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Primary liver cancer (PLC) is one type of cancer with high incidence rate and high

mortality rate in the worldwide. Systemic therapy is the major treatment for PLC,

including surgical resection, immunotherapy and targeted therapy. However,

mainly due to the heterogeneity of tumors, responses to the above drug therapy

differ from person to person, indicating the urgent needs for personalized

treatment for PLC. Organoids are 3D models derived from adult liver tissues or

pluripotent stem cells. Based on the ability to recapitulate the genetic and

functional features of in vivo tissues, organoids have assisted biomedical

research to make tremendous progress in understanding disease origin,

progression and treatment strategies since their invention and application. In

liver cancer research, liver organoids contribute greatly to reflecting the

heterogeneity of liver cancer and restoring tumor microenvironment (TME) by

co-organizing tumor vasculature and stromal components in vitro. Therefore,

they provide a promising platform for further investigation into the biology of

liver cancer, drug screening and precision medicine for PLC. In this review, we

discuss the recent advances of liver organoids in liver cancer, in terms of

generation methods, application in precision medicine and TME modeling.
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Introduction

Primary Liver cancer (PLC) is the third leading cause of cancer

death worldwide, only behind lung cancer and colorectal cancer

(CRC). In 2020, approximately 906,000 new cases and 830,000

deaths were recorded (1). Hepatocellular carcinoma (HCC) makes

up 80% of PLC, followed by intrahepatic cholangiocarcinoma

(iCCA, 10%) and other rare types (2). The main risk factors

causing PLC are infection with hepatitis B virus (HBV), or

hepatitis C virus (HCV), alcohol abuse, non-alcoholic fatty liver

disease, dietary exposure to aflatoxin B etc. (3–5). Due to the strong

compensation ability and large functional reserve of liver, nearly

half of patients are in advanced stage of HCC once diagnosed and

may lose the chance to receive conventional therapy, including

radical resection and ablation (6). Although advanced-stage HCC

can benefit from systemic therapy including targeted therapy and

immunotherapy, choices are quite limited. Sorafenib, a multikinase

inhibitor, remained the solely first-line option for nearly a decade

until IMbrave 150 trial demonstrated an improvement in overall

survival with atezolizumab plus bevacizumab (19.2 months versus

13.4 months) (7–9). However, there is still insufficiency of global

understanding of immune checkpoint inhibitor resistance (10).

Considering that PLCs are tumors with high intra-tumor

heterogeneity and complex TME, the key to implement precision

medicine in PLC treatment is to utilize reasonable pre-clinical

models, which could recapitulate the molecular and structural

features of patients’ tumor. Hence, high throughput screening

(HTS), drug screening, and novel biomarkers exploration could

be achievable and extensively promoted.

Another question emerging in current research is that tumor

cells are not alone. They communicate with other cells in the niche,

relying on cytokines and stromal components in the environment

for survival and invasion (11). The conventional 2D cell model

grows as a monolayer with a completely distinct cell-cell interaction

pattern and cell-stromal relationship due to loss of polarity, altered

gene expression profiles, disturbed signaling pathways, histological

architecture etc. (12, 13) Thus, 2D models can’t maintain the

pristine niche of primary tumors (14, 15). By contrast, 3D

patient-derived organoids (PDOs) could provide a reasonable

answer to the two questions above. In this review, we summarize

different methods to generate liver organoids and the applications

of PDOs in precision medicine of liver and TME research.
Generation methods of
liver organoids

The term “organoid” is clearly defined as “a 3D structure derived

from (pluripotent) stem cells, progenitor, and/or differentiated cells

that self-organize through cell-cell and cell-matrix interactions to

recapitulate aspects of the native tissue architecture and function in

vitro” (16). According to different origins, there are generally two

major kinds of liver organoids, liver tissue-derived organoids and

pluripotent stem cell−derived organoids.
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Liver tissue-derived liver organoids

Early in 2015, Huch et al. established the first human liver

organoids from adult bile duct-derived bipotent progenitor cells,

which could expand and differentiate into functional hepatocytes

with stable genetic and chromosomal features (17). However,

compared with these intrahepatic cholangiocyte derived organoids

(iCD) which have bipotent differentiation capacity, extrahepatic

cholangiocyte derived organoids (eCD) can only differentiate

towards a cholangiocyte fate (18, 19). The region-specific

differentiation potential of these two types of organoids indicates

that generation of liver organoids needs tissue-specific source of

cells. Besides, fetal hepatocytes share closer relationship with three-

dimensional liver bud than adult cells (20) and can also be utilized

for long-term expansion into organoids (21). What’s more, tumor

organoids (tumoroids) have been recently developed and

extensively applied into basic research (22). Broutier et al. are the

first to generate human primary liver cancer–derived organoids

from surgical resected tumor tissues (23). Needle biopsy is another

method with equivalent practical value as well (24). Recently,

Narayan et al. established fibrolamellar carcinoma organoids from

resection or biopsy derived primary and metastatic tissues for

investigation of this rare and lethal kind of HCC frequently

occurring in adolescents (25). In addition, liver tumoroids can

also be obtained from iPSC-derived liver organoids by

overexpression of a oncogene, c-myc (26).

