIV control has not

been explored.

Logistical barriers have hampered efforts to define the role of

pre-existing HIV exposure-induced or cross-reactive immunity in

HIV control. HIV control is typically identified in persons with

established infection (3, 6, 8). Most studies include small numbers

of controllers and lack pre-infection samples from controllers. A

very large longitudinal study is required to identify a cohort of

seroconverters who meet the criteria for HIV control and have pre-

infection samples available for analysis.

The HPTN 071 (PopART) trial enrolled >48,000 participants in

Zambia and South Africa (35). Participants were followed for up to

three years with annual HIV testing and sample storage; 978

seroconverters were identified in the enrolled cohort (36). In this

report, we used VirScan to compare pre-infection antibody

reactivity in HIV controllers and viremic non-controllers in

HPTN 071.
Methods

Source of samples

This study used samples and data from HPTN 071 (PopART)

(NCT 019000977) (35). The trial was conducted in 21 urban

communities in Zambia and South Africa (35), where HIV

subtype C is predominant (37). The trial enrolled a population

cohort of >48,000 adults (ages 18-44), randomly selected from each

community, and demonstrated that population-level delivery of a

combination HIV prevention package that included universal HIV
Frontiers in Immunology 03
testing, linkage to care and immediate offer of ART, was associated

with reduced HIV incidence (35). Plasma samples were collected at

annual visits from enrolled participants. VirScan was used to

analyze antibody profiles in a subset of the 978 seroconverters

identified in this trial. Antibody profiles were also characterized for

a subset of participants who were uninfected at all study visits;

participants in this group reported 0-1 lifetime sexual partners and

were matched to the seroconverter group based on gender, age, and

study community.
Laboratory methods

Laboratory testing was performed at the HPTN Laboratory

Center (Johns Hopkins University, Baltimore, MD). HIV status was

determined at each study visit (36). Pre-infection samples

additionally had no RNA detected using an assay with a limit of

detection (LOD) of 400 copies/mL (36); the same assay was used to

measure VL in samples collected at HIV-positive visits. VL values

for HIV-positive samples with no RNA detected or RNA detected

below the LOD were set at 399 copies/mL. Samples were analyzed

for the presence of ARV drugs using a qualitative assay that detects

22 ARV drugs in five classes (LOD: 2 ng/mL or 20 ng/mL,

depending on the drug) (38).

Samples were also analyzed using VirScan (39, 40). VirScan is a

multiplexed phage-display assay that provides quantitative data for

antibody binding to displayed peptides (56 amino acids long with

28 amino acid overlaps) (39, 40). The VirScan library includes

peptides that span the genomes of >200 viruses that infect humans,

including >3,300 peptides from multiple HIV subtypes and strains

(39, 40). After sample incubation with the phage library, antibody-

bound phage were immunoprecipitated using magnetic beads

coated with protein A and protein G. Peptide-encoding DNA

present in immunoprecipitated phage was amplified by

polymerase chain reaction (PCR) using primers with sample-

specific barcodes. PCR products were sequenced using the

NovaSeq 6000 instrument with the S2 flowcell (Illumina, San

Diego, CA) to determine the amino acid sequences of peptides

bound by antibodies in study samples.
VirScan data analysis

Longitudinal samples for each participant were included on the

same 96-well immunoprecipitation plate. Each plate included 7-8

mock reactions (beads only; negative controls) and a positive

control sample in triplicate (pooled plasma from 10 HPTN 071

participants with infection duration >2 years and VL >2,000 copies/

mL). Antibody reactivity data for individual peptides were reported

as raw read counts, fold change values (compared to read counts in

observed mock reactions), and associated p-values. Raw read counts

for each peptide were determined via exact matching of the first 50

nucleotides of peptide coding DNA, with one added read count for

each peptide. Fold changes and p-values were determined using the

exact test for the negative binomial distribution implemented in the

edgeR package (41, 42). Fold change values were set at one under
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the following conditions: read count <15, fold change <3, and/or p-

value >0.001. After adjustment, fold change values >1 indicated

significant antibody binding. Z-statistics were calculated by

transforming p-values.

