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related subtypes,
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microenvironment infiltration,
and development of a prognosis
model for osteoarthritis
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Haida Pan2 and Bo Xiong3*

1Teaching Department, First Affiliated Hospital of the Guangxi University of Chinese Medicine,
Nanning, China, 2Postgraduate Schools, Guangxi University of Chinese Medicine, Nanning, China,
3Department of Knee Arthropathy and Sports Injuries, Yulin Orthopedic Hospital of Integrated
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Background: Osteoarthritis (OA) is a prevalent chronic joint disease with an

obscure underlying molecular signature. Cuproptosis plays a crucial role in

various biological processes. However, the association between cuproptosis-

mediated immune infifiltration and OA progression remains unexplored.

Therefore, this study elucidates the pathological process and potential

mechanisms underlying cuproptosis in OA by constructing a columnar line

graph model and performing consensus clustering analysis.

Methods: Gene expression profifile datasets GSE12021, GSE32317, GSE55235,

and GSE55457 of OA were obtained from the comprehensive gene expression

database. Cuproptosis signature genes were screened by random forest (RF) and

support vector machine (SVM). A nomogram was developed based on

cuproptosis signature genes. A consensus clustering was used to distinguish

OA patients into different cuproptosis patterns. To quantify the cuproptosis

pattern, a principal component analysis was developed to generate the

cuproptosis score for each sample. Single-sample gene set enrichment

analysis (ssGSEA) was used to provide the abundance of immune cells in each

sample and the relationship between these significant cuproptosis signature

genes and immune cells.To quantify the cuproptosis pattern, a principal

component analysis technique was developed to generate the cuproptosis

score for each sample. Cuproptosis-related genes were extracted and

subjected to differential expression analysis to construct a disease prediction

model and confifirmed by RT-qPCR.

Results: Seven cuproptosis signature genes were screened (DBT, LIPT1, GLS,

PDHB, FDX1, DLAT, and PDHA1) to predict the risk of OA disease. A column line

graph model was developed based on these seven cuproptosis signature genes,

which may assist patients based on decision curve analysis. A consensus

clustering method was used to distinguish patients with disorder into two
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cuproptosis patterns (clusters A and B). To quantify the cuproptosis pattern, a

principal component analysis technique was developed to generate the

cuproptosis score for each sample. Furthermore, the OA characteristics of

patients in cluster A were associated with the inflflammatory factors IL-1b, IL-

17, IL-21, and IL-22, suggesting that the cuproptosis signature genes play a vital

role in the development of OA.

Discussion: In this study, a risk prediction model based on cuproptosis signature

genes was established for the fifirst time, and accurately predicted OA risk. In

addition, patients with OA were classifified into two cuproptosis molecule

subtypes (clusters A and B); cluster A was highly associated with Th17 immune

responses, with higher IL-1b, IL-17, and IL-21 IL-22 expression levels, while

cluster B had a higher correlation with cuproptosis. Our analysis will help

facilitate future research related cuproptosis-associated OA immunotherapy.

However, the specifific mechanisms remain to be elucidated.
KEYWORDS

Osteoarthritis, cuproptosis, prognosis model, tumor immune microenvironment,
and subtypes
1 Introduction

Osteoarthritis (OA) is a chronic degenerative joint disease

characterized by articular cartilage degeneration, bone fragment

formation, subchondral bone remodeling, and synovial

inflammation. As the “number one disabling disease” according to

the World Health Organization, OA has a significant impact on the

quality of life of patients and poses a substantial social and economic

burden. Current treatments can only alleviate the symptoms and

signs of the disease to a certain extent and delay disease progression;

however, treating the etiology of the disease remains challenging.

The synovial membrane is vital in maintaining normal

physiological functions of joints and serves as a bridge between

the internal structures of the joint and musculoskeletal tissue. The

hyaluronic acid secreted by the synovial membrane maintains the

integrity of the articular cartilage surface by maintaining its

lubrication, thereby reducing friction during joint movement and

providing nutrients to other soft tissues within the joint. However,

most early studies on OA have focused on chondrocytes, whereas

synovial cell lesions were considered secondary to cartilage

destruction and have been underappreciated. With the in-depth

study of OA, increasing research data have confirmed that OA is a

joint disease closely related to synovial tissue and can be induced by

the interaction between the synovium and various tissues, such as

cartilage and bone, through the secretion of soluble mediators (1).

