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Background: Cuproptosis is a novel form of programmed cell death that differs

from other types such as pyroptosis, ferroptosis, and autophagy. It is a promising

new target for cancer therapy. Additionally, immune-related genes play a crucial

role in cancer progression and patient prognosis. Therefore, our study aimed to

create a survival prediction model for lung adenocarcinoma patients based on

cuproptosis and immune-related genes. This model can be utilized to enhance

personalized treatment for patients.

Methods: RNA sequencing (RNA-seq) data of lung adenocarcinoma (LUAD)

patients were collected from The Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO) databases. The levels of immune cell infiltration in

the GSE68465 cohort were determined using gene set variation analysis

(GSVA), and immune-related genes (IRGs) were identified using weighted

gene coexpression network analysis (WGCNA). Additionally, cuproptosis-

related genes (CRGs) were identified using unsupervised clustering.

Univariate COX regression analysis and least absolute shrinkage selection

operator (LASSO) regression analysis were performed to develop a risk

prognostic model for cuproptosis and immune-related genes (CIRGs), which

was subsequently validated. Various algorithms were utilized to explore the

relationship between risk scores and immune infiltration levels, and model

genes were analyzed based on single-cell sequencing. Finally, the expression

of signature genes was confirmed through quantitative real-time PCR (qRT-

PCR), immunohistochemistry (IHC), and Western blotting (WB).

Results: We have identified 5 Oncogenic Driver Genes namely CD79B, PEBP1,

PTK2B, STXBP1, and ZNF671, and developed proportional hazards regression
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models. The results of the study indicate significantly reduced survival rates in

both the training and validation sets among the high-risk group. Additionally, the

high-risk group displayed lower levels of immune cell infiltration and expression

of immune checkpoint compared to the low-risk group.
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Introduction

Lung cancer (LC) is a prevalent form of cancer worldwide, and

the number of cases is rising each year. Lung adenocarcinoma

(LUAD) is the most common subtype of lung cancer, accounting

for approximately half of all cases (1). Although there have been

advances in cancer treatment, LUAD patients’ treatment outcomes

are still unsatisfactory due to metastasis and recurrence. Therefore,

there is an urgent need for new prognostic markers to evaluate

patients’ prognosis and guide treatment decisions.

Copper is an essential trace element in the human body (2), but

excess copper ions in cells can trigger a new form of cell death called

cuproptosis (3–5). During this process, copper ions bind directly to

fatty acylation components in the tricarboxylic acid cycle (TCA) in

mitochondrial respiration, leading to the aggregation of fatty

acylated proteins and the loss of iron-sulfur cluster proteins (6).

This causes proteotoxic stress and ultimately results in cell death.

Additionally, the tumor microenvironment (TME) (7–9) is

composed of immune cells, stromal cells, extracellular matrix, and

peripheral blood vessels, all of which have a significant impact on

tumor growth, metabolism, and metastasis. Among these, immune

cells play a crucial role (10, 11). Studies have shown that infiltrating

immune cells in LUAD are closely related to tumor aggressiveness

and patient prognosis (12, 13).

It is worth noting that there is a connection between copper and

immunity. Previous studies have shown that copper is essential for

the development and maintenance of the immune system. Copper

deficiency can lead to a reduction in immune cells (14). In the

immune system, T cells and B cells are crucial components (15).

Copper deficiency may hinder the development of T cells and affect

their function. Some studies have suggested that copper can also

affect the proliferation and activity of T cells (16, 17). Copper

deficiency can lead to a decreased ability of the human immune

system to respond to various diseases and infections. In addition,

copper is also critical for the function of B cells (18). Copper

deficiency can affect the ability of B cells to secrete immunoglobulin,

thereby reducing the body’s protection against pathogens (18).

Interleukin-2 is also an important immune molecule in the

immune system and is one of the important factors that activate

T cells (18). However, in the case of copper deficiency, the

production of interleukin-2 is suppressed, affecting the activation

ability of T cells, thus leading to a decrease in the body’s immune

response to pathogens, which makes it susceptible to various
02
infections and diseases. Moreover, copper also participates in the

synthesis of a large number of antioxidant enzymes, including

superoxide dismutase and glutathione peroxidase (19). These

enzymes have the function of clearing free radicals in the body,

protecting immune cells from oxidation damage, and enhancing the

body’s resistance (19). Recent studies have also found that copper

can affect the expression of PD-L1 in cancer cells, which is a key

signaling pathway for immune evasion (20). Overall, copper plays a

very important role in the immune system.In this study, we aim to

investigate the value of cuproptosis and immune-related genes

(CIRGs) on the prognosis and immunotherapy of LUAD patients

through innovative bioinformatics methods. By examining this

relationship, we can improve personalized treatment for patients.
Materials and methods

Data resources

This study obtained RNA sequencing (RNA-seq) data, clinical

data, single cell sequencing data, and simple nucleotide variation

data from the Genomic Data Commons (GDC) and The Cancer

Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/). RNA-seq

data and clinical data were also obtained from the National Center

for Biotechnology Information (NCBI) Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/, ID:

GSE68465, GSE72094, GSE37745). Additionally, 19 cuproptosis-

related genes were obtained from literature sources.
Identification of genes associated with
cuproptosis and immune

First, we cleaned up missing values in the RNA-seq and clinical

data. We selected GSE68465 as the training set and used the

“GSVA” R package to perform single sample gene set enrichment

analysis (ssGSEA) on all samples in the training set, obtaining

scores for immune cell infiltration and immune function, including

aDCs, APC co-inhibition, APC co-stimulation, B cells, CCR, CD8+

T cells, Check-point, Cytolytic activity, DCs, HLA, iDCs,

Inflammation-promoting, Macrophages, Mast cells, MHC class I,

Neutrophils, NK cells, Parainflammation, pDCs, T cell co-

inhibition, T cell co-stimulation, T helper cells, Tfh, Th1 cells,
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Th2 cells, TIL, Treg, Type I IFN Response, Type II IFN Response.

