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Introduction: The association between multiple sclerosis (MS) and non-small

cell lung cancer (NSCLC) has been the subject of investigation in clinical cohorts,

yet the molecular mechanisms underpinning this relationship remain

incompletely understood. To address this, our study aimed to identify shared

genetic signatures, shared local immune microenvironment, and molecular

mechanisms between MS and NSCLC.

Methods: We selected multiple Gene Expression Omnibus (GEO) datasets,

including GSE19188, GSE214334, GSE199460, and GSE148071, to obtain gene

expression levels and clinical information from patients or mice with MS and

NSCLC. We employed Weighted Gene Co-expression Network Analysis

(WGCNA) to investigate co-expression networks linked to MS and NSCLC and

used single-cell RNA sequencing (scRNA-seq) analysis to explore the local

immune microenvironment of MS and NSCLC and identify possible

shared components.

Results: Our analysis identified the most significant shared gene in MS and

NSCLC, phosphodiesterase 4A (PDE4A), and we analyzed its expression in

NSCLC patients and its impact on patient prognosis, as well as its molecular

mechanism. Our results demonstrated that high expression of PDE4A was

associated with poor prognoses in NSCLC patients, and Gene Set Enrichment

Analysis (GSEA) revealed that PDE4A is involved in immune-related pathways and

has a significant regulatory effect on human immune responses. We further

observed that PDE4A was closely linked to the sensitivity of several

chemotherapy drugs.
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Conclusion: Given the limitation of studies investigating the molecular

mechanisms underlying the correlation between MS and NSCLC, our findings

suggest that there are shared pathogenic processes and molecular mechanisms

between these two diseases and that PDE4A represents a potential therapeutic

target and immune-related biomarker for patients with both MS and NSCLC.
KEYWORDS

shared gene signature, molecular mechanisms, multiple sclerosis, non-small cell lung
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Introduction

In recent years, the investigation of cancer risks in various chronic

diseases has gained increasing attention in the scientific community.

Notably, a long-term study conducted in Norway suggests that patients

with multiple sclerosis (MS) may face an elevated risk of developing

cancers, particularly respiratory, urogenital, and central nervous system

cancers, with a 66% increased risk of respiratory system cancers (1). It

is worth noting that cancer has been suggested as one of the principal

causes of mortality among MS patients, who have a significantly

reduced life expectancy (2). The etiology of MS involves a

combination of autoimmunity, viral infection, genetic susceptibility,

environmental factors, and individual predisposing factors (3).

Notably, the malfunction and activation of self-reactive immune cells

may underlie the pathogenesis of MS.

The association between MS and cancer risks has been

extensively investigated, with evidence suggesting that MS

patients may exhibit health behaviors associated with increased

lung cancer risk, including smoking, lack of exercise, and obesity.

Additionally, neurologic adverse events, including MS, have been

identified as rare but potentially fatal complications of

immunotherapy using immune checkpoint inhibitors (ICIs) for

lung cancer, further highlighting the potential connection between

MS and lung cancer (4). A few studies support an inflammatory

patient-dependent immune-mediated component for MS,

identifying genetic and environmental risk factors and showing

that the pathogenic mechanism of T cell-mediated MS is similar to

that of ICIs (5, 6), which suggests that MS and lung cancer might

share common risk factors and potentially similar pathogenic

mechanisms. Non-small cell lung cancer (NSCLC) accounts for

85% of all cases of lung cancer (7). However, to date, there have

been few studies exploring the molecular mechanisms underlying

the correlation between MS and NSCLC, and the common

pathogenic mechanisms of MS and NSCLC are still unclear. As

NSCLC has a high incidence in MS, investigating the mechanisms

by which MS ’s autoimmune processes promote NSCLC

development can provide unique insights into the complex events

behind NSCLC occurrence and help identify potential diagnostic

and prognostic biomarkers and therapeutic targets.
02
In this study, we employed bioinformatics analysis techniques to

uncover shared mechanisms and potential therapeutic targets for

both diseases. The identification of these mechanisms and targets

may aid in improving the management of MS patients and lead to

earlier detection and treatment of NSCLC.
Methods

Data collection and processing

We searched MS data using the keyword “multiple sclerosis” and

NSCLC data using the keyword “non-small cell lung cancer” within

the Gene Expression Omnibus (GEO) dataset collection. The

following conditions were required for each dataset: 1) the datasets

must be complete and correct. 2) The datasets must be normalized

using the corresponding method, such as the robust multi-array

average (RMA) method. 3) The number of samples in each group

must be more than three to ensure the accuracy of the conclusion.