Synovial inflammation is a critical pathological manifestation in the

development of OA, as synovial lesions precede cartilage lesions (2,

3). However, the role of synovial lesions in the development of OA

remains unclear. Therefore, exploring the pathogenesis and

diagnostic markers of OA from the perspective of the synovium

is essential to identify novel therapeutic targets for OA, alleviate

symptoms, and improve prognosis.
02
The pathogenesis of OA remains unclear, and relevant studies

indicate that OA has a multifaceted etiology (4, 5). Indeed the

immune system has been shown to play a crucial role in OA

development. More specifically, immune cell infiltration mediates

the autoimmune response to OA, thereby inducing the secretion of

chemokines, pro-inflammatory cytokines, and proteases,

consequently disrupting the immune homeostasis and

accelerating OA development (6–8).

Copper ions are essential for maintaining l i fe in

microorganisms, plants, non-human animals, and humans, as

they function as cofactors for several essential enzymes. Under

normal conditions, intracellular copper ion concentrations are

maintained at a low level by active homeostatic mechanisms (9).

Nonetheless, the gradual accumulation of copper ions above a

threshold value leads to excessive respiration of cells and

cytotoxicity. copper-dependent controlled cell death in human

cells is a novel form of cell death that differs from other known

cell death pathways. The authors termed this “cuproptosis,” a

process that occurs through the direct binding of copper ions to

lipid acylated components of the tricarboxylic acid cycle in

mitochondrial respiration, causing lipid acylated protein

aggregation and subsequent downregulation of iron-sulfur cluster

proteins, thereby promoting proteotoxic stress and ultimately

causing cell death (9).

The importance of copper homeostasis in immune infiltration

has also been demonstrated in several recent correlative studies (10,

11). Tan et al. (10) observed that copper chelation of macrophages

eliminated lysyl oxidase-like 4 presentation-induced internalization

of programmed death-ligand 1, thereby inhibiting the immune

escape of cells. Meanwhile, Choi et al. (11) reported that

chloroiodohydroxyquin (a common copper chelator) is effective

in reducing the infiltration of encephalitogenic immune cells (such
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as CD4 and CD8). This underscores the importance of elucidating

the mechanism underlying cuproptosis in immune infiltration.

However, no correlations have been reported between

cuproptosis-mediated immune infiltration and OA pathology.

Therefore, this study sought to elucidate the specific mechanisms

underlying cuproptosis-mediated immune infiltration in OA by

combining OA microarray data and cuproptosis-related genes.

Recently, bioinformatics and microarray technologies have gained

increasing attention and are now widely used in oncology to provide

researchers with reliable research directions and theoretical support by

predicting disease pathogenesis, diagnosis, and therapeutic targets,

making them effective tools for the detection of gene expression,

identifying biomarkers, and assessing epigenetic variation. Hence,

their scope has rapidly expanded from oncology to OA (12). All OA

synovial tissue gene microarray datasets in this study were obtained

from the National Center for Biotechnology Information (NCBI) Gene

Expression Omnibus database. To investigate the involvement of

cuproptosis regulators in the diagnosis and subtype categorization of

OA, four sets of genemicroarray datasets that satisfied the experimental

conditions were obtained.

In this study, a gene prediction model based on seven candidate

cuproptosis regulators (DBT, LIPT1, GLS, PDHB, FDX1, DLAT, and

PDHA1) was developed using the Random Forest (RF) model,

Support Vector Machines (SVM) machine learning, and column

line graph model. The prediction model was used to predict OA

susceptibility, and it was effective in determining the prognosis of

patients with OA, thus providing a basis for clinical decision

making. Overall, our study can help determine whether

cuproptosis molecular subtype patterns can be applied to

differentiate between OA cases that are characterized by

inflammatory responses and those that are not. Moreover, the

findings of this study define the cuproptosis-related genes

associated with OA and their correlation with immune cells and

inflammation-related factors, thus providing potentially new

directions for future OA research.
2 Materials and methods

2.1 Materials

2.1.1 Data sources
The Gene Expression Omnibus (GEO, http://www.ncbi.nlm.

nih.gov/geo/) is a public genomics database for storing gene

expression profiles, raw sequences, and platform information. We

searched the NCBI GEO database for microarray datasets using the

term “osteoarthritis.” Four OA-related datasets, containing 29 and

49 healthy and OA synovial samples, respectively, were downloaded

for this study (Table 1).
2.2 Methods

2.2.1 Data integration and pre-processing
In this study, each of the four datasets was annotated using Perl

software to map the probes to the platform annotation information,
Frontiers in Immunology 03
and the names of the probes were converted to gene names to merge

the four datasets. The raw data were converted to expression data

using the robust multi-array averaging algorithm of the limma

package in the R language software (version 4.1.3). The expression

levels of the probe sets were translated to gene expression levels by

averaging the expression values of several probes for a specific gene

using the Bioconductor annotation tool in R. The resulting

expression value files containing gene matrices based on the four

GEO series were then batch normalized to remove systematic

differences among studies, resulting in gene matrix files with row

and column names indicating sample and gene names, respectively,

for subsequent analysis.