Based on the results of ssGSEA (21) on the training set, we used

weighted gene co-expression network analysis (WGCNA) (22) to

screen for immune-related genes. We used the “PickSoftThreshold”

function to automatically select a soft threshold value and

performed scale-free and average connectivity analysis on

modules with different power values. Then, we obtained

corresponding dissimilarity matrix (1-TOM) and topological

overlap matrix (TOM). We performed Pearson correlation

analysis on the co-expression modules based on ssGSEA scores.

The module with the highest correlation with immune indicators

was selected as the immune-related genes (IRGs) screened by

WGCNA. To validate the WGCNA-screened IRGs, we used the

“clusterProfiler” and “enrichplot” R packages for KEGG (Kyoto

Encyclopedia of Genes and Genomes) and GO (Gene Ontology)

enrichment analysis to demonstrate the relationship between IRGs

and immunity.

Based on the results of “ConsensusClusterPlus” R package and

ssGSEA, we performed consensus clustering analysis on the samples

in GSE68465. We increased the clustering variable (K) from 2 to 10

and found the optimal K value, which provided the highest intra-

cluster correlation and the lowest inter-cluster correlation. We used

the “survival” and “survminer” R packages for Kaplan-Meier (KM)

analysis of the CRG-related clusters to compare differences in

overall survival (OS). Then, we used the “DeSeq2” R package for

differential analysis of clustering (|log2FC|≥1 and FDR<0.05), and

the analysis result was new IRGs. Subsequently, we used ssGSEA,

Cibersort, and Estimate algorithms to obtain immune scores to

validate the effectiveness of immune clustering.

Next, we obtained 18 cuproptosis genes from the literature and

also performed unsupervised clustering to divide them into two

clusters. We then performed survival, clinical, and immune-related

analysis on the cuproptosis related clusters. The intersection of the

genes selected by the above three methods is the CIRGs.
Establishment and validation of CIRG
prognostic model

Univariate Cox analysis was performed on CIRGs to screen out

genes related to survival with statistical significance (P<0.05). Five

machine learning algorithms, including decision trees, random forests,

LASSO, GBDT, and XGBoost, were used to evaluate the weights of

CIRGs related to survival and calculate their average values. The top

ten genes were selected to construct a LASSO Cox model using the R

package “glmnet”. The best penalty coefficient (l) was selected using

ten-fold cross-validation. All samples were divided into high and low-

risk groups based on the median value of the risk score in the training

set. The high-risk and low-risk groups were analyzed using KM

analysis, and the accuracy of the model was evaluated using ROC

analysis with the R package “timeROC”. Additionally, a heatmap was

used to show the differences in T stage, N stage, sex, and age between

the high-risk and low-risk groups in terms of risk score and clinical

information. Finally, a nomogram combining risk scores and clinical

data was constructed, and correction curves were plotted.
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Analysis of survival and immune infiltration
of OCIRGs

We performed a series of analyses on OCIRGs, which are core

genes used to build our model. First, we selected the optimal

survival-related cut-off value for OCIRG expression using the R

packages “survminer” and “survival”, and analyzed the difference in

survival between patients with high and low expression of OCIRG.

Additionally, we batch-corrected and combined RNA-seq data from

the GSE68465 and TCGA LUAD cohorts, and analyzed whether

OCIRG expression differed between tumor and normal tissues. We

also used CIBERSORT (23)., a tool for analyzing immune cell

infiltration levels through gene expression profiling assessment, to

evaluate the correlation between the expression levels of OCIRGs

and the infiltration levels of various immune cells.
Enrichment analysis related to pathway
and function

GSEA (Gene Set Enrichment Analysis) and GSVA (Gene Set

Variation Analysis) (24) are important tools for enrichment

analysis. In this study, both methods were used to analyze the

pathways and functions associated with the risk model. KEGG

(Kyoto Encyclopedia of Genes and Genomes) enrichment analysis

was performed using GSEA software (version 4.2.3). GO

enrichment analysis evaluates gene molecular function, cellular

components, and biological processes at three levels. Additionally,

GSVA was used to analyze the correlation between risk score and

popular pathways, including Hippo, Wnt, MAPK, PI3K/AKT,

TGF-b, NF-kB, Notch, AMPK, JAK-STAT, PD-1/PD-L1, mTOR,

Ras, TNF, HIF-1, and ErbB.
Exploration of tumor
immune microenvironment

In this study, we explored the role of the tumor immune

microenvironment in cancer by evaluating the level of immune

cell infiltration using various algorithms from TIMER2.0, such as

TIMER, CIBERSORT, QUANTISEQ, MCPCOUNTER, XCELL,

and EPIC. We analyzed the differences in immune cell infiltration

between high-risk and low-risk groups. In addition, we used

ssGSEA to evaluate immune cell infiltration levels and immune

function. We also examined the expression levels of immune

checkpoints and analyzed differences between the high-risk and

low-risk groups

Furthermore, we used the ESTIMATE algorithm to assess the

relationship between tumor purity and risk scores, including

estimated score, immune score, and stromal score. It is important

to note that the tumor immune microenvironment plays a crucial

role in cancer development and treatment. By analyzing immune

cell infiltration levels and immune function, we can better

understand the mechanisms underlying cancer and potentially

develop new treatment strategies.
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Analysis of associations between risk
subtypes and mutational landscapes

We obtained single nucleotide polymorphism (SNP) data of

LUAD from the TCGA database. Using MAFTOOL software, we

displayed the top-ranked mutated gene maps in the high-risk and

low-risk groups, along with their mutation types and frequencies,

and assessed the correlation between mutation counts and risk

scores. Additionally, we analyzed the tumor mutational burden

(TMB) in the high-risk and low-risk populations.
Characterization of OCIRGs by single-cell
RNA sequencing

Single-cell RNA-seq data of 15 LUAD samples were obtained

from GSE131907 in the GEO database. The sequencing data was

analyzed based on the “Seurat” R package, and high-quality cells

were screened out using the “CreateSeuratObject” function, where

“PercentageFeatureSet” was used to calculate the percentage of

mitochondrial genes in each cell. Quality control was performed

according to the following criteria: retained genes were expressed in

at least 3 cells; cells with less than 50 gene expression were

eliminated; the percentage of ribosomal genes was less than 20%.