Following the above criteria, we finally obtained adequate datasets

including GSE19188, GSE214334, GSE199460, and GSE148071,

some of which included clinical information on patients, such as

age and gender. GSE19188 contained 91 NSCLC and 65 adjacent

normal lung tissue samples. GSE214334 contained three relapse–

remitting MS, four primary progressive MS, four secondary

progressive MS, and seven non-MS control white matter tissues.

GSE199460 contained three experimental autoimmune

encephalomyelitis (EAE) and three controls, which extracted brains

from myelin oligodendrocyte glycoprotein (MOG)-induced EAE at

the peak of the disease and control mice to isolate single cells

following single-cell RNA-sequencing (scRNA-seq) using a

microdroplet-based method from 10X Genomics. GSE148071

contained 42 scRNA-seq of tumor tissues of NSCLC patients.

Moreover, to elevate the reliability of our conclusion, we also

enrolled and filtered The Cancer Genome Atlas (TCGA) lung

squamous cell carcinoma (LUSC) and lung adenocarcinoma

(LUAD) RNA-seq data, as well as The Genotype-Tissue Expression

(GTEx) project lung tissue RNA-seq data, and we excluded those data

with incomplete clinical and survival information.
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Analysis of bulk gene expression data

We analyzed bulk gene expression data mainly using

RNAseqStat (0.1.0) R package, which was an integrated tool for

processing gene expression data. After reading the corresponding

datasets and group information, the pipeline analysis began. First,

principal component analysis (PCA) of all samples in each dataset

was performed to pre-check sample distribution. Second, the

correlation among samples and the standard deviation of genes

were calculated for the evaluation of potential relationships among

samples. Third, after quality control (QC), differentially expressed

genes (DEGs) were computed and exhibited by volcano plot and

heatmap. Fourth, we performed gene ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment of

upregulated or downregulated genes in each dataset using DEGs.

Moreover, further enrichment analysis was performed on

Metascape. After that, a portion of crucial pathways or processes

was further performed in Gene Set Enrichment Analysis (GSEA)

and visualization. Finally, we used the Venn tool for the

identification of the shared gene signatures of two diseases.
Weighted gene co-expression
network analysis

We used the Weighted Gene Co-Expression Network Analysis

(WGCNA) tool to evaluate gene expression patterns in MS and

NSCLC. The input data were the gene expression matrix and

clinical information of each dataset. After loading the gene

expression matrix, the missing values were checked, and the

outliers were identified. Samples were clustered to figure out

whether there were outliers. Then, the expression networks were

constructed, and gene modules were identified; 7 were chosen for

the soft power of MS and 5 for NSCLC in consideration of the best

soft power estimation. Then, the modules were associated with

phenotypic data and identified hub genes. Finally, the hub gene co-

expression networks were constructed.
Construction of protein–protein
interaction network

We constructed a protein–protein interaction (PPI) network

with the help of STRING (https://string-db.org/). After inputting

sharing proteins of MS and NSCLC identified by the above process,

we constructed the PPI network including many edges and nodes,

representing a potential relationship between two proteins. We

performed GeneMANIA (https://genemania.org) to help to predict

the function of core shared genes of MS and NSCLC and to

construct a PPI network.
ScRNA-seq analysis process

ScRNA-seq analysis was performed on GSE199460 and

GSE148071. The data went through the process of normalizing,
Frontiers in Immunology
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finding variables, scaling, running PCA, scoring jack straw, finding

neighbors, finding clusters, and running t-distributed stochastic

neighbor embedding (tSNE) with the help of the Seurat package.