2.2.2 Extraction of cuproptosis-related genes and
differential expression analysis

A search on PubMed using the subject term “cuproptosis”

revealed 20 cuproptosis-related genes (9). The annotated gene

matrix files were secondarily modified to obtain expression

matrices of cuproptosis-related genes. Subsequently, the OA-related

and significant cuproptosis differential genes (differentially expressed

genes) were analyzed and identified using the “reshape2” and

“ggpubr” packages in R. The expression data were then converted

into ggplot2 input files and used to plot heat maps and box plots.

2.2.3 Constructing and selecting a disease
prediction model

RF models, which combine bagging and random feature

algorithms, are an effective supervised learning approach that

outperform other machine learning algorithms including linear

regression models (13). In this study, the RF model was

constructed using the “randomforest” package in R software. The

eligible genes were selected from 20 cuproptosis-related genes as the

independent variables, and patients with OA were used as the

response variables to predict the occurrence of OA disease. The

SVM is a supervised machine learning technique based on the

statistical learning theory notion of structural risk minimization

(14). It uses “caret,” “DALEX,” and “kernlab” packages to construct

SVM models and plots “residuals reverse cumulative distribution,”

“residuals box line plot,” and “subject work characteristic (ROC)

curve” for comprehensive evaluation of the model.

2.2.4 Construction of a column line plot model
to predict the prevalence of OA

The column line graph prediction model is based on

multivariate analysis and integrates multiple predictors according
TABLE 1 Characteristics of GEO Datasets Included in the Study.

Number Series CON OA Platforms

1 GSE12021 9 10 GPL96

2 GSE32317 0 19 GPL570

3 GSE55235 10 10 GPL96

4 GSE55457 10 10 GPL96

29 49
fr
ontiersin.org

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2023.1178794
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nong et al. 10.3389/fimmu.2023.1178794
to the personal characteristics of individual patients for achieving

an accurate prediction of the probability of something (15). To

predict the prevalence of OA based on the prediction model selected

in the previous step, we constructed a column line graph model

using the “rms” package according to the selected candidate

cuproptosis signature genes. To verify the accuracy of the model,

“calibration curves,” “decision analysis curves (DCA),” and “clinical

impact curves” were plotted to assess the agreement between

predicted and actual values. In the present results, the

characteristic genes were scored individually in the line graph

model, with higher values associated with a higher prevalence of

OA, to further assess whether the decisions based on the model are

beneficial to the patients.

2.2.5 Genotyping and immuno-infiltration
analysis of OA cuproptosis signature genes

A consensus clustering algorithm implemented in the

“ConsensusClusterPlus” package provided the number of clusters

and their stability (16), which can be used to identify patterns

associated with cuproptosis genes. First, only disease group samples

were retained, and patients with OA were divided into subgroups

with a maximum subgroup classification of k = 9 to select the

optimal grouping to investigate the role of cuproptosis signature

genes in OA. Subsequently, a PCA was performed to quantify the

pattern of cuproptosis and determine whether these groupings were

correct. Subsequently, a single sample genomic enrichment analysis

(ssGSEA) was performed using the “GSEABase” and “GSVA”

packages to quantify the cuproptosis genotyping results and sum

the expression levels of these genes by obtaining the ranking of gene

expression levels in the samples. By ranking the gene expression

levels in the samples, the expression levels were summed to provide

the abundance of immune cells in each sample, as well as the

relationship between these significant cuproptosis signature genes

and immune cells.
2.3 Sample collection

Synovial tissue from 3 patients of meniscus injury and 3 of OA

were collected from Affiliated Hospital of the Guangxi University of

Chinese Medicine. All patients critically read and signed the

informed consent form (KY2022-002-02), which was approved by
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the ethics committee of Affiliated Hospital of the Guangxi

University of Chinese Medicine. The research followed the

guidelines of the 1975 Declaration of Helsinki.
2.4 Reverse-transcription quantitative
polymerase chain reaction

The total synovial tissue RNA was extracted using Trizol

(Servicebio), and then total RNA was reverse-transcribed to

complementary DNA (cDNA) using ServicebioRT Enzyme Mix.