Normalize the filtered data using the “LogNormalize”method in the

“NormalizeData” function. “FindVariableFeature” was used to

identify highly variable genes, followed by principal component

analysis (PCA) using the “RunPCA” function to reduce the

dimensionality of the single-cell sequencing data based on the top

1500 genes. The “jackstraw” function identified important PCs, and

the top 20 PCs were selected for cell clustering analysis using a

distributed stochastic neighborhood embedding (t-SNE) algorithm.

Cell clusters were tool-annotated using the “FindAllMarkers”

function to calculate the DEG for each cluster.
Immunohistochemistry validation of the
protein expression levels of OCFRGs

Five Lung adenocarcinoma tissue chips were purchased from

Shanghai Outdo Biotech Company (Shanghai, China). Each tissue

chip includes 45 cancer tissues and 45 paracancerous tissues. CD79B

(rabbit polyclonal, catalog number: ab134147, Abcam), PEBP1 (rabbit

polyclonal, catalog number: ab76582, Abcam), PTK2B (rabbit

polyclonal, catalog number: ab32571, Abcam), STXBP1

(rabbit polyclonal, catalog number: ab124920, Abcam): ab126512,

Abcam) and ZNF671 (rabbit polyclonal, catalog number: JP39176,

Product Datasheet). The results of the immunohistochemical staining

were scored. Semiquantitative scoring was performed according to the

staining intensity and the percentage of positive cells: No staining, pale

yellow (light yellow particles), medium (brown yellow particles), and

heavy (dark brown particles) were scored as 0, 1, 2, and 3, respectively.

According to the percentage of positively stained cells in the total

number of cells, 0%was scored as 0, 5% to 25%was scored as 1; 26% to
Frontiers in Immunology 04
50% was scored as 2; 51% to 75% was scored as 3; and >75% was

scored as 4 points. The final score was the sum of the staining intensity

and the percentage of positive cells. The sum of the staining intensity

and the percentage of positive cells was less than 6 for the low

expression group and ≥ 6 for the high expression group. Five 400x

high-power fields were randomly selected for each section, the

staining intensity and percentage of positive cells were scored in

each field, and the average value was calculated. The

immunohistochemical staining results were microscopically

adjudicated by two pathologists in an independent, double-

blind manner.
Quantitative real-time polymerase chain
reaction (qRT-PCR)

Normal lung epithelial cells BEAS-2B cells and four human lung

adenocarcinoma cell lines A549, H1299, PC9, and H23 were

obtained from the Central Laboratory of Shandong Provincial

Hospital. PCR ARRAY was obtained from Shanghai Outdo

Biotech Company (Shanghai, China). Total RNA was extracted

using TRIzol reagent (Invitrogen, USA). Complementary DNA

(cDNA) was synthesized using the PrimeScript RT kit (Takara).
Western blotting

Cells were lysed in cold Radioimmunoprecipitation assay

(RIPA) buffer. The same amount of protein was subjected to

SDS-PAGE, and then transferred to PVDF (polyvinylidene

fluoride) membrane. Block with nonfat dry milk containing TBST

for 1 h. The primary antibody (western blot and IHC universal

primary antibody) was diluted according to the instructions and

incubated overnight at 4°C. After washing with TBST, the

secondary antibody was added and incubated for 1 hour at room

temperature. After washing the membrane, it was developed using

enhanced chemiluminescence (ECL) chromogenic solution.
Transfection of cell lines

CD79B specific siRNA and negative control siRNA for human

were purchased from RiboBio Co. Ltd. (Guangzhou, China). The

siRNA sequences are shown in Supplementary Table S2. RT-qPCR

analysis was performed 72 hours post-transfection to examine the

transfection efficiency.
CCK-8 assay

Cell proliferation was measured using the CCK-8 assay. A549 and

H1299 cells were seeded in 96-well plates, cultured for 0, 24, 48, and

72 h, and incubated with CCK-8 solution for 1h in the dark.

Absorbance values weremeasured at 450 nmusing amicroplate reader.
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Colony formation assay

A549 and H1299 cells were cultured in 6-well tissue culture

plates for 1 week until colonies were formed. Then, the cell colonies

were fixed with 0.5% polyformaldehyde (Servicebio, Beijing, China)

for 25 minutes and stained using 2.5% methylene violet dye for 15

minutes. After washing, the cell colonies were recorded

and counted.
Wound healing assay

In the wound-healing assay, 24-well plates were used to seed

cells. Using a sterile tip, cells were scratched perpendicular to the

previously painted line. After imaging the scratch wounds with a

light microscope, cell migration was measured at time points of 0

and 24 h.
Transwell assay

Transwell assays were conducted with 24-well transwell

chambers to evaluate the cellular invasiveness of A549 and H1299

cell lines. The cells were introduced into upper chambers either with

or without Matrigel in serum-free culture medium. The lower

chambers were supplied with 10% serum-containing culture
Frontiers in Immunology 05
medium (600 ml). After 24 hours, the cells were immobilized

and stained.
Statistical analysis

All statistical tests and bioinformatics analyzes in this study

were completed using R (for version 4.0.1) and GSEA software (for

version 4.2.3). These include the Wilcoxon rank sum test, Pearson

chi-square test, T test, and logarithmic sum test. p<0.05 was

considered statistically significant.
Results

Identification of cuproptosis/immune-
related genes

The specific process of this study is shown in Figure 1. First we

perform WGCNA based on the results of the training set ssGSEA.

Use the “pickSoftThreshold” function in the “WGCNA” R package

to automatically select a soft threshold of 7 (Figure 2A). Multiple

gene modules were divided by a dynamic cutting method, and then

all modules were clustered using the “mergeCloseModules”

function to obtain the final module (Figure 2B). We used Pearson

correlation analysis and selected the most correlated module as
FIGURE 1

Work flow of the study. This figure shows the construction process and subsequent analysis of the CIRG model. *P<0.05, **P<0.01, ***P<0.001.
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“yellow” (Figure 2C), which contained a total of 1090 immune-

related genes. To prove the correlation between “yellow” module

genes and immunity, we used KEGG and GO databases to conduct

enrichment analysis on them. KEGG results show that the “yellow”

module genes are mainly enriched in Primary immunodeficiency,

Antigen processing and presentation, Cell adhesion molecules,

Chemokine signaling pathway, Phagosome, Intestinal immune

network for IgA production, Inflammatory bowel disease, B cell

receptor signaling pathway, Th17 cell Differentiation, NF−kappa B

signaling pathway, Natural killer cell mediated cytotoxicity, Th1

and Th2 cell differentiation, Cytokine−cytokine receptor interaction

and other functions and pathways (Figure S1). The results of GO are

positive regulation of leukocyte activation, regulation of leukocyte

cell−cell adhesion, regulation of T cell activation, mononuclear cell

differentiation, leukocyte mediated immunity, leukocyte cell−cell

adhesion, immune response−regulating signaling pathway, T cell

activation MHC protein complex, MHC class II protein complex
Frontiers in Immunology 06
binding, MHC protein complex binding, cytokine receptor activity,

immune receptor activity (Figure S2).