Aside from human cell-derived organoids, murine liver

organoids have been studied for a long time. Isolated Lgr5+ cells

from damaged mouse liver biliary ducts carry the hallmarks of

bipotent liver progenitors. Therefore, these cells can be expanded

into organoids by coculturing in the medium based on Rspo1,

which is a key activator of Wnt signaling, a crucial pathway for cell

self-renewal and development (27). Recently, murine hepatocyte-

derived organoids were successfully constructed to mimic the

regenerative responses during liver injury (21). Moreover, Cao

et al. reported the establishment of primary mouse liver tumor

cell-derived organoids for tumorigenesis research and drug

screening (28).

To sum up, generation of organoids from tissues usually

involves two basic steps, isolation of single liver cells and seeding

of cells into culture medium (15). (Figure 1A) Commonly added

elements include AdDMEM/F12, N2/B27 supplement, N-

Acetylcysteine, gastrin, multiple growth factors (epidermal growth

factor, fibroblast growth factor, hepatocyte growth factor), RSPO1,

A83-01, FSK etc. (29, 30) (Table 1).
Pluripotent stem cell-derived
liver organoids

Pluripotent stem cells used to generate organoids include

embryonic stem cells (ESCs) and induced pluripotent stem cells

(iPSCs). ESCs are obtained from the inner cell mass of blastocyst

and can be conditioned into hepatocytes in vitro. However, there

exists multiple concerns about the use of ESCs, including ethical
frontiersin.org
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problems, risk of teratoma formation and tumorigenicity (31),

which constrains its application in the clinical setting. iPSCs,

however, have been widely investigated in research as an

alternative to ESCs, due to the lack of ethical controversy and its

compatibility with human body when used as autologous grafts.

Early in 2011, Amimoto et al. developed the hollow/organoid

culture method to induce the hepatic differentiation of murine ESCs

and iPSCs, and obtained cylindrical organoids with high cell density

but poor hepatic functions and gene expression profiles (32). To

improve, by using Nanopillar Plate, PSC-derived functional

hepatocytes assembled into 3D spheroids with good prediction

value for drug hepatotoxicity (33). Shortly afterwards, by

coculturing iPSC-derived hepatic cells with mesenchymal stem

cells and human umbilical vein endothelial cells, Takebe et al.

successfully generated the first 3D vascularized and functional

human liver buds which were able to mimic liver organogenesis

and well recapitulate hepatic vascular network in vivo (34).

Nonetheless, these liver buds still retained some fetal

characteristics with little proliferation capacity. Therefore, Mun

et al. established functionally mature human hepatic organoids

from ESCs and iPSCs with long term expansion ability and high

fidelity to liver tissues (35). However, despite all these progressions,

researchers found that gene expression profiles of PSC-derived liver
Frontiers in Immunology 03
organoids showed relatively strong distinction from primary

human hepatocytes (34, 36). Therefore, researchers discovered

some factors important for hepatic induction of iPSCs. For

instance, expansion of nuclear receptor FXR would decrease the

expression of intestine related genes so that to prevent unnecessary

disturbance (37). Besides, mesoderm-derived paracrine signals are

sufficient for hepatocyte maturation while organoid self-

organization requires cell-to-cell surface contact (38). Hence, key

factors to regulate hepatocyte differentiation should not be limited

to just one element, but a group of genes or cells instead. Further

research is in progress to dig them out (39–41) (Figure 1B

and Table 2).

Recently, novel techniques have been incorporated into liver

organoid generation. To manipulate gene expression, CRISPR/Cas

9, a powerful genome editing and engineering approach, has been

applied for disease modeling and been utilized to fully understand

the pathogenesis and pathophysiology of different kinds of diseases,

among which the most popular one is cancer. Guan et al. discovered

that phosphatidylethanolamine biosynthesis pathway was

important to both early liver development and growth of HCC as

well (43). For cholangiocarcinoma, it was found that loss of function

of tumor suppressor gene BAP1 promoted malignant changes by

disturbing chromatin accessibility (44). Other liver diseases
A

B

FIGURE 1

Two main methods for generation of liver organoids. (A) Establishment of liver organoids from adult liver tissues. Healthy liver cells or liver cancer
cells can be obtained via surgical resection and biopsy. Upon seeded into Matrigel with different culture components, cells assemble themselves into
organoids. Liver tumoroids can be induced from liver organoids by overexpression of c-myc. (B) Establishment of liver organoids from stem cells.
Both of ESCs and iPSCs can be utilized to generate liver organoids through three major steps, endodermal differentiation, hepatic specification and
hepatic maturation & liver organoid formation. Each step contains several key factors. EGF, epidermal growth factor; FGF, fibroblast growth factor;
HGF, hepatocyte growth factor; TGFb, transforming growth factor beta; BMP, bone morphogenetic protein; FBS, fetal bovine serum.
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TABLE 1 Summary of culture medium components for generation of liver tissue-derived liver organoids.

liver cancer organoid

Broutier
et al. (23)

Cao et al. (28) Wang et al. (29)

Liver tumor
specimens
through
resection

Primary mouse liver
cancer tissues

Hepatobiliary tumor
specimens through resection

collagenase-
accutase

0.5 mg/ml Collagenase
type XI; 0.2 mg/ml
Dispase; 1% FBS in
DMEM

collagenase D ; 0.1 mg mL−1
DNase I ; 2 × 10−6 m
Y27632; 100 µg mL−1
Primocin

BME2 Matrigel Matrigel

√ √ √

√(1%)

√(1%) √(1%)

√(10mM) √(1mM)

√ √

√(2%, minus
vitamin A)

√(2%) √(2%, minus Vitamin A)

(Continued)

C
h
e
n
e
t
al.