Viral aggregate reactivity scores (VARscores) are a measure of

the overall level and breadth of antibody reactivity across a viral

genome. In this study, VARscores and associated p-values were

calculated by comparing mean log2 fold change values for virus

specific peptides to distributions of expected mean log2 fold change

values for randomly selected peptides in VirScan (43). Viruses that

had a VARscore greater than an empirically defined cutoff and a p-

value below a Bonferroni-corrected cutoff were considered

significant targets of an antibody response. Scores were calculated

iteratively; in each iteration, peptides from all viruses in genera with

a significantly targeted virus were removed from the pool of

peptides used to generate random distributions. This process was

performed a maximum of 10 iterations or until no new viruses met

the reactivity thresholds. When comparing VARscores for

participants with reactivity to specific peptides, those peptides

were excluded from the calculation. HIV-1 VARscores were

calculated as the mean VARscore across all HIV-1 subtypes.
Statistical methods

Statistical analysis of peptide-level antibody reactivity between

participant groups was performed using t-tests. Observed p-values

were used to calculate multiple comparison corrected q-values to

control the false discovery rate; q-values <5% were considered

statistically significant (44). Alternatively, peptides of interest

were selected from a cluster of peptides with observed differential

reactivity (mean z-statistic for group A >1, mean z-statistic for

group B <1, mean z-statistic for group A >2x that for group B).

Likely antibody epitopes represented by overlapping peptides with

differential reactivity were identified with epitopefindr v1.1.30 (45).
Frontiers in Immunology 04
Epitope reactivity was determined by selecting the maximum

reactivity to any peptide with the epitope. Epitope visualization

on the env trimer structure (PDB ID: 6VRW) (46) was performed

with PyMOL v2.0 (47); epitope sequences from UniProt ID P04583

were aligned to the 6VRW sequence to define epitope position on

the structure. VL and fold change values were log10-transformed

prior to statistical analysis. Univariate analyses were performed

using Fisher’s exact test for categorical variables or the t-test for

continuous variables; paired t-tests were used for longitudinal

analysis of continuous variables. Correlation analyses were

performed using Pearson’s method. Statistical analyses were

performed using R v4.1.2 (48). Data were visualized using ggplot2

v3.3.6 (49).
Study approval

HPTN 071 (PopART) study participants provided written

informed consent prior to enrollment. The study was approved

by the institutional review boards and ethics committees at the

London School of Hygiene and Tropical Medicine, the University of

Zambia, and Stellenbosch University.
Results

Study cohort

Previous analyses identified 978 seroconverters in the HPTN

071 trial (36). The approach used to identify participants for

inclusion in this report is shown in Figure 1. Viral load and ARV

drug testing were used to determine controller status for a subset of

seroconverters (n=585) who were selected based on seroconversion

timing and availability of samples required for analysis. Participants

were classified as controllers if they had a VL <2,000 copies/mL with
BA

FIGURE 1

Identification of (A) controllers and (B) viremic non-controllers. Study visits were conducted during annual surveys (referred to as PC0, PC12, PC24,
and PC36). The pre-infection visit was the last HIV-negative visit. The baseline visit was the first HIV-positive visit (infection duration: 0-1 year). The
follow-up visit was the second HIV-positive visit (infection duration: 1-2 years). Viral load and antiretroviral drug testing were used to identify HIV
controllers and viremic non-controllers. Footnotes:a The 585 seroconverters included two groups (1): 360 participants were HIV negative at PC0
and HIV positive at PC12 (2); 225 participants were HIV negative at PC12 and HIV positive at PC24. The remaining 393 of 978 HPTN 071
seroconverters had different seroconversion timing and/or visit completeness and were not included. b 182 participants had an additional visit at
PC36. To be classified as a controller, these participants were also required to have a VL<2,000 copies/mL with no ARV drugs detected at that visit. c

The 225 seroconverters include those who were HIV negative at PC12 and HIV positive at PC24. The remaining 753 of 978 HPTN 071 seroconverters
with different seroconversion timing and/or visit completeness and were not included. d Of these participants, 47 persons who were suppressed on
ART at baseline (VL <400 copies/mL) and 17 non-controllers with naturally low VLs at baseline only (<2,000 copies/mL) were included in the
analyses described in Supplemental Files 7, 8. Abbreviations: ARV, antiretroviral; N, number; VL, viral load.
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no ARV drugs detected at the first HIV-positive visit (baseline;

infection duration 0-1 years) and the second HIV-positive visit

(follow-up; infection duration 1-2 years). This approach for

classifying controllers is consistent with criteria used in prior

studies (2, 8, 50). Participants were classified as viremic non-

controllers if they had a VL 2,000 copies/mL with no ARV drugs

detected at baseline. The final cohort for the main analyses

described in this report included 148 seroconverters, including 13

controllers and 135 viremic non-controllers. Some analyses

described in the Supplemental File included an additional 47

participants who were suppressed on ART at baseline (VL <400

copies/mL), 17 non-controllers with natural suppression at baseline

only (VL <2,000 copies/mL, no ARV drugs detected), and a

matched control group of 217 participants who remained

uninfected throughout the study.
Association between pre-infection
antibody reactivity and HIV
controller status