We performed unsupervised clustering of the 443 LUAD

samples in GSE68465 to obtain subgroup types associated with

the ssGSEA data. Evaluate the cluster value (K) is 2-10 results. The

results showed that when K = 2, the within-group relationship was

strongest and the cluster stability of each group was the best

(Figure 2D). Furthermore, to further explore immune-related

clusters, we validated them with various immune-related

algorithms. In the ssGSEA algorithm, cluster2 is in aDCs, B cells,

CD8+ T cells, DCs, iDCs, Macrophages, Mast cells, Neutrophils,

pDCs, T helper cells, Tfh, Th1 cells, TIL, Treg, APC co inhibition,

APC co stimulation, The scores of CCR, Check-point, Cytolytic

activity, HLA, Inflammation-promoting, Parainflammation, T cell

co-inhibition, T cell co-stimulation, Type I IFN Reponse, and Type

II IFN Reponse were all higher than cluster1 (Figure 2E), There is a

statistical difference (p<0.05). In the Estimate algorithm, the
A

B

D E

F G

C

FIGURE 2

CIRG were screened by WGCNA. (A) The distribution and trends of the scale free topology model fit and meanconnectivity along with soft
threshold. (B) The clustering of genes among different modules by the dynamic trees cut andmerged dynamic method. The gray modules represent
unclassified genes. (C) Average correlation between multiplemodules and tumor development, levels of immune cell infiltration. The color of the cell
indicates the strength of thecorrelation and the number in parentheses indicates the P-value for the correlation test. (D) Consensus clustering matrix
with K-2:443 lung adenocarcinoma patient were divided into two cuproptosis-related cluster. (E–G) Different sis of immune fractions in SSGSEA,
Estimate. Cibersort in immune-related clusters. *P<0.05, **P<0.01, ***P<0.001.
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immune score of cluster2 was higher than that of cluster1

(Figure 2F), which was statistically significant (p<0.001). In

addition, in the Cibersort algorithm, the infiltration levels of

memory B cells, monocytes, resting dendritic cells, and resting

mast cells in cluster C2 were higher than those in C1, and there was

a statistically significant difference (p<0.05, Figure 2G). Differential

analysis was performed on the clusters related to IRG, and 5098 new

IRGs were screened (|logFC|≥1, p<0.05).

Screening of CRGs is still obtained by unsupervised clustering.

At this time, the stability of clustering is the best when K=2 (Figure

S3). The copper death-associated clusters differed in survival

(Figure 3A), and the expression of copper death genes differed

between the two clusters (Figure 3B). CRGs-related clusters differed

in the abundance of immune cell infiltrates (Figure 3C). Differential

analysis was performed on the clusters related to CRGs, and 7275

CRGs were screened out (|logFC|≥1, p<0.05). A total of 386 CIRGs

were obtained by intersecting the genes screened by the above

method (Figure 3D).
Development of the CIRG model

Univariate cox analysis was used to evaluate CIRGs associated

with survival (Figure 4A). Based on five machine learning
Frontiers in Immunology 07
algorithms, the weights associated with CIRG survival were

evaluated and the top ten genes (Table 1) were used to construct

the LASSO cox model (Figures 4B, C). The risk score is calculated as

follows:

Risk score = −0:1016 ∗CD79B exp:ð Þ + −0:2292 ∗ PEBP1 exp:ð Þ
+ −0:2188  ∗  PTK2B exp:ð Þ
+ −0:1128  ∗  STXBP1 exp:ð Þ
+ −0:1204  ∗  ZNF671 exp:ð Þ

The median risk score of the training set samples was used as a

cutoff value to divide all patients into high-risk and low-risk groups

(Figure 4D). High-risk patients had significantly shorter survival

time and higher mortality (Figure 4E), and the high-risk and low-

risk groups were well separated (Figure S4-5). KM analysis showed

that there was a significant difference in survival between the high-

risk and low-risk groups in the training set (p<0.001), and the

survival of high-risk patients was significantly shortened

(Figure 4F). Furthermore, from the results of the ROC analysis,

the AUC values at 1 year, 3 years, and 5 years were 0.751, 0.705, and

0.669, respectively (Figure 4G). Through cox analysis, we found that

age (HR=1.032, 95% confidence interval (CI)=1.018-1.046,

p<0.001), T stage (HR=1.955, 95% confidence interval (CI)
A B

DC

FIGURE 3

Co-screening ofCIRGS by WGCNA and cuproptosis clustering. (A) Kaplan-Meier survival curves for patients in the two clusters. (B) Differences in the
expression of cuprotosis-related genes between the two clusters. (C) CRGs-related clusters differed in the abundance ofimmune cell infiltrates.
(D) Through WGCNA SSGSEA. unsupervised clustering and other algorithms, a total of 386 CIRGs was obtained. *P<0.05, **P<0.01, ***P<0.001.
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FIGURE 4

Development of risk profiles in LUAD patients collected from the GEO cohort GSE68465. (A) Univariate Coxregression of 44 GIRGs in LUAD.
(B) LASSO regression of the top 10 CIRGs with survival weights screened by machine learning. (C) Cross-validation in the LASSO regression for
optimizing parameter selection. (D) Distribution of LUAD patients based on risk scores. (E) Distributions of OS status, OS and risk scores. (F) KM
curves for OS of LUAD patients in different clusters. (G) ROC curves of this signature.
TABLE 1 The quantified importance of prognostic cuproptosis/immune-related messenger genes by machin learning.