After annotation of single cells according to the expression of

markers, DEGs and cell fractions were calculated and visualized

by the scRNAtoolVis package. The CellChat package was used to

construct and visualize intercellular communication networks.
Protein intensity verification

Protein intensity was the result of gene expression, while

NSCLC patients had diverse protein patterns. The Human

Protein Atlas (https://www.proteinatlas.org/) was an online web

tool for evaluating protein patterns for cancer and normal tissues

using immunohistochemistry (IHC). By carefully searching and

filtering, the expression of the given protein in NSCLC tissue and

normal lung tissue was finally obtained.
Survival analysis

Survival analysis of NSCLC patients was performed on Kaplan–

Meier Plotter (http://kmplot.com/analysis/). Patients were divided

into two groups according to given gene expression. Immune

infiltration condition was used for further stratified analysis to

uncover the potential relationship between a given gene and the

immune microenvironment of NSCLC patients.
Immune infiltration analysis

We used the online immune infiltration analysis tool TIMER 2.0

(http://timer.cistrome.org/) for evaluating the special relationship

between a given gene and the immune microenvironment of

NSCLC. TIMER 2.0 is a comprehensive resource for the systematic

analysis of immune infiltrates across diverse cancer types. The web

server provided immune infiltrate abundances estimated by multiple

immune deconvolution methods, and we used it to generate figures

dynamically to explore tumor immunological, clinical, and genomic

features comprehensively. A portion of immune infiltration analysis

was facilitated and visualized with Aclbi (www.aclbi.com).
Drug sensitivity analysis

Genomics of Drug Sensitivity in Cancer (GDSC) (https://

www.cancerrxgene.org) was used to predict drug treatment

response based on specific gene expression. A total of 1,017

NSCLC patients were taken into consideration. IC50 was an

important indicator in evaluating drug efficacy and sample

treatment response. This tool was based on GDSC, the largest

open pharmacogenomics database at present.
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Results

Evaluation of shared local immune
environment between MS and NSCLC

In MS, an immune-related disease, the local immune

environment was one of the most important factors affecting its

progression. Considering the fact that NSCLC has a high incidence

in MS, we speculated whether there was a shared local immune

environment between NSCLC and MS. We used scRNA-seq data of
Frontiers in Immunology 04
the EAE mouse model to imitate the occurrence of MS. Our results

showed that EAE had a unique local immune environment when

compared with normal control (NC), including a reduced B-cell

faction, increased macrophage fraction, reduced fibroblast fraction,

and reduced neutrophils (Figures 1A–C). A portion of immune-

related genes was differentially expressed in the EAE and NC

groups, such as Cd74 and Ccl5 (Figure 1D). A portion of cells

showed a potential relationship in secreted signaling (Figure 1E). As

for NSCLC, different patients had diverse immune infiltration

(Figures 1F–H). However, a portion of immune components in
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FIGURE 1

Evaluation of shared local immune environment between MS and NSCLC. (A) tSNE plot of scRNA-seq data of three EAE and three NC samples
grouped by cell types. (B) tSNE plot of scRNA-seq data of three EAE and three NC samples grouped by sample types. (C) Cell fraction of different
cell types in EAE and NC samples. (D) Volcano plot of upregulated and downregulated DEGs of EAE and NC groups. (E) Communication patterns of
target cells in MS. (F) tSNE plot of scRNA-seq data of 42 NSCLC samples grouped by cell types. (G) tSNE plot of scRNA-seq data of 42 NSCLC
samples grouped by samples. (H) Cell fraction of different cell types in NSCLC samples. (I) Volcano plot of upregulated and downregulated DEGs in
each cell type. (J) Communication patterns of target cells in NSCLC. MS, multiple sclerosis; NSCLC, non-small cell lung cancer; tSNE, t-distributed
stochastic neighbor embedding; scRNA-seq, single-cell RNA-sequencing; EAE, experimental autoimmune encephalomyelitis; NC, normal control;
DEGs, differentially expressed genes.
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NSCLC was the same as that in MS, such as macrophage, B cell, and

fibroblast. These immune cells had different gene expression

patterns (Figure 1I). Similarly, these immune components showed

a potential relationship in secreted signaling (Figure 1J).
Uncovering gene characteristics during the
progression of MS