We used VirScan to compare pre-infection antibody reactivity

for the 13 controllers and 135 viremic non-controllers. Both groups

had low-level antibody binding to HIV peptides across the genome

(Figures 2A, B). Two clusters of peptides were identified that had
Frontiers in Immunology 05
differential reactivity in these two participant groups. One cluster of

nine overlapping peptides had higher levels of antibody reactivity in

viremic non-controllers (V cluster); each of the individual peptides

in this cluster had significantly higher mean antibody reactivity in

the viremic non-controller group (q<0.05; p ≤ 0.000151; Figure 3).

A second cluster of 12 overlapping peptides had higher mean levels

of antibody reactivity in controllers (C cluster). The individual

peptides in this cluster did not have significantly different antibody

binding in the two groups after multiple testing correction, but had

higher antibody reactivity in the controller group when the analysis

was based on observed differences in z-statistics; this likely reflected

the small number of controllers included in the analysis who had

reactivity to these peptides.

The peptides in each cluster contained a common epitope

(Figures 2C, D; Supplemental File 2). Peptides in the C cluster shared

an epitope in the C-terminal heptad repeat region (HR2) of gp41 (C

epitope). Peptides in the V cluster shared an epitope in the second

constant (C2) regionof gp120 (Vepitope). Pre-infection reactivity to the

C epitope (adjusted fold change >1) was observed more frequently

among controllers vs. viremic non-controllers (3/13 [23.1%] vs. 5/135

[3.7%], p=0.023). Pre-infection reactivity to the V epitope was not

observed among controllers but was common among viremic non-

controllers (0/13 [0.0%] vs. 43/135 [31.9%], p=0.011). We did not find

any sequenceswithhomology to theCorVepitopes usingBLAST, aside

fromHIV-1 and simian immunodeficiency virus (SIV) sequences (51).
B

C D

A

FIGURE 2

Pre-infection antibody reactivity for HIV controllers and viremic non-controllers. (A) The figure shows the size and position of open reading frames
in the HIV genome. (B) The plot shows the level of pre-infection antibody binding (average z-statistic) for HIV peptides spanning the viral genome.
The x-axis shows the nucleotide position in the HIV genome relative to genomic coordinates for HXB2 reference strain (NCBI #NC_001802). Each
dot represents a single peptide in the VirScan library. Red dots indicate aggregate data for 13 controllers; black dots indicate aggregate data for 135
viremic non-controllers. Nine peptides had statistically significant higher antibody reactivity for viremic non-controllers; these peptides shared the V
epitope (see Supplemental File 2). Twelve peptides had higher antibody reactivity for controllers; these peptides shared the C epitope. (C) The figure
shows the location of the V and C epitopes in a linear model of the HIV-1 envelope protein; a consensus sequence (sequence logo) is shown for
each epitope. The V epitope is in the second constant region (C2) of gp120; the C epitope is in the C-terminal heptad repeat region (HR2) of gp41.
(D) The figure shows the location of the V and C epitopes on a cryo–electron microscopy (cryo-EM) structure of the HIV-1 envelope protein trimer
(side view, PDB ID: 6VRW) (46). gp120 monomers are colored light green, light blue, and gray; gp41 monomers are colored dark green, dark blue,
and gray. The V epitope is shown on all monomers in red; the C epitope is shown on all monomers in dark red. Abbreviations: C1-5, constant
regions; FP, fusion protein; HR1-2, heptad repeat regions; MPER, membrane-proximal external region; ORF, open reading frame; Kb, kilobase; TMD,
transmembrane domain; V1-5, variable regions.
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Association between broad pre-infection
antibody reactivity to HIV peptides and HIV
controller status