Decision Tree LASSO Random Forest GBDT XGBoost AVG

CD163 0.032805 0.212120 0.055783 0.118056 0.026271 0.089007 (1)

CD79B 0.018490 0.095986 0.032053 0.072803 0.016091 0.047084 (2)

STXBP1 0.020378 0 0.065696 0.088047 0.026053 0.040034 (3)

ZNF671 0.015497 0.090091 0.038642 0.027597 0.011142 0.036594 (4)

PEBP1 0.052572 0.032980 0.027951 0.049932 0.012401 0.035167 (5)

GDF15 0.024313 0.034979 0.058619 0.030896 0.023375 0.034437 (6)

PTK2B 0.009227 0.112742 0.017402 0.014422 0.013358 0.033430 (7)

ACTR3B 0.019116 0.060720 0.014346 0.045244 0.014739 0.030833 (8)

ATXN1 0 0.041379 0.038957 0.032762 0.023866 0.027393 (9)

LY9 0.026432 0.047058 0.009882 0.027525 0.023154 0.026810 (10)
F
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The number in the parentheses represented the rankings of weight.
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=1.170-1.712, p < 0.001), N stage (HR=1.415, 95% confidence

interval (CI)=1.658-2.304, p<0.001), risk score (HR=2.656, 95%

confidence interval (CI)=1.609-4.386, p<0.001) is an independent

prognostic factor (Table 2).
Validation of prognostic models and
analysis of clinical characteristics

Three cohorts were selected as the verification set, and KM

analysis showed that the survival of the TCGA cohort, GSE72094,

and GSE37745 middle- and high-risk groups was lower than that of

the low-risk group (Figure 5A), and there were statistical differences

(TCGA: p<0.001, GSE72094: p<0.001, GSE72094: p<0.001) 0.001,

GSE37745: p=0.013). In addition, it was verified that the ROC

curves performed well (Figure 5B). The results of Chi-square test

showed that patients with later T stage and N stage had higher risk

scores. The Sankey diagram showed that the survival status of

patients with advanced stage was worse, and the proportion of dead

patients was higher. We constructed a nomogram, in which T stage

(p<0.001), N stage (p<0.001), age (p<0.001), riskscore (p<0.01) were

all statistically significant (Figures 5E, F).
Validation of OCIRGs

We performed further analyzes on the genes that built the model.

KM analysis showed that when OCIRG was highly expressed, the

survival time of patients was shorter when the expression was lower

(Figure 6A). Wilcoxon rank sum test showed that the expression of

CD79B in OCIRG in LUAD was higher than that in normal tissues,

and that of PEBP1, PTK2B, STXBP1, and ZNF671 was vice versa

(Figure 6B). In terms of immune cell infiltration, the expression level

of CD79B (Figure 6C) had the highest positive correlation with the

infiltration level of B cells memory (R=0.38, p<0.001), and the

highest negative correlation with Follicular helper T cell (R=-0.23,

p <0.001). The expression level of PEBP1 (Figure 6D) had the highest

positive correlation with resting mast cells (R=0.21, p<0.001), and

the highest negative correlation with activated memory CD4 T cells

(R=-0.3, p<0.001). The expression level of PTK2B (Figure 6E) had

the highest positive correlation with memory B cells (R=0.29,

p<0.001), and the highest negative correlation with activated

dendritic cells (R=-0.16, p<0.001). The expression level of STXBP1

(Figure 6F) had the highest positive correlation with resting dendritic
Frontiers in Immunology 09
cells (R=0.28, p<0.001), and the highest negative correlation with

Macrophages M1 (R=-0.32, p<0.001). The expression level of

ZNF671 (Figure 6G) had the highest positive correlation with

gamma delta T cells (R=0.18, p<0.001), and the highest negative

correlation with activated NK cells (R=-0.19, p<0.001).
Enrichment analysis associated with
risk subtypes

According to the biological analysis of GSEA software, CELL

CYCLE, CITRATE CYCLE TCA CYCLE, MISMATCH REPAIR,

P53 SIGNALING PATHWAY were active in the high-risk group,

and B CELL RECEPTOR SIGNALING was active in the low-risk

patients (Figure 7A). GO functional analysis mainly involves

chromosomes, mitosis and other functions (Figure 7B). The

results of GSVA enrichment analysis showed that CELL CYCLE,

DNA REPLTCATION, etc. were enriched in the high-risk group,

and INTESTINAL IMMUNE NETWORK FOR IGA

PRODUCTION, TYROSINE METABOLISM, ARACHIDONIC

ACID METABOLISM, etc. were enriched in the low-risk group

(Figure 7C). In addition, TNF, ErbB, HIF-1, JAK-STAT, Ras, PD-1/

PD-L1, MAPK, Wnt, Hippo pathways, etc. were all correlated with

the risk score (Figure 7D).
Analysis of risk subtypes and
tumor immunity

Analysis of the TIMER database showed that there were

differences in the abundance of immune cell infiltration in the

high- and low-risk groups, and the infiltration of CD8+ T cells, T

cells, B cells, Neutrophil, and Myeloid dendritic cells in the low-risk

group was significantly higher than that in the high-risk group

(Figure 8A). As for the results of ssGSEA, it is divided into two

parts: immune cells and immune function. The infiltration

abundance of aDCs, B cells, CD8+ T cells, iDCs, Macrophages,

Mast cells, Neutrophils, pDCs, T helper cells, Tfh, Th1_cells, TIL, T

reg in the low-risk group was higher, only DCs in the high-risk group

Infiltration levels were high in the risk group (Figure 8B), while in the

low-risk group, APC co-stimulation, CCR, Check−point, Cytolytic

activity, HLA, Inflammation−promoting, Parainflammation, T cell co

−inhibition, T cell co− The levels of stimulation, Type I IFN

Response, and Type II IFN Response were higher (Figure 8C), and
TABLE 2 Independent analysis of training set patients.