10
.3
3
8
9
/
fi
m
m
u
.2
0
2
3
.118

0
18

4

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
4

Function of supplemented
components

liver organoids

References Huch et al.
(17)

Hu et al.
(21)

Hu et al.
(21)

Lam et al. (30)

Source cells
or tissues

Liver ductal
cells

Fetal
hepatocytes

primary
mouse
hepatocytes

Nontumoral human liver
tissues at the resection
margin of surgical HCC

Digestion collagenase-
accutase

Type IV
collagenase

Type IV
collagenase

collagenase type II

Basement
membrane
simulation

Matrigel or
reduced
growth factor
BME 2

Matrigel Matrigel Matrigel

Culture media AdDMEM/F12 Provision of basal nutrition √ √ √

AIM-V Provision of basal nutrition without serum √

Penicillin-
Streptomycin

Antibiotics to prevent of microorganism
contamination

√ √ √(0.35 U/ml )

L-Glutamine Essential amino acid for cell growth √

Glutamax Substitution of L-Glutamine √ √

HEPES Buffering agents to stablize the culture
medium

√ √

1% N2 Suppresion of cell differentiation and
promotion of cell groeth

√ √

B27 Suppresion of cell differentiation and
promotion of cell groeth

√(1%) √(1%,
minus
vitamin A)

√(minus
vitamin A)

√(1%)

1× MEM
NEAA

Promotion of cell viability √

1× ITS Insulin: Promotion of energy metabolism;
Transferrin: Carrier of Iron and lowering of
oxygen radicals; Selenium: Anti-oxidant

√

3 mm
CHIR99021

GSK3b inhibitor to activate Wnt pathway √ √
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TABLE 1 Continued

liver cancer organoid

Broutier
et al. (23)

Cao et al. (28) Wang et al. (29)

√

(1.25mM) √(1.25mM) √(1.25mM)

√

(50ng/ml) √(50ng/ml) √(50ng/ml)

√(1ng/ml)

(100ng/ml) √(100ng/ml) √(100ng/ml)

(25ng/ml) √(50ng/ml) √(25ng/ml)

√(10%) √(10%)

√ √

(5uM) √(5mM)

√

√

√(10%) √(5%)

√ √

(Continued)

C
h
e
n
e
t
al.

10
.3
3
8
9
/
fi
m
m
u
.2
0
2
3
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0
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n
tie
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in

Im
m
u
n
o
lo
g
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fro
n
tie

rsin
.o
rg

0
5

Function of supplemented
components

liver organoids

References Huch et al.
(17)

Hu et al.
(21)

Hu et al.
(21)

Lam et al. (30)

100 µg mL−1
primocin

Antibiotics to prevent of microorganism
contamination

N-
Acetylcysteine

Regulate cell proliferation, differentiation
and apoptosis

√(1.25mM) √(1.25mM) √(1.25mM) √(1mM) √

10 nM gastrin Promotion of expention of stomach cells √ √ √ √ √

EGF Ligands of receptor protein tyrosine kinase;
promotion of expansion of epithelial cells

√(50ng/ml) √(50ng/ml) √(50ng/ml) √(100ng/ml) √

FGF-basic Fibroblast growth factor; Ligands of
receptor protein tyrosine kinase

FGF7 Fibroblast growth factor; Ligands of
receptor protein tyrosine kinase

√(100ng/
ml)

√(50ng/ml)

FGF10 Fibroblast growth factor; Ligands of
receptor protein tyrosine kinase

√(100ng/ml) √(100ng/
ml)

√(50ng/ml) √(100ng/ml) √

HGF Hepatic growth factor √ (25ng/ml) √(50ng/ml) √ (25ng/
ml)

√ (25ng/ml) √

RSPO1
conditioned
media

Wnt activator √(10%) √(15%) √(15%) √(10%)

10mM
Nicotinamide

Sirtuins inhibitor to promote of self-renewal
of HCC stem cells and cell energy
metabolism

√ √ √ √ √

A8301 TGFb inhibitor to promote cell expansion
and inhibit apoptosis and differentiation

√(5uM) √(2uM) √(1uM) √(3uM) √

10 mM
Forskolin

Rho Inhibitor (cAMP activator) √ √ √

10 mM g-27632 Rock inhibitor to inhibit apoptosis of stem
cells

√ √ √ √

Noggin BMP-4 and BMP-7 inhibitor to inhibit the
differentiation of stem cells

√ (25 ng/ml) √ (25 ng/ml)

30% Wnt
Conditioned
medium

Ligand of canonical Wnt/b-catenin pathway
to promote cell expansion

√ √
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investigated by means of CRISPR/Cas9 includes mitochondrial

DNA depletion syndrome (40), hepatitis A virus infection (45),

urea cycle disorders (46) etc.
Recapitulation of parental
tumor features

The most prominent advantage of PDOs is that, compared to

conventional 2D models, 3D organoids restore parental tumor

characteristics more faithfully, in terms of gene expression

profiles, phenotypes, histological architecture and tumor subtypes

(15, 47, 48). Mori and Kida revealed that culture dimensionality

greatly influenced gene expression pattern, as evidenced by different

expression level of genes involved in drug metabolism, such as

CYP2D6, CYP2E1, NNMT and SLC28A1 (49). Different gene

expression patterns result in different phenotypes. In 2D cultures,

tumor cells displayed an epithelial phenotype and could only gained

mesenchymal properties after cultured in 3D tumoroids.