The qRT-PCR was performed using the 2×SYBR Green qPCR

Master Mix (None ROX) (Servicebio). The primer sequence of

genes used in our study is listed in Table 2. Genes were normalized

to GAPDH. Relative levels of mRNA were expressed as fold-

changes as calculated by the 2®−DDCT method. Each biological

sample was technically performed in triplicate.
2.5 Statistical analysis

All statistical analyses in our study were performed with R

software, version 4.2.1. For all figures: * represents p < 0.05, **

represents p < 0.01, and *** represents p < 0.001.
3 Results

3.1 Differential analysis of
cuproptosis genes

Ten cuproptosis signature genes closely related to OA were

screened using t-test analysis to analyze the differences in

expression of cuproptosis-related genes between OA and non-OA

patients. GLS and DBT were lowly expressed in patients with

OA (Figure 1).
3.2 Model construction and selection

In this study, RF and SVM models were constructed from ten

cuproptosis differential genes for predicting the occurrence of OA
TABLE 2 Primer sequences of DBT, LIPT1, GLS, PDHB, FDX1, DLAT and PDHA1.

Gene name Forward primer Reverse primer

DBT CAGTTCGCCGTCTGGCAAT CCTGTGAATACCGGAGGTTTTG

LIPT1 CCTCTGTTGTAATTGGTAGGCAT CTGGGGTTGGACAGCATTCAG

GLS AGGGTCTGTTACCTAGCTTGG ACGTTCGCAATCCTGTAGATTT

PDHB AAGAGGCGCTTTCACTGGAC ACTAACCTTGTATGCCCCATCA

FDX1 TTCAACCTGTCACCTCATCTTTG TGCCAGATCGAGCATGTCATT

DLAT CGGAACTCCACGAGTGACC CCCCGCCATACCCTGTAGT

PDHA1 TGGTAGCATCCCGTAATTTTGC ATTCGGCGTACAGTCTGCATC
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disease. Both the “residual box line plot” (Figure 2A) and the

“residual reverse cumulative distribution plot” (Figure 2B)

indicated that the RF model had the smallest residuals, thereby

substantiating the selection of the RF model for predicting the

occurrence of OA disease. The receiver operating characteristic

(ROC) curves’ area under the curve (AUC) values (Figure 2C) also

shows that the RF model was more accurate than the SVM model.

In the next step of this study, the RF model was used as a baseline to

screen for disease signature genes, and the minimum value of the

cross-validation error in the RF tree plot (Figure 2D) was used to

determine the representative value of trees in the optimal RF tree.

Furthermore, the importance scores of the signature genes were

plotted (Figure 2E). The importance of the genes was determined by

the level of the score, and signature genes with a score >2 were

selected for subsequent analysis.
3.3 Construction of a column line graph
model to predict the prevalence of OA

In this study, the cuproptosis signature genes obtained from the

previous screening step regarding OA with gene scores >2 were
Frontiers in Immunology 05
used to construct a column line graph model (Figure 3A) to obtain a

score for each gene in OA disease. The scores for these signature

genes were summed to predict the prevalence of OA based on them.

The calibration curve (Figure 3B) suggests that this column line

graph model diagnoses OA positivity in line with the actual

positivity rate. DCA graph (Figure 3C) revealed that the red line

consistently stayed above the gray-black line between 0 and 1, which

suggests the significance of the column line graph model for

predicting the occurrence of OA disease based on its high clinical

application. Similarly, the clinical impact curve (Figure 3D) predicts

that the column line graph model has strong predictive power.
3.4 Genotyping analysis

This study performed a consensus cluster analysis of OA

samples based on the expression of ten cuproptosis signature

genes to investigate the pattern of modifications in OA

cuproptosis (Figures 4A, B). Results revealed that, among them,

the cumulative distribution function (CDF) values were the smallest

when k = 4. However, the correlation between groups was high

when patients with OA were divided into 3 or 4 groups. Therefore,
A

B C

FIGURE 1

Landscape of cuproptosis regulators in OA (A) Box plot of differential expression of genes characteristic of cuproptosis in the OA disease and normal
groups. The horizontal coordinates represent the name of the gene, and the vertical coordinates indicate the expression of the gene; blue and red
represent the control and disease groups, respectively. (B) Heat map of differential expression of ten cuproptosis differential genes in the OA disease
and normal groups. (C) Positions of ten cuproptosis differential genes in chromosomes. *p < 0.05, **p < 0.01, ***p < 0.001.
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two different OA subtypes (clusters A and B) could be identified by

analyzing the differential expression of these cuproptosis signature

genes (Figures 4C–F). Heat maps and box line plots were plotted to

illustrate the differential expression levels of these cuproptosis

signature genes between the two populations. The heat map and

box line plots in the communities (Figures 4G, H) depict that

SLC31A1, LIAS, LIPT1, DLAT, PDHA1, and PDHB are more highly

expressed in CB than in CA, whereas NFE2L2, FDX1, GLS, and DBT

are less highly expressed in CB than in CA. PCA analysis of the two

isoforms (Figure 4I) revealed that the ten cuproptosis signature

genes could be distinguished between two completely different

patterns and significant differences existed between the clusters.
3.5 Immune infiltration analysis