We next compared the depth and breadth of antibody reactivity

to HIV peptides across the viral genome in the 13 controllers and
Frontiers in Immunology 06
135 viremic non-controllers. This analysis was performed using an

aggregate measure of antibody reactivity (VARscore); higher

VARscores (generally >1) indicate prior viral exposure (52). Mean

HIV-1 VARscores were low in both groups (controllers: 0.24,

viremic non-controllers: 0.18, p=0.533; Supplemental File 3),

consistent with their HIV-uninfected status.
B

A

FIGURE 3

Differences in pre-infection antibody reactivity for controllers vs. viremic non-controllers. Pre-infection antibody reactivity was compared for 13 HIV
controllers and 135 viremic non-controllers. (A) The volcano plot shows the difference in pre-infection antibody reactivity (mean fold change)
between the two groups (x-axis) and the -log10 p-value for each peptide based on t-statistics (y-axis). Positive numbers on the x-axis correspond to
stronger antibody reactivity in controllers; negative numbers on the x-axis correspond to stronger antibody reactivity in viremic non-controllers.
Blue dots indicate the nine peptides that had significantly higher reactivity in viremic non-controllers compared to controllers at a false discovery
rate of 5%. The blue dashed line indicates the highest q-value <5% (q=0.0418); this corresponds to a p-value of 0.000151. (B) The plot shows the
significance of the difference in pre-infection antibody reactivity for each peptide in the VirScan library for controllers vs. viremic non-controllers.
The x-axis shows the position in the HIV genome for each peptide; each dot represents a single peptide. The y-axis shows the -log10 p-value based
on t-statistics for each peptide. Red dots indicate peptides that had higher antibody reactivity in controllers. Black dots indicate peptides that had
higher antibody reactivity in viremic non-controllers. The blue dashed line indicates the highest q-value <5% (q=0.0418); this corresponds to a p-
value of 0.000151. The nine peptides with q-values <0.05 (above the blue dashed line) had significantly higher reactivity in viremic non-controllers
compared to controllers. These peptides contained the V epitope. Abbreviations: Kb, kilobase.
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Association between broad pre-infection
antibody reactivity to HIV and C or V
epitope reactivity

We next compared pre-infection HIV-1 VARscores for

participants with vs. without pre-infection reactivity to the C or V

epitope (adjusted fold change >1 vs. adjusted fold change = 1;

Figure 4). For this analysis, HIV-1 VARscores were calculated after

removing VirScan data for peptides with the relevant epitope (C or

V). First, we compared VARscores for participants with (n=8) vs.

without (n=140) pre-infection reactivity to the C epitope.

Participants with pre-infection reactivity to the C epitope had

higher mean HIV-1 VARscores (reactive: 0.75, not reactive: 0.15,

p=0.0063); this suggests that reactivity to the C epitope may have

been induced by prior HIV exposure. Next, we compared

VARscores for participants with (n=43) vs. without (n=105) pre-

infection reactivity to the V epitope. HIV-1 VARscores were low in

both groups with no difference between groups (reactive: 0.23, not

reactive: 0.15, p=0.058); this suggests that reactivity to the V epitope

may not have been induced by prior HIV exposure.
Changes in antibody reactivity to the C and
V epitopes after HIV infection

We next compared antibody reactivity to the C and V epitopes

at the pre-infection visit and the first HIV-positive visit (baseline,

infection duration 0-1 year). VirScan data were available at baseline

for 145/148 participants, including 7/8 participants with pre-

infection reactivity to the C epitope and 42/43 participants with

pre-infection reactivity to the V epitope. (Supplemental File 4).

VirScan data were available at follow-up for 86/148 participants,

including 7/8 participants with pre-infection reactivity to the C

epitope and 26/43 participants with preinfection reactivity to the

V epitope.

At baseline, almost all participants (143/145 [98.6%]) had C

epitope reactivity; this included all seven participants with pre-

infection reactivity to this epitope (Supplemental File 5A).

Reactivity to this epitope (mean fold change) increased at baseline
Frontiers in Immunology 07
for the seven participants with pre-infection reactivity (pre-

infection: 10.3, baseline: 29.1, p=0.0041). Mean baseline reactivity

was similar for participants with vs. without pre-infection reactivity

(reactive at pre-infection: 29.1, not reactive at pre-infection: 22.2,

p=0.059). We then evaluated reactivity to the C epitope at follow-up

(infection duration 1-2 years) when infection was more established.