Histologically, HCC organoids could form pseudoglandular

rosettes while iCCA organoids exhibit extensive glandular

domains, with carcinoma cells invading the lumen and growing

as cribriform structures (23). What’s more, organoids could also

express diagnostic markers of corresponding PLC subtypes. HCC

organoids but not iCCA organoids express high level of AFP while

iCCA organoids express typical cholangiocarcinoma markers, such

as CK7, CK19, EpCAM, nuclear of TP53 etc. (50).

Additionally, genomic and transcriptomic alterations vary from

patients to patients even in different zones inside the same tumor

(51). Therefore, molecular characteristics of PLC play a critical role

in accurate diagnosis, biomarker discovery and development of new

therapeutic approaches. By conducting genomic-wide

transcriptomic analysis, Broutier et al. found that expression

profiles of liver tumoroids resembled that of original tissues and

subtypes. What’s more, organoids could retain the expression

pattern in a patient-specific manner, e.g. genetic alterations.

Research found that nearly 92% of global variants found in HCC

biopsies were observed in the corresponding HCC organoids. And

among these global variants, the preserved cancer-related somatic

variants accounted for about 84% (23). Similarly, Yuan et al.

adopted single-cell RNA sequencing to classify single cells derived

from gallbladder carcinoma tissues and matched organoids into

seven major distinct cell-type clusters. Interestingly, cells in each

subtype were reclustered by their patients of origin (52). Taken

together, the continuity of expression profiles and mutation

landscapes from parental tumor tissues to organoids offers us an

ideal insight into tumorigenesis and progression, facilitating clinical

decision-making (Figure 2).
Advances of PDOs in drug screening
and personalized therapy

The available molecular strategies for advanced PLC are still

limited until now (3, 53, 54). Systemic multi-kinase inhibitors,
T
A
B
LE

1
C
o
n
ti
n
u
e
d

Fu
nc
tio

n
of

su
pp

le
m
en

te
d

co
m
po

ne
nt
s

liv
er

or
ga

no
id
s

liv
er

ca
nc
er

or
ga

no
id

Re
fe
re
nc
es

H
uc
h
et

al
.

(1
7)

H
u
et

al
.

(2
1)

H
u
et

al
.

(2
1)

La
m

et
al
.(
30

)
Br
ou

tie
r

et
al
.(
23

)
C
ao

et
al
.(
28

)
W
an

g
et

al
.(
29

)

20
ng
/m

l
T
G
F-

a
R
eg
ul
at
or
s
of

ce
ll
pr
ol
ife
ra
ti
on

an
d

di
ffe
re
nt
ia
ti
on

√

10
ng
/m

l
O
nc
os
ta
ti
n
M

In
hi
bi
to
rs

of
pr
ol
ife
ra
ti
on

of
a
nu

m
be
r
of

tu
m
or

ce
ll
lin

es
√

D
ex
am

et
ha
so
ne

In
du

ct
io
n
of

ap
op

to
si
s
of

he
pa
ti
c
ca
nc
er

ce
lls

√
(1
uM

)
√
(3
uM

)

B
M
E
2,
B
as
em

en
t
M
em

br
an
e
E
xt
ra
ct
,T

yp
e
2;
N
E
A
A
,N

on
-E
ss
en
ti
al
A
m
in
o
A
ci
ds
;I
T
S,
In
su
lin

-T
ra
ns
fe
rr
in
-S
el
en
iu
m
;E

G
F,

ep
id
er
m
al
gr
ow

th
fa
ct
or
;F

G
F,

fi
br
ob

la
st
gr
ow

th
fa
ct
or
;H

G
F,

he
pa
to
cy
te

gr
ow

th
fa
ct
or
;T

G
Fa

,t
ra
ns
fo
rm

in
g
gr
ow

th
fa
ct
or

al
ph

a;
B
M
P
,b

on
e

m
or
ph

og
en
et
ic
pr
ot
ei
n.

√
in
di
ca
te
s
th
at

th
e
cu
ltu

re
m
ed
iu
m

co
nt
ai
ns

th
e
re
le
va
nt

co
m
po

ne
nt
s.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1180184
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1180184
sorafenib (8) and lenvantinib (55), are the first line therapeutic

drugs, while regorafenib (56), cabozantinib (57) and ramucirumab

belong to second line therapy with low response rate. However,

thanks to research progression, we seem to see the sign of hope for

breakthroughs in immunotherapy. A phase III study demonstrated

that compared with sorafenib alone, combination of atezolizumab
Frontiers in Immunology 07
(PD-L1 inhibitor) and bevacizumab (monoclonal antibody of

VEGF) improved the median progression-free survival of

unresectable HCC from 4.3 months to 6.8 months (58).

Regardless, more targets are urgently needed to be found for

treatment of advanced PLC. The property of liver tumoroids to

finely recapitulate different aspects of the original tumors lays the
TABLE 2 Summary of culture medium components for generation of Pluripotent stem cell (PSC)−derived liver organoids.