Characteristics
Univariate Multivariate

HR 95%CI P HR 95%CI P

Age 1.026 1.013-1.040 <0.001 1.032 1.018-1.046 <0.001

T stage 1.654 1.376-1.987 <0.001 1.955 1.170-1.712 <0.001

N stage 1.993 1.694-2.344 <0.001 1.415 1.658-2.304 <0.001

Risk score 3.020 2.013-5.071 <0.001 2.656 1.609-4.386 <0.001
frontie
HR, hazard ratio; CI, confidence interval.
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all of them were statistically significant. In terms of immunotherapy,

many immune checkpoints, including PD1 (PDCD1), were highly

expressed in the low-risk group by Wilcox test analysis (Figure 8D).

Subsequently, the correlation analysis between tumor purity and risk

score showed that the immune scores ImmuneScore (R=-0.29) and

StromalScore (R=-0.22) and the comprehensive score

ESTIMATEScore (R=-0.27) were negatively correlated with the risk

score, and there was a statistical academic significance (Figure 8E).
Mutation landscape analysis

Analysis of gene mutation status in the high- and low-risk

groups showed that the mutation frequencies of TP53, TTN,
Frontiers in Immunology 10
MUC16, and CSMD3 in the high-risk group were higher than

those in the low-risk group (Figures S6, 7). Mutations include

synonymous mutations and non-synonymous mutations, and the

number of mutations of the three are positively correlated with the

risk score, and there is a statistical difference (Figures S8-10).
Overview of the scRNA-seq data generated
from LUAD

We obtained single-cell sequencing data for 12 samples from

GSE168410. A total of 57223 cells were obtained by screening the

total cells according to the intracellular gene features, the percentage

of chromosome genes, etc. A total of 26 cell clusters were obtained
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FIGURE 5

Validation of risk models, prognostic clinical value and nomogram. (A) Survival curves of high and low risk group in the validation set (TCGA cohort,
GSE37745). (B) AUC values of ROC curves for risk scores in the validation set (TCGA cohort, GSE72094, GSE37745). (C) Different stratification of
clinical phenotypes in the high- and – low-risk groups. (D) Connection among the risk subtypes, vital status, T stage and N stage stratification.
(E) Nomogram for 1-3,and 5-years overall survival prediction. The red line show an example of how to predict the prognosis. (F) Calibration plots for
agreement tests between predicted and actual OS. *P<0.05, **P<0.01, ***P<0.001.
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(Figure 9A). We used tools to annotate the cell subsets, namely, T

cells, NK cells, Macrophage, Epithelial cells, B cells, Smooth muscle

cells, Monocyte, Endothelial cells (Figure 9B). To investigate the

expression of marker genes in different cells, we visualized them

with t-SNE and violin plots (Figures 9C, D). CD79B was highly

expressed in B cells, while PEBP1 was highly expressed in various

types of cells in the tumor microenvironment.
Verification of OCIRGS expression

For the expression of OCIRGs, we have conducted a series of

experimental verification. The results of immunohistochemicals show

that the expression of CD79B and PTK2B in lung adenocarcinoma is

higher than tissue next to cancer. PEBP1 and STXBP1 are opposite,

while Znf671 has no difference in expression next to tumors and

cancer (Figure 10A). Then Western bloting is the same as IHC

expressed in normal lung epithelial cell BEAS-2B and non-small cell

lung cancer cells A549, H1229, PC9, and H23 (Figure 10B).

In order to further verify, we conducted PCR experiments using

cells and tissues, and the results obtained are still the same as the

above experiments (Figures 10C, D).
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Functional assessment of CD79B in vitro

In A549 and H1299 cell lines, the expression level of CD79B was

significantly reduced after knockdown of CD79B mRNA

(Figure 11A; ***P<0.001, **P<0.01). The activity of pancreatic

cancer cells was also significantly reduced after CD79B

knockdown in A549 and H1299 cell lines (Figure 11B;

***P<0.001, **P<0.001). Subsequently, colony formation analysis

showed that the ability of A549 and H1299 cell lines to form

colonies was significantly increased after CD79B knockdown

(Figure 11C; **P<0.01, **P<0.01). The migration ability of A549

and H1299 cell lines in wound healing experiments was

significantly increased after CD79B knockdown (Figure 11D;

**P<0.01, *P<0.05). Knockdown of CD79B significantly reduced

the invasive ability of A549 and H1299 cell lines (Figure 11E;

**P<0.01, ***P<0.001) in transwell experiments.
Discussion

In the past ten years, humans have made many breakthroughs

in lung cancer research, and targeted drugs and immunotherapy
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FIGURE 6

Validation of OCIRGS. (A) Kaplan-Meier curves of OS for high- and low-risk patients in the training sets and merged validation sets. (B) Expression
changes of OCIRGS between normal and tumor tissues. (C–G) Associations between OCFRGs and immune-infiltrating levels. The color represents
the significance. The greener, the more significant. The circle size represents the correlation coefficients.
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drugs have been continuously updated. The multidisciplinary

treatment model and new therapeutic drugs have brought new

hope to the treatment of lung cancer (25). However, the survival

time of lung cancer has not improved significantly. The high

mortality rate of lung cancer is still a difficult problem to solve.

We still need to explore new robust markers to guide clinical

treatment decisions. In 2022, cuproptosis was first proposed as a

new cell death mode related to TCA cycle (26, 27). The emergence

of cuproptosis has brought a new research direction to the

treatment of tumors, and immunity is undoubtedly the focus of

tumor research, and there is a certain relationship between the two.

In addition, previous studies have not analyzed the two together. To

address the shortcomings of previous studies, this study

innovatively associates cuproptosis with immune function. By

analyzing the CIRG-related prognosis model using bioinformatics

methods, the study evaluates the value of prognosis and immune

therapy for LUAD patients. The results show that the prognosis

model related to copper death and immune function can accurately

predict the prognosis and level of lung cancer immune

cell infiltration in LUAD patients. In addition, this model

can guide clinicians to make personalized treatment decisions

and provide a basis for the study of lung adenocarcinoma and

tumor microenvironment.