At follow-up, all 86 participants had reactivity to the C epitope,

including all seven participants with pre-infection reactivity

(Figure 5A). Mean reactivity was higher at follow-up than pre-

infection for participants with pre-infection reactivity (pre-

infection: 10.3, follow-up: 42.5, p=0.00036). Mean reactivity was

also higher at follow-up for those with vs. without pre-infection

reactivity (reactive at pre-infection: 42.5, not reactive at pre-

infection: 25.9, p=0.0088). The findings from analysis of data

from the baseline and follow-up visits are consistent with results

from the VARscore analysis, indicating that HIV exposure induces

and boosts expression of C epitope antibodies.

Different patterns of antibody reactivity were observed for the V

epitope. Only 37/145 (25.5%) participants had reactivity to the V

epitope at baseline (Supplemental File 5B); most (32/37 [86.5%]) of

these participants also had pre-infection reactivity to this epitope.

Ten additional participants with pre-infection reactivity to the V

epitope were no longer reactive to this epitope at baseline. There

was no increase in V epitope reactivity (mean fold change) after

infection for the 32 participants who had V epitope reactivity at

both visits (pre-infection: 6.4, baseline: 6.1, p=0.33). We also

observed no difference in mean baseline reactivity for participants

with vs. without pre-infection reactivity (reactive at pre-infection:

6.1, not reactive at pre-infection: 6.8, p=0.68). Furthermore, only

18/86 (20.9%) participants had reactivity to the V epitope at follow-

up, including 15 participants with pre-infection reactivity

(Figure 5B). An additional 11 participants with pre-infection

reactivity did not have reactivity to this epitope at follow-up.

Mean reactivity was unchanged at follow-up (vs. pre-infection)

for the 15 participants with reactivity at both visits (pre-infection:

6.5, follow-up: 7.3, p=0.68), and there was no difference in mean

follow-up reactivity for participants with vs. without pre-infection

reactivity (reactive at pre-infection: 7.3, not reactive at pre-

infection: 7.2, p=0.58). These findings are consistent with results
BA

FIGURE 4

Association between antibody reactivity to the C and V epitopes and HIV-1 VARscore prior to infection. VARscores are an aggregate measure of the
level and breadth of antibody reactivity to all peptides spanning the viral genome. The plots show HIV-1 VARscores prior to infection for participants
with and without reactivity to the C epitope (A) and V epitope (B). Data are shown for 148 participants (13 controllers and 135 viremic non-
controllers). P-values show the significance of the association between pre-infection reactivity and HIV-1 VARscore. VARscores were calculated after
excluding reactivity data for peptides containing the C (Panel A) and V epitope (Panel B).
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from the VARscore analysis, indicating that expression of V epitope

antibodies is not induced or boosted by HIV exposure or

HIV infection.
Association between antibody reactivity to
the C and V epitopes and viral load

We next evaluated whether pre-infection reactivity to the C and

V epitopes was associated with VL after infection. Participants with

pre-infection reactivity to the C epitope had lower mean VLs at

baseline than those without pre-infection reactivity, but the

difference was not statistically significant (reactive at pre-

infection: 23,969 copies/mL, not reactive at pre-infection: 98,982

copies/mL, p=0.16; Supplemental File 6A). A significant difference

was observed for mean VL at follow-up (reactive at pre-infection:

4,594 copies/mL, not reactive at pre-infection: 81,124 copies/mL,

p=0.014; Figure 6A). These findings indicate that the pre-infection
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reactivity to the C epitope is associated with lower VLs in

established infection.

The opposite association was observed for the V epitope.

Participants with pre-infection reactivity to the V epitope had

higher mean VLs at baseline but the difference was not

statistically significant (reactive at pre-infection: 119,243 copies/

mL, not reactive at pre-infection: 84,969 copies/mL, p=0.068;

Supplemental File 6B). A significant difference was observed for

mean VL at follow-up (reactive at pre-infection: 150,647 copies/mL,

not reactive at pre-infection: 42,709 copies/mL, p=0.0016;

Figure 6B). These findings indicate that the pre-infection

reactivity to the V epitope is associated with higher VLs in

established infection.