References Takebe et al.
(39)

Mun et al.
(35)

Yang et al.
(41)

Ouchi et al.
(42)

Guo et al.
(40)

Steps stem cells iPSC iPSC iPSC ESC/iPSC iPSC

Endodermal differentiation RPMI1640 √ (without
insulin)

√ (without
insulin)

√ √ √

N2 √

B27 √ √ √

albumin fraction V √

PI-103 √

ITS √

100 ng/ml human
activin A

√ √ √ √ √

CHIR99021 √ √(3mM)

Hepatic specification RPMI1640 √ √

IMDM √

B27 √ √ √

N2

FGF √(10 ng/ml) √(10 ng/ml) √(10 ng/ml)

FGF4 √(500 ng/ml) √(30 ng/ml)

BMP4 √(20 ng/ml) √(20 ng/ml) √(20 ng/ml) √(50 ng/ml)

BMP2 √(20 ng/ml)

HGF √(20 ng/ml) √(20 ng/ml)

KGF √(20 ng/ml)

FCS √

5% hypoxia √

Hepatic maturation and liver organoid
formation

Advanced DMEM/F12 √ √

B27 √ √

N2 √ √

2mM retinoic acid √

HCM without EGF √ √ √ √

EGM √ √

FBS √ √

HGF √(10ng/ml) √(10ng/ml) √(20 ng/ml) √(10ng/ml)

100 nM
dexamethasone

√ √ √ √

(Continued)
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foundation for its application in precision medicine, a significant

one of which is large-scale drug screening and discovery of drug

targets. Broutier et al. performed a proof-of-concept drug-

sensitivity test and revealed that ERK inhibitor was effective in

cells with BRAF- and MEK- inhibitor resistance (23). What’ more,

correlation between drug sensitivities and mutational profiles in

tumoroid lines was also identified. For instance, one tumoroid
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harboring mutations in CTNNB1 gene was resistant to porcupine

inhibitor LGK974 (23). Besides, in an HTS of a total of 129 drugs in

a large cohort of liver tumoroid lines, nine drugs belonging to five

classes of antineoplastic agents were pan-effective, only two of

which had ever been tested as systemic chemotherapy in liver

cancer and one in cholangiocarcinoma (59). Except for drug

screening by PDOs, we can also use PDOs to explore the
TABLE 2 Continued

References Takebe et al.
(39)

Mun et al.
(35)

Yang et al.
(41)

Ouchi et al.
(42)

Guo et al.
(40)

Steps stem cells iPSC iPSC iPSC ESC/iPSC iPSC

Oncostatin M √(20 ng/ml) √(20 ng/ml) √(20 ng/ml) √(20 ng/ml) √(10ng/ml)

1 mM/L glutamax √

1% NEAA √

0.1 mM b-
mercaptoethanol

√

HUVECs and MSCs √
ITS, Insulin-Transferrin-Selenium; FGF, fibroblast growth factor; BMP, bone morphogenetic protein; FCS, fetal calf serum; HGF, hepatocyte growth factor; KGF, keratinocyte growth factor;
HCM, Hepatocyte culture medium; FBS, fetal bovine serum; NEAA, Non-Essential Amino Acids; HUVEC, human umbilical vein endothelial cell; MSC, mesenchymal stem cell; EGM,
endothelial growth medium.
√ indicates that the culture medium contains the relevant components.
A

B

FIGURE 2

Application of liver organoids in precision medicine. (A) Patient-derived organoids from tumor biopsies reveal cell origin of PLC and recapitulate the
histological and genetic features of original tumors. (B) PDOs show great potential in drug screening, omics profiling and personalized treatment.
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mechanism of drug resistance. Wang et al. discovered that a

hedgehog signaling inhibitor (GANT61) could potently suppress

the growth of CD44+ sorafenib resistant HCC PDO lines, indicating

combination of sorafenib and Hedgehog signaling inhibitor may

benefit HCC patients with high CD44 expression (60).

Furthermore, with metformin gradually accepted as a powerful

anticancer agent, a recent study found that it could enhance the

sensitivity of PDOs to methotrexate by decreasing the level of

DHFR, a type of one-carbon metabolism enzyme (61). However,

as therapy-resistance is a dynamic process with a series of genetic

alterations and epigenetic regulation, key molecules responsible for

reversing therapy resistance are not unchangeable. So exploring

how these changes occur by PDOs will help us understand how

cancer evolves and how drug resistance develops. Roerink et al. took

tissues from different sites in a single primary tumor, isolated them

into single cells and produced clonal organoids. Further, they used

these organoids to monitor the shift of mutational landscape by

phylogenetic trees along cancer progression and chemoresistance

acquisition (62, 63).

In the early 21st century, the breakthrough in genome editing

and RNA interference technology provided us a powerful tool in

investigation of gene function (64). B. Artegiani et al. described that

liver organoids with four common cholangiocarcinoma mutations

(TP53, PTEN, SMAD4, and NF1) gained malignancy after loss-of-

function of BAP1 by CRISPR/Cas9, because BAP1 could control the

expression of junctional and cytoskeleton components by regulating

chromatin accessibility (44). Li et al. generated paired organoids of

primary tumors and matched liver metastases from the same CRC

patients. Through gain-and-loss experiments, SOX2 was confirmed

as a key regulator in CRC progression and liver metastases (65).

Similarly, YAP1 and c-myc were also found to play important roles

in CRC initiation and to be a potential therapeutic target (26, 66).