The ssGSEA enrichment analysis revealed that patients in the

CA group highly expressed activated B cells, activated CD4 T cells,

activated CD8 T cells, activated dendritic cells, and CD56 high-

expressing natural killer cells (Figure 5A). In contrast, patients in

the CB group were highly expressed mainly in CD56 low-expressing

natural killer cells, eosinophils, and gd T cells. We also assessed its

correlation with immune cells (Figure 5B) and observed that GLS

was positively correlated with many immune cells. Subsequently,
Frontiers in Immunology 06
the difference in immune cell infiltration correlation between high

and low GLS expression in patients with OA was further explored

(Figure 5C), and the results indicated that patients with OA with

high GLS expression exhibited enhanced immunocompetence.
3.6 Identification of cuproptosis gene
patterns and signature genes

To further validate the gene pattern of cuproptosis, we used a

consensus clustering approach to classify patients with OA into

different genomic subtypes based on 20 cuproptosis-associated

DEGs. We determined that two distinct cuproptosis gene patterns

(gene cluster A and gene cluster B) existed, consistent with the

grouping of cuproptosis patterns (Figures 6A–F). Figures 6G, H

confirms that the differential expression levels of the ten cuproptosis

signature genes, as well as the immune cell infiltration between gene

clusters A and B, are similar to the cuproptosis pattern results, thereby

validating the accuracy of the consensus clustering approach for

grouping. The expression levels of the 20 cuproptosis-associated

DEGs in gene clusters A and B are shown in Figure 6I. To quantify

the cuproptosis pattern, we calculated the corresponding cuproptosis

scores for each sample between the two different cuproptosis patterns

or cuproptosis gene patterns using the PCA algorithm, which suggested
A B

D E

C

FIGURE 2

Random forest (RF) model construction. (A) Residual box plot depicts the distribution of residuals for the RF and SVM models; lower values of
residuals indicate that the model is more meaningful and accurate. (B) The inverse cumulative distribution of residuals displays the distribution of
residuals for the RF and SVM models. (C) ROC curves for the RF and SVM models: higher AUC values indicate higher accuracy of the model. (D)
Random forest tree plot: horizontal coordinate represents the number of random forest trees, and the vertical coordinate represents the error of
cross-validation; the error of the sample of patients with OA is highlighted in red, the error of all samples is shown in black, and the sample of non-
OA patients is shown in green. (E) Characteristic gene importance score graph: the horizontal coordinate is the score value, and the vertical
coordinate is the gene name; the score is directly related to the importance of the characteristic gene.
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(Figures 6J, K) that cluster B or gene cluster B had a higher cuproptosis

score than cluster A and gene cluster A.
3.7 Role of cuproptosis patterns in OA

The relationship between cuproptosis patterns, cuproptosis

gene patterns, and cuproptosis scores is presented as a Sankey

diagram (Figure 7A). We investigated the relationship between

cuproptosis patterns and OA via exploring the correlation between

cuproptosis and interleukin (IL)-17A, IL-21, IL-22, IL-1, and IL-6.

The results revealed that IL-17A, IL-21, IL-22, and IL-1 expression

levels were higher in cluster A or gene cluster A than in cluster B or

gene cluster B, suggesting that cluster A or gene cluster A is highly

correlated with OA characterized by inflammatory responses

(Figures 7B, C).
3.8 Validation of hub genes

We confirmed the seven cuproptosis-related biomarkers using

RT-qPCR in order to verify our results. In comparison with the

control group, the expression of DBT and DLS were down-

regulated in OA synovial tissue; however, the expression of

LIPT1, PDHB, FDX1, DLAT, and PDHA1 were significantly up-
Frontiers in Immunology 07
regulated (Figure 8). These results were consistent with our

predictions using bioinformatics tools.
4 Discussion

Cuproptosis is a recently discovered form of cell death

characterized by the accumulation of free copper in cells and

lipidation of proteins leading to cytotoxic stress, which induces

cell death (9). However, data on the mechanism underlying

cuproptosis in OA remain limited. Therefore, we performed the

first study to explore the prognostic role of cuproptosis-related

genes in patients with OA using a comprehensive gene expression

database. Differential expression analysis was performed between

OA and non-OA patient samples, and RF and SVM models were

developed to predict the prevalence of OA. Based on the superiority

of the RF model, we constructed a predictive column using which a

short-term treatment plan could be developed for patients. The

DCA curve and clinical impact curve analyses indicated that the

model has unique clinical diagnostic advantages. We ultimately

identified seven cuproptosis signature genes associated with OA:

DBT, LIPT1, GLS, PDHB, FDX1, DLAT, and PDHA1. RT-qPCR

was performed to verify our findings, and it was consistent with

results from bioinformatics tools, which reaffirmed the important

role of cuproptosis-related biomarkers in OA.
A

B DC

FIGURE 3

Construction of the nomogram model (A) Column line graph model constructed based on the cuproptosis signature gene: calibration curve at the
top of the column line graph demonstrates the accuracy of the model. (B) Calibration curve of the column line graph: x-axis indicates the probability
predicted by the column line graph, while the y-axis indicates the likelihood of actual OA disease. A closer distance between the solid and dashed
lines indicates higher accuracy of the model. (C) DCA curve indicates that the columnar line graph model has a higher clinical value than individual
characteristic genes and is more meaningful for the assessment of disease prediction in patients with OA. (D) Clinical impact curves: used to assess
the clinical impact of the line plot model; red indicates patients classified as high risk, while blue indicates true positive patients.
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DBT regulates the degradation of branched-chain amino acids

and is the transacylase component of the mitochondrial

multienzyme branched-chain a-keto acid dehydrogenase complex

(17). DBT induces proteotoxic stress, which ultimately leads to

cellular cuproptosis by regulating the process of protein–lipid

acylation metabolism, thereby leading to lipid acylated protein

aggregation and subsequent downregulation of iron-sulfur cluster

protein expression (9).

LIPT1 is a vital gene encoding the mitochondrial lipoic acid

pathway (9). Abdul et al. (18) reported that lipoic acid reduces

obesity-induced inflammation in the body by modulating the

immune system when chronic treatment with lipoic acid agonists

is administered. In addition, the synthesis of mitochondrial fatty

acids is inextricably linked to LIPT1 expression (19). Osteoblast

samples from OA secreted more pro-inflammatory cytokines when

induced by free fatty acids, whereas the expression of signaling

molecules from related pathways was not altered. This suggests that

the participation of free fatty acids in subchondral bone damage

may be more dependent on the inflammatory response and

immune system than on related signaling pathways (20).

PDHB and PDHA1 are essential for maintaining normal

mitochondrial metabolism and are directly or indirectly involved
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in the mitochondrial tricarboxylic acid cycle. Moreover, their

binding to copper ions leads to the accumulation of lipid-acylated

proteins, resulting in mitochondrial metabolic dysfunction and,

consequently, inducing cell death (21, 22). PDHB and PDHA1, two

E1 isoforms of the pyruvate dehydrogenase complex, are located

mainly in the mitochondria of cells and catalyze the conversion of

glucose-derived pyruvate to acetyl coenzyme A (23–25), which

promotes the expression of inflammatory cytokines through the

regulation of histone acetylation (26). Moreover, an OA-related

animal study also showed that excessive accumulation of acetyl

coenzyme A, stimulated by matrix metalloproteinases, further

exacerbated inflammation in OA mice (27). In addition, the

pyruvate dehydrogenase complex is an essential part of the

tricarboxylic acid cycle (28).

The acetyl coenzyme A derived from it combines with

oxaloacetate to produce citric acid, which is added to the

tricarboxylic acid cycle (29, 30). A recent study showed that

glucocorticoids can regulate macrophage inflammatory activation

and anti-inflammatory polarization by promoting the tricarboxylic

acid cycle (31). Additionally, citric acid can be converted to itaconic

acid (3, 32), which is an anti-inflammatory metabolite that inhibits

succinate oxidation mediated by succinate dehydrogenase (32, 33)
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FIGURE 4

Consensus clustering of the ten significant cuproptosis regulators in OA. (A) Cumulative distribution function (CDF) of consistent clustering for k =
2–9. (B) Area fraction under the CDF curve for k = 2–9. C Trace plot for k = 2–9. (D–F) Heat map of scale matrix in the OA sample. (G) Heat map of
consensus clustering of the ten cuproptosis trait genes in the two populations. (H) The box-line plot of consensus clustering of the ten cuproptosis
signature genes in the two populations. (I) PCA analysis: blue for CA, red for CB, demonstrating significant differences in genes between patterns.
*p < 0.05, **p < 0.01, ***p < 0.001.
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and activates anti-inflammatory transcription factors (34). This

suggests that drug-targeted modulation of the tricarboxylic acid

cycle and acetyl coenzyme A production, particularly the biological

activity of PDHB and PDHA1, may be a new anti-OA strategy.