We also evaluated whether the strength of antibody reactivity to

the C and V epitopes at baseline or follow-up was correlated with

VL at the same visit (Figure 7). In persons with C epitope reactivity,

the strength of reactivity was inversely correlated with VL at

baseline (R= -0.17, p=0.039) and follow-up (R= -0.25, p=0.019).
BA

FIGURE 6

Association between pre-infection antibody reactivity to the C and V epitopes and HIV viral load. The plots show the association between the
presence of antibody reactivity to the C epitope (A) and V epitope (B) before infection (pre-infection visit) and log10 HIV viral load after infection
(follow-up visit; infection duration: 1-2 years). Data are shown for the 87 participants who did not have antiretroviral drugs detected at follow-up and
had viral load data from that visit (13 controllers and 74 viremic non-controllers, Supplemental File 4). P-values show the significance of the
association between pre-infection reactivity and HIV viral load at follow-up.
BA

FIGURE 5

Antibody reactivity to the C and V epitopes before and after HIV infection. The plots show the level of antibody reactivity (log10 fold change) to the C
and V epitopes at the pre-infection and follow-up visits. VirScan data were available for 86 participants at the follow-up visit (13 controllers and 73
viremic non-controllers, Supplemental File 4). (A) includes paired data for 86 participants who had reactivity to the C epitope at the pre-infection
and/or follow-up visit. All 86 participants had reactivity to the C epitope at follow-up; the seven participants with reactivity to the C epitope before
infection had significantly higher reactivity to this epitope at follow-up. (B) includes paired data for 29 participants who had reactivity to the V
epitope at the pre-infection and/or follow-up visit (data are not shown for 57 participants who had no reactivity to the V epitope at either visit).
Three participants who had no reactivity to the V epitope before infection developed reactivity to the V epitope at follow-up. Eleven of the 26
participants who had reactivity to the V epitope before infection no longer had reactivity to this epitope at follow-up; the remaining 15 participants
did not have differential reactivity to this epitope at follow-up compared to pre-infection.
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There was no observed correlation between the strength of

reactivity to the V epitope and VL at either visit.
Association between pre-infection
antibody reactivity and infection risk

As a final step, we evaluated whether pre-infection antibody

reactivity was associated with subsequent HIV infection

(Supplemental File 7). There were no differences in mean antibody

reactivity for 212 seroconverters vs. 217 uninfected participants to

any HIV peptides in the VirScan library, including those with the C

or V epitopes. Mean pre-infection HIV-1 VARscores were also low

with no difference between groups (seroconverters: 0.186, uninfected:

0.217 p=0.134; Supplemental File 8).
Discussion

Previous studies demonstrated that HIV-specific pre-existing

antibody responses can be protective in non-controllers (26–29, 31–

34) but did not include a comprehensive evaluation of reactivity to

all expressed HIV peptides. In this study, we used VirScan to

compare pre-infection antibody profiles in controllers and

viremic non-controllers in HPTN 071. All participants,

independent of controller or infection status, had low-level

antibody binding to HIV peptides across the viral genome prior

to infection; this may reflect a combination of HIV-specific and
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non-specific binding to target peptides. A subset of participants had

pre-infection antibodies to the C and V epitopes; this reactivity was

associated with HIV controller status and VL after infection.

Neither of these epitopes is targeted by bnAbs under investigation

for HIV treatment and prevention (53, 54).

We found that the C epitope (gp41, HR2) was targeted more

frequently prior to infection in controllers vs. viremic non-

controllers (23.1% vs. 3.7%). Pre-infection reactivity to this

epitope was also associated with higher overall HIV-specific

antibody responses prior to infection, suggesting that production

of C epitope antibodies was stimulated by HIV exposure without

infection. At follow-up (infection duration: 1-2 years), pre-infection

responses were boosted and all participants had reactivity to this

epitope. Pre- and post-infection reactivity to the C epitope were also

associated with lower VL after infection.

The 12 peptides with the C epitope overlap with an HR2 epitope

that was targeted in controllers with established HIV infection in

our prior study (25). HR2 plays a critical role in viral fusion;

antibodies targeting this region may impair hairpin formation

and viral entry (55). NAbs targeting HR2 have been described in

slow progressors (56) and controllers (57), while non-neutralizing

HR2 antibodies with robust ADCC activity were found in a non-

controller (58). This report demonstrates that pre-infection

antibody reactivity to the C epitope is associated with controller

status and lower VL after infection, consistent with antibody-

mediated suppression of viral replication.