Another application of PDOs is to predict patient responses in

clinical trials. By comparing responses of PDOs to anticancer agent

with that of patients in clinical practice, we found that PDOs can

recapitulate patient responses in clinical trials. S. Nuciforo et al.

tested the efficacy of sorafenib on three iCCA organoids and found

one of them der ived f rom a rare subtype of iCCA

(lymphoepithelioma-like CCC) responded, though sorafenib has

not been subjected to the treatment of iCCA (24). The results were

reproduced in a multicenter prospective study conducted by Luo

et al. in 2017 (67). The prediction ability of PDOs has also been

confirmed in other solid tumors including rectal cancer (68–71),

breast carcinoma (72), and esophageal cancer (73).
Reflection of PLC cell origin

In addition to application in drug therapy, PDOs also help us

investigate deeper into origins and subtypes of PLC. HCC and iCCA

are two main histological types of PLC with high plasticity and fate

of transdifferentiation (74). Xue et al. demonstrated that combined

type and mixed type cHCC-ICCs (combined HCC and iCCA) are

two distinct molecular subtypes while the former one is more

similar to iCCA and the latter one is more similar to HCC,

indicating that HCC and iCCA may have monoclonal origins (75).
Frontiers in Immunology 09
Earlier in this decade, Fan et al. and Sekiya et al. employed

mouse models of iCCA and demonstrated that iCCA could be

generated from transthyretin-positive hepatocytes through

activation of the Notch and Akt signaling pathways (76, 77). This

finding suggested a brand-new mechanism of iCCA origin and

offered a promising target strategy for iCCA therapy. Saito et al.

found that culture of iCCA organoids with differentiation medium

significantly induced upregulation of hepatic markers, including

albumin, CYP3A4 and HNF4A, increased the amount of bile acid

production, but suppressed Wnt signaling pathway and the

downstream protein DNMT1/3B, which indicates that iCCA

could evolve towards hepatic direction after transdifferentiation

induction (78). Conversely, Rimland discovered that Wnt

promotion stimulated expression of ductal markers in

intrahepatic bile duct organoids (18). These results imply that

Wnt signaling pathway may play a key role in transdifferentiation

between hepatic and biliary lineage. Besides, tissue-specific

microenvironment have been shown to be able to promote

transdifferentiation of iCCA organoids. Willemse et al. found

tissue specific liver extracellular matrix could facilitate hepatic

transdifferentiation with upregulation of hepatic markers,

including albumin, CYP-3A4, HNF-4a, MRP-2. In turn, HCC

could also gain cholangiocellular-like phenotypes during cancer

progression (79). All in all, liver organoids offer us a reasonable

model to explore PLC progression and evolution.
Liver tumoroids in TME modeling
and research

Extracellular matrix as scaffolds for liver
tumoroid modeling

Extracellular matrix (ECM) is one of the most critical acellular

components in TME, which mainly includes collagen, elastin,

glycosaminoglycans and other associated proteins and small

molecules. ECM has tissue-specific physicochemical properties to

accommodate to cell-to cell and cell-to-matrix interaction. These

activities are closely related to cell behaviors, such as proliferation,

differentiation, migration, angiogenesis etc. (80). Thus, faithful

restoration of disease-specific ECM is important to generate

models for disease research. Matrigel is now the most commonly

used material to mimic ECM in 3D models. However, as Matrigel is

extracted from Engelbreth-Holm-Swarm (EHS) murine sarcoma,

there are many problems including batch-to-batch variation, ill-

defined properties, possibility of transfer of pathogens etc. (81, 82)

Therefore, there needs to be some modification or improvement

of Matrigel.

Lee et al. manufactured a 96-pillar/well plate as a cell container

with Matrigel to create an aggregated spheroid model for HCC (83).

In this model, Matrigel was attached to the surface of a 96-pillar

plate with HCC cells embedded in it. Cells assembled at the curved

end of the Matrigel because of gravity to form a large single

spheroid. Compared with many small diffuse spheroids generated

by conventional methods, these aggregated spheroids were more

suitable for drug screening and TME simulation because of the
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higher drug resistance, limited drug penetration ability and more

marker expression. However, a high-quality organoid should not

only recapitulate phenotypic and genomic features of original

tumors, but also retain the biochemical and biophysical

properties, which are crucial for cell activities and can affect gene

expression in turn (84, 85). Hence, there emerges some other

matrices as alternatives to Matrigel to mimic the tumor

mechanical environment. Fong et al. fabricated a 3D cellulose-

based sponge system with interconnected macropores which

enabled spheroid size control through physical constraint (86). By

culturing HCC patient-derived xenograft (PDX) cells in the

hydrogel, this model sustained the mechanical properties and

omics profiles as in vivo PDX models but failed to support

metabolic activities as in vivo tissues. There may be one problem

with the HCC-PDX derived model that cells from xenograft tissues

contain host-derived ECM and stromal cells, leading to the

possibility of deviation from original tumor tissues (87). To

improve, Dong et al. mixed suspended alginate-gelatin hydrogel

with patient-derived liver tumor multicellular clusters and acellular

components, which guarantees to well recapitulate the landscape of

original tumors (88). Besides, novel biomaterials, such as silk, are

utilized in bioengineering due to its biocompatibility, supportive

capacity and processing feasibility of fibroin. Silk-derived fibroin

forms a bioactive composite scaffold, in which arginine-glycine-

aspartate motifs provide domains for cell adhesion and organoid

growth (89, 90). However, as tissue stiffness plays an important role

in biological processes of liver cancer including tumorigenesis,

angiogenesis, metastasis and epithelial to mesenchymal transition

(91, 92), there are few 3D liver tumoroids to model this extracellular

characteristic and it may be a novel research orientation in

the future.
Cellular components as crucial
parts of TME

Except for ECM, different kinds of cells participate in the

formation of TME, including endothelial cells, immune cells,

fibroblasts, stromal cells etc. These cells are closely related to

tumorigenesis, progression, metastasis and patients’ prognosis

(93, 94).Therefore, simulation of the composition and behavior of

cells in TME is critical to portray the whole landscape of

original tumors.