Similar to PDHB, which regulates cuproptosis, GLS is involved

in the mitochondrial tricarboxylic acid cycle by modulating the

formation of the pyruvate dehydrogenase complex. Upon

combination with copper ions, this leads to the aggregation of

lipidated proteins, thereby resulting in mitochondrial metabolic

dysfunction and inducing cellular cuproptosis (9).

FDX1 encodes a small iron-sulfur protein involved in reducing

mitochondrial cytochromes and the synthesis of various steroid

hormones (35). Tsvetkov et al. (9) reported FDX1 as a crucial

regulator of cuproptosis by reducing Cu2+ to the more toxic Cu+,

thereby leading to cytotoxic stress and inducing cellular

cuproptosis. It is also an upstream regulator of protein–lipid

acylation and knockdown of FDX1, a critical upstream regulator

of lipid acylated proteins or lipid acylation-related enzymes and can

block cuproptosis (9). In a recent lung cancer study, knockdown of

FDX1 improved mitochondrial metabolic dysfunction, thereby

reducing the inflammatory response of the body (36).

The binding of DLAT mitochondrial proteins to lipidated

proteins leads to oligomerization of DLAT lipid acylation, thereby

aggregating lipidated proteins and subsequent downregulation of

iron-sulfur cluster protein expression, which induces proteotoxic

stress and ultimately leads to cellular cuproptosis (9). Colliou et al.
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(37) reported that DLAT expression significantly increased

intestinal Th17 cells, thereby preventing inflammatory diseases.

Collectively, a close association between OA and LIPT1, and PDHB

and PDHA1 is implied. However, no relationship between

cuproptosis regulators and OA has been reported, and the results

of this study will help to better explain of the role of cuproptosis in

OA and may provide new directions for future research.

In the early stages of OA pathogenesis, the falling of cartilage

fragments into the joint activates the immune cells, which are then

recruited to the synovial tissue to produce inflammatory mediators,

such as IL-1b, IL-17, and IL-21. Therefore, inflammatory factors

infiltrate synovial tissue in patients with OA, and the severity of

synovitis is closely related to OA symptoms and disease progression

(38). Th17 cells can affect chondrocytes and synovial cells as well as

increase production of various enzymes. The concentration of Th17

cells is increased in synovial fluid, synovium, cartilage, and serum

during the inflammatory phase of OA, during which they selectively

secrete pro-inflammatory factors, such as IL-17A, IL-21, and IL-22,

which collectively mobilize, recruit, and activate neutrophils and

participate in the inflammatory response (39, 40). The main effector

of Th17 cells is IL-17, which is referred to as IL-17A, the first member

of the IL-17 family (41). IL-17, an inflammatory cytokine primarily

produced by activated T cells (42), can encourage T cell activation and

the production of several cytokines, including IL-6 and IL-8, which

promote granulocyte-macrophages differentiation, activation, or

recruitment. When bound to receptors, pro-inflammatory cytokines
A B
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FIGURE 5

Single sample gene set enrichment analysis. (A) ssGSEA analysis results: horizontal coordinates represent associated immune cells; vertical
coordinates represent immune infiltration. (B) Immune cell correlation analysis: each cell corresponds to the correlation coefficient between the
gene and immune cells; positive and negative correlations are marked in red and blue, respectively. (C) Box plot of the analysis of differences in
immune cells in the high- and low-GLS expression groups (*p < 0.05, **p < 0.01, ***p < 0.001).
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mediate the inflammatory response in OA through the MAP kinase

pathway and nuclear transcription factor-kappa B pathway. Hence, IL-

17A is an early initiator of the T cell-induced inflammatory response

and can exacerbate the inflammatory response (43–45). Askari et al.