In this study, we screened and analyzed 5 OCIRGs (CD79B,

PEBP1, PTK2B, STXBP1, ZNF671), and further analyzed the

prognosis model constructed for OCIRGs. This includes analysis of

the tumor immune microenvironment, enriched functional pathways

in the risk subtypes, and analysis of OCIRGs in single-cell sequencing.
Frontiers in Immunology 12
CD79b Molecule (CD79B) is a critical component of the B cell

receptor complex, which can recognize antigens and affect the growth

and differentiation of B cells by activating an internal signaling

pathway. CD79B, along with CD79A, IgH, and IgL chain molecules,

forms a complex that participates in the activation of the B cell receptor

(BCR) signaling pathway (28, 29). CD79B plays different roles in

different lymphoma types. In mucosa-associated lymphoid (MALT)

lymphoma, the chronic activation of the CD79B/BTK pathway

enhances the proliferation of lymphoma cells (30). In diffuse large B-

cell lymphoma, it increases cell proliferation, survival, and invasion

capabilities and is widely mutated (30, 31). Polatuzumab (32, 33), an

antibody drug conjugates(ADC) antibody drug targeting CD79B, binds

to the CD20 antigen, inhibiting B cell growth and proliferation in the

CD79B region, and has been proven to have therapeutic effects in

specific types of lymphomas, such as DLBCL and EMZL refractory or

relapsed cases. Therefore, CD79B may become a biomarker for

lymphoma and provide valuable assistance for early prediction,

diagnosis, and treatment of lymphoma. Currently, there is no in-

depth study of the biological mechanism of CD79B in lung cancer. This

study’s results show that CD79B is highly expressed in LUAD and is

associated with a good prognosis. In addition, the expression level of

CD79B is positively correlated with the abundance of memory B cell

infiltration, confirming their close association in LUAD. As a tumor

suppressor gene, when the expression of CD79B decreases, the vitality,

proliferation, migration, and invasion capabilities of non-small cell lung

cancer cells increase, indicating that CD79B may have some biological

significance in tumor treatment and is worth studying further.

Phosphatidylethanolamine Binding Protein 1 (PEBP1) is a critical
A B
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FIGURE 7

Biological functions. (A) Significant enriched pathways in the high- and low-risk groups. The extremum located in the left part indicates a positive
association between risk scores and pathway activity, and vice versa. (B) Barplot graph for GO enrichment, with bar length representing the degree
of enrichment and color representing the degree of difference. (C) There were significant differences in pathways between high and low risk groups.
The blue bars represent a positive correlation between risk scores and pathway activity, and the opposite is true for yellow bars. (D) Correlations
between Riskscore and important pathways in tumors.
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protein in various biological processes. Studies have shown that PEBP1

is closely related to the occurrence, metastasis, and prognosis of various

cancers. In non-small cell lung cancer (NSCLC), PEBP1 has been

proven to be one of the key proteins regulating the proliferation and

metastasis of lung cancer cells. Its functionmainly involves affecting the

tumor’s radiosensitivity (34), regulating JAK/STAT3 (35), inhibiting

NF-kB (36), controlling the TGF-b of cells and inhibiting (36) MAPK/

ERK signaling pathways (37). In NSCLC, the expression level of PEBP1

is closely related to the severity of lung cancer and patients’ prognosis.

Overexpression of PEBP1 can significantly inhibit the proliferation,

migration and invasion of lung cancer, reduce tumor size, and the

probability of distantmetastasis (38). In addition to lung cancer, PEBP1

plays a regulatory role in multiple cancers such as breast cancer (39,

40), prostate cancer (41) and ovarian cancer (42). Downregulation of

PEBP1 expression can promote tumor development and metastasis,

while overexpression of PEBP1 can inhibit tumor metastasis and is of

significant importance for patients’ prognosis and treatment. In

immune infiltration analysis, the expression of PEBP1 is positively

correlated with quiescent mast cells, which may be related to PEBP1’s
Frontiers in Immunology 13
negative regulation of mast cell activation. Protein Tyrosine Kinase 2

Beta (PTK2B) is a tyrosine kinase protein that plays a very important

role in cell growth, apoptosis, and signal transduction (43). Recent

studies have shown that PTK2B plays an important role in many

cancers. In non-small cell lung cancer (NSCLC), PTK2B activation can

cause many cellular biological processes, including proliferation,

differentiation, migration, invasion, and apoptosis (44–46). In

addition to lung cancer, PTK2B also plays different roles in other

types of cancers. In breast cancer (47), PTK2B overexpression is

associated with tumor growth and recurrence, playing a role in

countering BMP, a protein that controls cell growth and

differentiation. In liver cancer (48, 49), PTK2B expression is

associated with tumor invasion behavior and poor prognosis.

Database analysis has also shown high expression of PTK2B in lung

adenocarcinoma tissue, which is correlated with a good prognosis.

Immune infiltration analysis shows that PTK2B expression is positively

correlated with the abundance of memory B cell infiltration. Studies

have also shown that PTK2B phosphorylation is critical for TLR9-

driven B cell proliferation and differentiation, thereby affectingmemory
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FIGURE 8

Immune-related analysis. (A) The relationships of risk and tumor immune-infiltrations according to the evidence from the TIMER database. (B, C) The
differences of tumor infiltrating of 16 cell types and score of immune pathways between the risk groups by ssGSEA. The lines in the boxes represent
the median values. The black dots represent outliers. Asterisks indicate significance. (D) The differences of expression level of immune checkpoints
between the high-and-low-risk subtypes. The lines inside the boxes represent the median values, and the lines outsides the boxes indicate the 95%
confidence interval. (E) The correlation between tumor purity and risk scores. The blue lines represent ftted lines, and the gray area represents the
95% confidence interval. The mountain graphs at the top and stuck to the right represent the density of distribution. *P<0.05, **P<0.01, ***P<0.001.
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B cell infiltration abundance. Syntaxin Binding Protein 1 (STXBP1) is

an important protein that mainly participates in regulating the fusion

of intracellular granule membranes and plays a role in the cell’s killing

function and immune regulation processes (50). It is one member of

the Munc protein family, widely present in eukaryotic cells, and

participates in the fusion and release processes of granule

membranes (50). STXBP1 plays a crucial role in tumor cell killing

and granule cell granule membrane fusion. In addition, abnormal

expression of STXBP1 also plays an important role in many diseases. It

has been reported that STXBP1 is highly expressed in LUAD (51),

which is different from this study’s results. This study analyzed and

experimentally verified the LUAD data from TCGA and GEO

databases, and the results showed that STXBP1 was lowly expressed

in tumors. Taken together, it may be due to the different sample sizes

selected by the two studies or the different treatment methods included

in the samples. Zinc Finger Protein 671 (ZNF671) is a zinc finger

transcription factor gene that belongs to the KRAB-ZF transcription

family (52). During cell development, this gene participates in many

important biological processes by binding to specific sequences on

DNA. Previous studies have shown that ZNF671 is a tumor suppressor

gene that is silenced by epigenetic modifications (53). This gene has

different functional states in different cancer types, including apoptosis,

cell cycle, DNA damage and repair, anaerobic conditions,

inflammation, invasion and metastasis, proliferation, and stemness.