Angiogenesis and vascular remodeling greatly contribute to the

progression of HCC (95, 96). To model this pathologic process,

endothelial cells were co-cultured with HCC cells to generate

vascularized organoids (34, 97). A recent article investigated the

angiocrine crosstalk in ex vivo organoids and revealed that

activation of tumor necrosis factor (TNF) signaling and

polarization of macrophages in the TME were induced by

endothelial cells, indicating the possible interaction among these

cells (97). Immunotherapy, depending on enhanced self-immune

activities, is now emerging as a powerful tool in anti-tumor

strategies. To overcome the problem that primary T cells are
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sensitive to unfavorable external stimuli, Zhang et al. coated the

surface of T cells with a flexible DNA network as a protective

scaffold. Tumor-infiltrating cells (TILs) modified via this coating

method showed potent tumor killing activities as evidenced by

increased antitumoral cytokines and apoptotic cells (98). Besides,

chimeric antigen receptor T (CAR-T) cell therapy is another

promising cancer immunotherapy. Zou et al. generated HBV

surface protein-specific CAR-T and personalized tumor-reactive

CD8+ T cells (99). When co-cultured in autologous HBVs+ HCC

organoid, these T cells exhibited stronger anti-tumor behaviors than

normal and might provide a therapeutic option in the future clinics.

Cancer-associated fibroblasts (CAFs) are a group of

heterogenous cells in tumor stroma (100). Currently, CAFs are

widely accepted as liver tumor progression promoters mainly by

two ways; one is direct effects on tumor cells via paracrine signaling,

exosome transfer and physical contact, and the other is indirect

pattern by communication with stromal cells (101). Building in

vitro TME by culturing CAFs in liver tumoroids not only confirmed

the effects of CAFs on tumor growth and drug resistance, but also

revealed the feedback regulation of CAF phenotypes by paracrine

signals from HCC cells (102).

Some research cultured nearly all the typical types of non-

parenchymal cells in organoids to mimic TME in a more

comprehensive way. An HCC organoid with cancer cells,

fibroblasts, endothelial cells and ECM inside expressed more

markers related to angiogenesis, inflammation and EMT

compared with organoids containing tumor cells alone,

emphasizing the significance of non-parenchymal components in

the formation of 3D organoids (103). What’s more, Qiu et al.

introduced iPSC-derived endothelial cells and mesenchymal cells

into HCC organoids and orthotopically implanted into the liver of

immune-deficient mice with various diseases. Experiments

demonstrated that fibrosis TME could promote tumor

amplification while non-alcoholic hepatic diseases couldn’t (104).

This implies that specific environment may contribute to the

progression of liver cancer. Although different, all these

techniques try to apply tumor cells and non-parenchymal cells in

one co-culture system to faithfully mimic in vivo TME and explore

the interaction among all the components in it (Figure 3).
Other novel techniques for TME modeling
in the promising future

Except for coculture, there springs up other novel technologies

to equip organoids with more advanced functions and make models

more comparable to naïve tissues in terms of vasculature, spatial

arrangement and other details. Some studies reported that

pluripotent stem cells cultured in Matrigel would finally

differentiate into liver organoids with various characteristics due

to the nonuniform cell microenvironment and intercellular

communication (42, 105). To improve, micropatterning technique

was employed to determine the location, arrangement and size of

each organoid to ensure the homogeneity of all cultured organoids,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1180184
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1180184
and avoid the unreliable results generated from heterogenous

organoids (105). In addition, microfluidic devices provide a

platform to mimic the circulation system in vitro . By

incorporating multiple microscale channels with different

structures, this tool allows researchers to manipulate the dynamic

fluid flow and gradients of gas and soluble molecules to better

mimic the biochemical and biophysical processes (106). For

example, a microfluidic vascular bed could be constructed by

incorporating microfluidic chips underneath a 384-well microtiter

plate to allow for the formation of a stable vascular network in the

targeted liver tissue (107). There are many other methods to

engineer the vasculature in the organoids (108), which is

promising to be utilized in liver tumoroid establishment in the

near future. In addition, cells are able to experience shear stress and

hydrostatic pressure in microfluidic devices, which may change

immune cell function in the TME and thus the interaction with

tumor cells (109, 110). Through combination of organoids and

microfluidic device, Rajan et al. successfully fabricated an organ-on-

a-chip platform with multiple humanized organ constructs. This

device helps to study the in vivo drug metabolism, which is mainly

accomplished by liver, and the possible drug toxicity to other tissue

organs (111). Apart from drug research, immune activities can also

be screened. Natarajan et al. generated a liver organoid system using

a microfluidic chip, in which coculture with HCV specific CD8+ T

cell assists in monitoring and understanding the adaptive immune
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responses to HCV invasion (112). 3D bioprinting is another

potential powerful technology for tumor modeling. By fabricating

3D biomimetic organ-like or tissue structures with physiological

microarchitecture and microenvironment in a computer-controlled

way, this technique possesses numerous advantages, such as

simulation of physical parameters of ECM including stiffness and

ultrastructure, and construction of perusable vascular networks

(113, 114). Bioprinting has a wide range of applications, different

types of which have their distinct usages. For example, Bernal et al.

used volumetric bioprinting to construct liver organoids to study

the metabolic function of liver (115) and Maloney et al. applied

immersion bioprinting to generate homogenous cancer organoids

in 96-well plates for high throughput of 3D drug screening (113).