In order to identify molecular mechanisms and gene signatures

between MS and NSCLC, first, the gene variation during the

progression of MS was evaluated. A total of gene expression

profiles of 11 MS white matter tissues and seven non-MS control

white matter tissues were analyzed. PCA of these samples showed

different gene expression patterns of MS tissue and relatively

concentrated patterns of NC tissue (Figure 2A), which was

possibly a result of different subtypes of MS. Although there were

differences between MS subtypes, the correlation of samples

suggested the potential correlation among MS (Figure 2B).

After calculating the standard deviation expression of genes

(Figure S1A) and dividing samples into two groups, we obtained

DEGs between MS and normal control (Figure 2C). IGHG1, IGKC,

IGLC2, and IGHG2 were significantly upregulated in MS, while

MFRP, NTS, KC6, and TTR were significantly downregulated in

MS. A portion of important genes was exhibited by heatmap (Figure

S1B). GO analysis showed that upregulated genes in MS were

enriched in the regulation of trans-synaptic signaling, synaptic

membrane, and ion channel activity (Figure 2D), while

downregulated genes in MS were enriched in cilium organization,

motile cilium, and tubulin binding (Figure 2E). KEGG analysis
Frontiers in Immunology 05
showed that upregulated genes in MS were enriched in the

Neuroactive ligand–receptor interaction and Calcium signaling

pathway, while downregulated genes in MS were enriched in

Malaria and ECM–receptor interaction (Figure 2F).
Identification of the unique gene
signatures of NSCLC

Next, we sought to unveil the unique gene signatures of NSCLC.

By integrating 191 NSCLC and 65 adjacent normal lung tissue

samples in the GSE19188 dataset and performing PCA, we found

that there was an obvious distinction between NSCLC and NC

(Figure 3A). Correlation analysis also showed homogeneity among

NSCLC samples (Figure 3B).

After calculating the standard deviation expression of genes

(Figure S2A) and dividing samples into two groups, we obtained

DEGs between NSCLC and NC (Figure 3C). CHGA, SST, DLK1,

and PCK1 were significantly upregulated in NSCLC, while IL6,

IL1RL1, SELE, and S100A12 were significantly downregulated in

NSCLC. A portion of important genes is exhibited by heatmap

(Figure S2B).

GO analysis showed that upregulated genes in NSCLC were

enriched in epidermis development, spindle, and microtubule

binding (Figure 3D), while downregulated genes in NSCLC were

enriched in regulation of vasculature development, collagen-

containing extracellular matrix, and enzyme inhibitor activity

(Figure 3E). KEGG analysis showed that upregulated genes in

NSCLC were enriched in Cell cycle and DNA replication, while

downregulated genes in NSCLC were enriched in viral protein
B C

D E F

A

FIGURE 2

Uncovering gene characteristics during progression of MS. (A) PCA of MS samples of GSE214334 datasets including 11 MS white matter tissues and
seven non-MS control white matter tissues. (B) Correlation heatmap among each MS sample in GSE214334. (C) Volcano plot of DEGs between MS
and NC. (D) GO enrichment analysis of upregulated genes in MS compared with NC. (E) GO enrichment analysis of downregulated genes in MS
compared with NC. (F) KEGG enrichment analysis of upregulated and downregulated genes in MS compared with NC. MS, multiple sclerosis; PCA,
principal component analysis; DEGs, differentially expressed genes; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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interaction with cytokine and cytokine receptor, Cytokine–cytokine

receptor interaction, and Chemokine signaling pathway (Figure 3F).