Recent studies have found that the expression level of ZNF671 in non-

small cell lung cancer is associated with an increased risk of disease
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progression and metastasis (54). ZNF671 can suppress the growth and

spread of lung cancer by inhibiting the Wnt/b-catenin signaling

pathway (54). The Wnt/b-catenin signaling pathway is a complex

cellular signaling pathway that participates in regulating cell fate,

proliferation, differentiation, and cell polarity, among other processes.

The pathway is closely related to the occurrence and development of

lung cancer. ZNF671 plays an important role in regulating this

signaling pathway, and its regulatory mechanism may involve the

participation of multiple molecules and signaling pathways. ZNF671

expression is significantly correlated with the prognosis of LUAD, but

its expression does not differ significantly between normal and tumor

tissues. The results on the training set are not statistically significant.

Then we analyzed the TCGA LUAD dataset, which showed that

ZNF671 was downregulated in tumor tissues compared to normal

tissues, with statistical differences, but the difference was not significant

(p=0.04). In addition, both cell-level and tissue-level experimental

results were not significant. In conclusion, there should be no

difference in the expression of ZNF671 between normal and tumor

tissues.The proportional hazards regression model in this study was

also constructed based on the above five OCIRGs. Through functional

analysis, it can be found that cell cycle, citrate cycle tca cycle, mismatch

repair, p53 signaling pathway, etc. are active in the high-risk group, and

only B cell receptor signaling_pathway plays a greater role in the low-

risk group. Among them, cell cycle is mainly related to tumor cell

proliferation (55, 56), and enrichment in high-risk groups will increase

risk factors. The TCA cycle is the hub of energy metabolism (57, 58)
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FIGURE 9

Verification of OCIRGs through sc-RNA seq. (A, B) tSNE plots of cells generated from LUAD tissue. The plots are colored by cell cluster, and the cells
are clustered into 8 sub-clusters. Each dot represents a LUAD cell. (C) The expression of signature genes in LUAD visualized in tSNE. (D) Violin plots
depicting the expression of signature genes in clusters of LUAD. The y axis shows the normalized read count. t-SNE:t-distributed stochastic
neighbor embedding.
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and is directly related to cuproptosis. In addition, when the expression

of tumor suppressor genes and oncogenes of cancer cells is out of

regulation, they will rely heavily on TCA cycle for energy metabolism,

and the maintenance of TCA cycle can promote cancer metastasis (59).

DNA mismatch repair (MMR) maintains genome stability, as gene

mutations can promote cancer initiation and progression (60, 61). In

addition, the risk score was positively correlated with scores of

pathways such as TNF, ErbB, and HIF-1, and negatively correlated

with scores of signaling pathways such as JAK-STAT, Ras, PD-1/PD-

L1, MAPK, Wnt, and Hippo. The obtained results can also be used in

subsequent studies of models and pathways.

Through the different algorithms of TIMER and ssGSEA,

consistent results were obtained, and the infiltration abundance of

most immune cells in the high-risk group was lower. This also
Frontiers in Immunology 15
confirmed the poor prognosis of the high-risk group from the side.

Immune checkpoints and TMB are important tumor immunotherapy

markers. The results obtained in this study show that the expression of

immune checkpoints in the high-risk group is lower than that in the

low-risk group, and most importantly, PD1, a clinically applied

marker, is also included. The opposite results were obtained for

TMB, with higher TMB in the high-risk group, and a high TMB

indicating that patients responded better to immunotherapy.

Considering that the human body is a huge system with complex

regulatory mechanisms, further research is needed.

scRNA-seq analysis showed that PEBP1 was highly expressed in

various cells in the tumor microenvironment, including T cells, NK

cells, Macrophage, Epithelial cells, B cells, Smooth muscle cells,

Monocyte, and Endothelial cells. Therefore, we speculate that there
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FIGURE 10

Verification of OCIRGS expression. (A) IHC verification of the expression level of OCIRGS in the LUAD tissue and surrounding tissue. (B) Western
Bloting verifies the expression of OCIRGS in 1 normal cell strain and three types of LC cells. (C, D) PCR verification OCIRGS’s expression level.
*P<0.05, **P<0.01, ***P<0.001.
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is an important relationship between the expression of PEBP1 and

immune activation and immune microenvironment. On the other

hand, CD79B is highly expressed in B cells, which is also consistent

with previous reports.
Conclusion

In this study, we screened genes in LUAD using bioinformatics

and machine learning methods, and picked out 5 OCIRGs to build a

prognosis model. Using this model, the prognosis and abundance of
Frontiers in Immunology 16
immune infiltrates in LUAD patients can be accurately predicted.

Based on this model, it can guide clinicians to make personalized

treatment decisions, and also provides an important basis for the

study of LUAD and tumor microenvironment.
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FIGURE 11

Validates the role of the key gene CD79B in lung cancer cell lines in vitro. (A) Knockdown of CD79B significantly reduced its expression in A549 and
h1299 cell lines (**P<0.01, **P<0.001). (B) After CD79B knockdown in A549 and H1299 cell lines, the activity of lung adenocarcinoma cells was
significantly enhanced (**P<0.01, *** (P<0.001). (C) Clonogenic assays showed a significant increase in the ability of A549 and H1299 cell lines to
form colonies after CD79B knockdown (**P<0.01). (D) The si-NC group in the wound healing experiment of A549 and H1299 cell lines showed
weaker migration ability than the si-CD79B group (*P<0.05, **P<0.01). (E) Knockdown of CD79B enhanced the invasion ability of A549 and H1299
cell lines (**P<0.01, *** (P<0.001).
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