(46) reported that IL-17A levels were considerably higher in patients

with OA than in healthy controls, where elevated IL-17A levels may be

associated with reduced vitamin D3 levels, and IL-17A levels were
Frontiers in Immunology 10
positively correlated with Western Ontario and McMaster Universities

Arthritis Index (WOMAC) pain scores. IL-21 levels were higher in

patients with OA than in healthy controls. Notably, IL-21 expression

was positively correlated with disease progression in OA. In the

synovial membrane of osteoarthritic patients, IL-21 activates T cells,

B cells, and NK cells, thereby promoting the release of inflammatory

factors and exacerbating OA (42, 47). IL-22 is mainly secreted by Th22
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FIGURE 6

Consensus clustering of the cuproptosis regulators-related DEGs in OA.](A–F) Consistency matrix plot of the ten cuproptosis-associated DEGs for k
= 2–5. (G) Box-line plot of differential expression of ten key cuproptosis genes in gene clusters A and (B, H) Differential immune cell infiltration
between gene clusters A and (B, I) Heat map of the expressiveness of the ten cuproptosis-associated DEGs in gene clusters A and B (J–K)
Differences in cuproptosis scores between Cluster A and Cluster B (*p < 0.05, **p < 0.01, ***p < 0.001).
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cells, Th17 cells, and NK22 cells and further promotes inflammation by

promoting IL-6 and IL-8 secretion by synovial fibroblasts, endothelial

cells, and other cells (48), and stimulates IL-1 and TNF-a secretion by

macrophages and mast cells in the periphery and joints. It induces cells

to produce vascular endothelial growth factors to promote intra-

articular vascular proliferation and induce synovial and joint

inflammation (49). Intra-articular vascular proliferation and induced

synovial cells producematrixmetalloproteinases, thereby degrading the

intra-articular extracellular matrix and participating in

the pathogenesis of OA (49–53). IL-1b reportedly promotes the

differentiation of Th17 cells (40), and although IL-1b is considered a
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critical pro-inflammatory cytokine, its absence accelerates the

progression of OA in a mouse model (54). Reactive oxygen species,

which produce free radicals that aid in cartilage deterioration, are also

produced by IL-1 (55). In addition, IL-1b can modulate acute-phase

related proteins during the acute phase of OA development, thereby

acting as an anti-inflammatory and immunosuppressive agent (56, 57).

The specific molecular mechanism of IL-1b in OA remains

controversial. Therefore, further in-depth studies on the specific

mechanism of action of IL-1b in OA are warranted. In the present

study, two cuproptosis patterns (clusters A and B) were identified

using a consensus clustering approach based on ten crucial

cuproptosis regulators. Both classification patterns could be

effectively distinguished into two clusters, suggesting two

completely different subtypes in patients with OA. Cluster A is

highly correlated with the Th17 immune response and has higher

levels of IL-1, IL-17, IL-21, and IL-22 expression.

This study has certain limitations. First, although the sample size

of the microarray data used is sufficient for the study, the sample size

may still be small enough to cause some bias in the results, Second,

although the cuproptosis genes related to OA have been screened, the

specific mechanism of action remains to be elucidated.

Although the current research results cannot fully illustrate the

causal relationship between cuproptosis-related genes in the

immune regulation of OA, it can be speculated based on previous

findings and the results of this study that cuproptosis genes play a

crucial role in the immune infiltration of OA. However, the

correlation between cuproptosis and immune and inflammatory

factors remains to be assessed. Nonetheless, the present study
A
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FIGURE 7

Role of cuproptosis patterns in distinguishing OA. (A) Sankey diagram depicting the relationship between cuproptosis typing results, cuproptosis
genotyping results, and high- and low-cuproptosis gene scores. (B) Differential expression levels of IL-17A, IL-21, IL-22, IL-1b, and IL-6 between
cuproptosis typing Cluster A and Cluster B. (C) Differential expression levels of IL-17A, IL-21, IL-22, IL-1b, and IL-6 between gene clusters A and B;
expression levels of IL-17A, IL-21, IL-22, IL-1b, and IL-6 are shown (***p < 0.001).
FIGURE 8

Validation of hub cuproptosis genes using qRT-PCR. The relative
mRNA expressions of DBT, LIPT1, GLS, PDHB, FDX1, DLAT, and
PDHA1 were displayed (*p < 0.05, **p < 0.01).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1178794
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nong et al. 10.3389/fimmu.2023.1178794
establishes the relationship between cuproptosis patterns and OA

and inflammatory factors and predicts some potential directions in

the future clinical management of OA.
5 Conclusions

In this study, a risk prediction model based on cuproptosis

signature genes was established for the first time, and accurately

predicted OA risk. In addition, patients with OA were classified into

two cuproptosis molecule subtypes (clusters A and B); cluster A was

highly associated with Th17 immune responses, with higher IL-1b,
IL-17, and IL-21 IL-22 expression levels, while cluster B had a

higher correlation with cuproptosis. Our analysis will help facilitate

future research related cuproptosis-associated OA immunotherapy.

However, the specific mechanisms remain to be elucidated.
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