Indeed, GSEA results showed NSCLC was significantly enriched

in the Cell cycle (normalized enrichment score (NES) = 1.68, q

value < 0.001) and Neuroactive ligand−receptor interaction (NES =

1.44, q value < 0.001) and significantly not enriched in Th17 cell

differentiation (NES = −2.19, q value < 0.001) (Figures 3G–I).
Identification of shared gene signatures
between MS and NSCLC

A total of 239 DEGs between MS and NC (false discovery rate

(FDR) < 0.05) and 9,503 DEGs between NSCLC and NC (FDR <

0.05) were identified. Using the Venn tool, we finally obtained 102

shared genes, including PDE4A, TTR, NPTX2, IGHG1, ALOX15B,

CD163, MT3, and IL1RL1 (Figure 4A). Enrichment analysis

showed the shared genes enriched response to the bacterium,

inflammatory response, and immune effector process (Figure 4B).

Co-expression network showed potential correlations among these
Frontiers in Immunology 06
shared genes (Figures 4C, D). PPI network analysis showed a shared

regulatory network between MS and NSCLC (Figure 4E). A portion

of node genes, including CD163, IL10RA, TLR8, and NFKBIA, were

identified, implying the potential shared mechanisms between MS

and NSCLC, such as the formation of the local immune

environment and cell motility.
Further analysis of shared molecular
mechanisms between MS and NSCLC

We used WGCNA with adequate soft power for the further

analysis of shared molecular mechanisms between MS and NSCLC

(Figures S3A, D). MS patients were divided into relapse–remitting

MS, primary progressive MS, and secondary progressive MS groups.

By performing the analysis on GSE214334, we obtained 16 modules

of genes closely related to the occurrence of MS compared to

normal white matter (Figure 5A). WGCNA of GSE19188 showed

13 modules of genes closely related to the occurrence of NSCLC

compared to normal lung tissue (Figure 5B). These modules showed
B C
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FIGURE 3

Identification of the unique gene signatures of NSCLC. (A) PCA of NSCLC samples of the GSE19188 dataset including 191 NSCLC and 65 adjacent
normal lung tissue samples. (B) Correlation heatmap among NSCLC samples in GSE19188. (C) Volcano plot of DEGs between NSCLC and NC.
(D) GO enrichment analysis of upregulated genes in NSCLC compared with NC. (E) GO enrichment analysis of downregulated genes in NSCLC
compared with NC. (F) KEGG enrichment analysis of upregulated and downregulated genes in NSCLC compared with NC. (G) GSEA results between
NSCLC and NC in Cell cycle. (H) GSEA results between NSCLC and NC in Neuroactive ligand−receptor interaction. (I) GSEA results between NSCLC
and NC in Pentose and glucuronate interconversions. NSCLC, non-small cell lung cancer; PCA, principal component analysis; DEGs, differentially
expressed genes; NC, normal control; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis.
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respective associations with other modules (Figures S3B, E) and

formed specific gene networks (Figures S3C, F). The blue module in

GSE214334 showed the highest correlation with MS occurrence (R

= 0.68, p = 0.002), while the blue module in GSE19188 showed the

highest correlation with NSCLC occurrence (R = 0.79, p < 0.001)

(Figures 5C, D). Moreover, the blue module in GSE214334 showed

a correlation with the gender of MS patients (R = 0.3, p = 0.2), while

the gray module in GSE19188 showed a significant correlation with

the gender of NSCLC patients (R = 0.25, p = 0.001).

There was a high (R = 0.94, p < 0.001) significant correlation

between gene significance for overall survival (OS) module

members in the blue module (Figure 5E). Venn plot shows the

blue module in MS, blue module in NSCLC, DEGs in MS, and

DEGs in NSCLC. Particularly, in order to improve accuracy, we

introduce LUSC and GTEx lung tissue RNA-seq data and

successfully identified the DEGs (log2FC > 1, q value < 0.05),

with a total of 5,964 genes. Finally, we obtained one shared gene,
Frontiers in Immunology 07
PDE4A, which might be the most important shared gene during the

progression of these two diseases (Figure 5F).
The expression of PDE4A and its impact on
the survival of NSCLC patients

Next, we speculated whether PDE4A had different expression

patterns in normal and tumor tissues. Indeed, it seemed that

PDE4A was differentially expressed in diverse cancer types

(Figure 6A). For example, PDE4A was expressed significantly

higher in stomach adenocarcinoma rather than in normal

stomach tissue, and it was expressed significantly higher in

cholangiocarcinoma rather than in normal biliary tract tissue,

which suggested a crucial role of PDE4A in cancer progression.