Antibodies to V epitope (gp120, C2) were only present prior to

infection in viremic non-controllers. In contrast to the C epitope,
B

C D

A

FIGURE 7

Correlation between the strength of antibody reactivity to the C and V epitopes after infection and HIV viral load. The plots show the Pearson
correlation (R) between the strength of antibody reactivity (log10 fold change) to the C epitope (A, B) or the V epitope (C, D) and log10 HIV viral load.
VirScan data were available for 145 (98%) of 148 participants at baseline and 86 (58%) of 148 participants at follow-up (Supplemental File 4). Each dot
represents data for one participant; participants who did not have reactivity to the epitope of interest were excluded from the analysis. The blue line
indicates the first principal component. (A) shows data for the 143 participants who had reactivity to the C epitope at the baseline visit (infection
duration: <1 year). (B) shows data for the 86 participants who had reactivity to the C epitope at the follow-up visit (infection duration: 1-2 years). (C)
shows data for the 37 participants who had reactivity to the V epitope at the baseline visit. (D) shows data for the 18 participants who had reactivity
to the V epitope at the follow-up visit.
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pre-infection reactivity to this epitope was not associated with pre-

infection reactivity to other HIV peptides, suggesting that

production of V epitope antibodies was triggered by a mechanism

other than HIV exposure. Changes in reactivity to the V epitope

over time were also different from those observed for the C epitope.

At follow-up, pre-infection responses to the V epitope were not

boosted or consistently maintained, and only three participants

developed V epitope reactivity after infection. Overall, these data

suggest that V epitope reactivity was triggered by an unidentified,

non-HIV antigen.

The nine peptides with the V epitope (C2 target) did not overlap

with epitopes identified in our previous work. However, in the

RV144 trial (NCT00223080; Thailand), vaccination induced

protective antibodies targeting C2; these antibodies were

associated with higher levels of ADCC and reduced HIV

acquisition risk (59). This contrasts with the findings in our

study, where pre-existing V-epitope reactivity was not protective

and was instead associated with higher post-infection viral loads

and non-controller status. These conflicting results may reflect

subtype-specific differences in antibody responses targeting C2.

Pre-existing non-neutralizing or cross-reactive antibodies

can sometimes facilitate viral entry by interacting with

complement and/or the Fc receptor through antibody

dependent enhancement (ADE) (60). In HIV infection, ADE

allows rapid viral trafficking by antigen presenting cells (e.g.,

macrophages) to lymph node resident CD4+ T cells following

mucosal transmission, enhancing early processes required to

establish robust infection (61–64). Infection-enhancing

antibodies targeting env have been associated with HIV

transmission risk (65) and higher VL after infection (66). We

find that pre-infection reactivity to the V epitope is associated

with non-controller status and higher VL after infection. Taken

together, our findings suggest that V epitope reactivity might

modulate VL via ADE in early infection.

This study had several limitations. First, negative HIV status

pre-infection was determined using a sensitive antigen/antibody

assay and an RNA assay with a LOD of 400 copies/mL; it is possible

that some participants with low RNA and antibody levels could

have been misclassified as uninfected. Second, the controller cohort

used for peptide discovery was very small (n=13); this may have

limited our ability to identify other pre-infection antibody

specificities associated with HIV control. Third, the study cohort

only included participants with presumed HIV subtype C; as inter-

subtype genetic diversity may influence antibody responses, further

studies are needed to assess generalizability of the findings in this

study to persons with other HIV subtypes. Fourth, the VirScan

assay measures antibody binding to unglycosylated, linear epitopes;

antibody binding detected with VirScan may not correlate with

antibody binding to the native HIV envelope trimer. Fifth, the

phage-display library used in this report did not include HIV

antisense protein peptides (67). Sixth, most prior studies of pre-

infection HIV antibodies have focused on mucosal IgA responses

(26–29, 34); this report was limited to the analysis of plasma IgG

reactivity and did not include other isotypes or mucosal responses.

Seventh, we did not evaluate other factors known to contribute to
Frontiers in Immunology 10
viral load modulation (e.g., HLA haplotype (8), cellular immune

responses to HIV infection (12–15), viral factors (68, 69)). Finally,

we did not assess antibody profiles in viremic controllers identified

in HPTN 071 who were HIV positive at study enrollment; that

analysis will be described in a separate report.
Conclusion

We identified two env epitopes that were targeted in some

persons prior to infection. Reactivity to one epitope was associated

with natural control of HIV infection and appeared to reduce VL

via antibody-mediated suppression of viral replication. In contrast,

reactivity to the other epitope was not present in HIV controllers

and appeared to increase VL, possibly via ADE early in infection.

These findings enhance our understanding of humoral mechanisms

impacting controller status and VL and could inform the design of

antibody-based approaches for HIV treatment.
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