Despite the fact that there are few researches concerning these novel

techniques, based on the existing studies, it’s still prospective that

utilization of the new tools would shed light on liver cancer biology

and personalized treatment for different patients.
Current limitations

Although liver organoids outperform current models to a great

extent and the prospect for applications of PDOs in the future liver

cancer research looks bright, there are still some limitations which

remain to be solved for clinical translation.
FIGURE 3

Establishment of tumor microenvironment (TME) of PLC. TME of PLC is made up of complex components, including extracellular matrix, cellular
components like vascular endothelial cells, immune cells, CAFs, and etc. The diagram illustrates components in TME of PLC and steps for in vitro
model construction. CAF, cancer associated fibroblast; EGM, Endothelial Cell Growth Medium; HCM, Hepatocyte culture medium; HGF, hepatocyte
growth factor; EGF, epidermal growth factor; FGF, fibroblast growth factor.
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High costs but low success rate of liver
tumoroid establishment

Currently, Matrigel is the most commonly used ECM in liver

tumoroid culture and different kinds of growth factors are

important for specific differentiation and induction. These two

kinds of materials are all costly, which may hinder the scalable

production of liver PDOs. Besides, the culture process can be time

consuming as well. According to the experience of Broutier et al.,

the average duration of first passage for liver tumoroids is 2-3

weeks, which is about 1 week longer compared with that of healthy

liver-derived organoids (23). And it takes as long as 4-12 weeks in

order to obtain sufficient models for drug screening (23). Patients

may not be able to wait such a long time to get the appropriate

treatment strategies, especially in cases of emergency. Despite the

high costs of money and time, success rate of liver tumoroid

culture is relatively low in comparison to other tumor organoids

and varies greatly between hepatocyte and cholangiocyte origin.

For example, success rates of organoid establishment are reported

to be around 90% for colorectal cancer and gynecologic tumors

(116, 117). However, for establishment of HCC organoids derived

from needle biopsies, success rate is only approximately 30% (24)

while 50% for that of iCCA organoids (118). Various reasons

could account for this. First, compared with cancer tissues, normal

tissues have more robust proliferation ability to form organoids in

the early stage of construction due to the gradual telomere

shortening (23, 118). Therefore, normal tissues within the tumor

samples would be the source of contamination and further

outcompete the tumoroids. Furthermore, liver tumoroids could

only be successfully generated from poorly differentiated tissues

with >5% proliferating cells (23). In addition, the frequency of

driver gene mutations such as TP53 and KRAS in biliary tract

cancer is relatively low, which causes lack of promotion for

tumoroid amplification (119). To overcome the above issues,

sample selection and purification, proper genome editing,

addition of growth factors are several methods to improve

organoid yields.
Irreproducible and heterogenous nature of
current liver tumoroids

Although it’s widely accepted that organoids could finely

recapitulate the original tissues in terms of genetic profiles,

histological architecture etc., some studies also reported that

there existed transcriptomic differences between primary tumors

and the corresponding tumoroids (34, 36, 118). This may impair

organoids’ ability to precisely reflect the nature of parental tumors

and restrict the implementation of clinical treatment. This genetic

disparity is partially limited by the current uncontrolled and non-

standardized protocols for organoid culture (48). For example,

tissues from different regions of biopsy samples contain different

kinds and proportions of cellular and noncellular components,

leading to heterogenous organoids despite origin of the same
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specimen (118). Furthermore, there is still no consensus on the

procedure of liver organoids generation, including steps and

processes, culture medium, etc. Researchers have made large

amounts of modifications but whether they can be replicated

has not been validated yet. Although investigators have explored

to integrate various cellular components in TME into liver

tumoroids, as mentioned above, most of the current models

consist of only liver cells and noncellular matrix. Lack of

stromal cells will distort tumor cell behaviors, causing unfaithful

representation of original tissues. Besides, Matrigel is exogenous

matrix extracted from murine sarcoma and there exists certain

discrepancy from ECM of specific patient. Hence, to facilitate

scalable production of liver tumoroids of high quality, unified

protocols are needed and modern techniques are in progress to

construct complicated and precise organoids, such as coculture

systems and microfluidic devices (120).
Conclusion and perspectives

Currently, PDO is a functional 3D model for basic and

translational research of various types of cancer. Due to the

faithful recapitulation of molecular profiles and histological

architecture of parental tissue, liver tumoroids have helped

researchers to further comprehend the complexity of PLC, in

terms of tumor initiation, progression, metastasis, drug screening

and personalized treatment. Although great advances have been

achieved, PLC is still a mixed type of malignant tumor with

relatively poor survival. Therefore, new targets and treatment

strategies are urgently needed and PDO is such a practical tool

for deeper exploration.

Dating back to 2015, Clevers et al. established the first living

cancer organoid biobanks containing a set of 20 genetically diverse

CRC specimens and matched healthy organoids (117). Since then,

organoid biobanks of pancreas (121), bladder (122), breast (72),

prostate (123) etc. have been established in succession. Such

specimens of the living biobanks are characterized with multi-

omics data and detailed clinical annotation, providing us an ideal

platform for molecule subtype classification and application of

precision medicine. If liver organoid biobank is constructed in the

near future, it will greatly accelerate the progression of liver disease

research. In conclusion, despite the current existing limitations,

liver organoids will be an indispensable tool in future research.
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