Moreover, PDE4A was expressed significantly lower in NSCLC

tissue compared with normal lung tissue (Figure 6B). However, the
B
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FIGURE 4

Identification of shared gene signatures between MS and NSCLC. (A) Venn plot of shared DEGs between MS and NSCLC. (B) Enrichment analysis of
shared gene signatures. (C) Co-expression network of diverse DEGs. (D) Co-expression network of diverse DEGs exhibited by p-value. (E) PPI
network of shared DEGs between MS and NSCLC. MS, multiple sclerosis; NSCLC, non-small cell lung cancer; DEGs, differentially expressed genes;
PPI, protein–protein interaction.
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protein level of PDE4A was opposite from the RNA level,

suggesting potential post-translational regulation (Figures 6C, D).

Survival analysis showed NSCLC patients with higher PDE4A

expression levels had worse prognoses, indicating the pro-tumor

role of PDE4A (Figure 6E).
The influence of PDE4A expression on
molecular mechanisms during the
progression of NSCLC

In order to figure out how PDE4A affects the progression of

NSCLC, we divided NSCLC patients into two groups: the PDE4A

high-expression group and the PDE4A low-expression group. The

volcano plot shows that there were different expressed patterns

between the PDE4A high-expression group and the PDE4A low-

expression group (Figure 7A). The PDE4A high-expression group
Frontiers in Immunology 08
expressed significantly higher levels of AGER, ITLN1, GKN2, and

PAEP, whereas it expressed significantly lower levels of GHRH,

ATP4B, APOA1, and APOA2.

GO analysis showed that upregulated genes in the PDE4A high-

expression group were enriched in extracellular structure

organization, collagen-containing extracellular matrix, and

carbohydrate binding (Figure 7B), while downregulated genes in

the PDE4A high-expression group were enriched in epidermis

development, intermediate filament cytoskeleton, and signaling

receptor activator activity (Figure 7C). KEGG analysis showed

that upregulated genes in the PDE4A high-expression group were

enriched in complement and coagulation cascades and malaria,

while downregulated genes in NSCLC were enriched in retinol

metabolism and drug metabolism-cytochrome P450 (Figure 7D).

GSEA results showed the PDE4A high-expression group was

significantly enriched in complement and coagulation cascades

(NES = 2.07, q value < 0.001), chemokine signaling pathway
B
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FIGURE 5

Further analysis of shared molecular mechanisms between MS and NSCLC. Cluster dendrogram of co-expressed genes in MS (A) and NSCLC
(B). Heatmap of module–trait relationships in MS (C) and NSCLC (D). Scatter plot of gene significance for OS vs. module member in blue module
(E). (F) Venn plot of blue module in MS, blue module in NSCLC, DEGs in MS, and DEGs in NSCLC. MS, multiple sclerosis; NSCLC, non-small cell lung
cancer; OS, overall survival; DEGs, differentially expressed genes.
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(NES = 1.90, q value < 0.001), Th17 cell differentiation (NES = 2.19,

q value < 0.001), and cytokine–cytokine receptor interaction (NES =

2.11, q value < 0.001) (Figure 7E). The PPI network of PDE4A

showed that PDE4A, PDE4D, and PDE4B might integrally work

together to influence the progression of NSCLC (Figure 7F).
The association between PDE4A and the
local immune environment in NSCLC

Considering that PDE4A could influence the immune process

according to the above analysis, we next tried to elucidate the

association between PDE4A and the local immune environment in

NSCLC. PDE4A expression showed a significantly high association with

the local immune environment in NSCLC (Figure 8A), as with immune

checkpoint (Figure 8B) and immune checkpoint blockade (Figure 8C).

Interestingly, PDE4A expression showed a significant positive

correlation with cancer-associated fibroblast in most cancer types

(Figure 8D). As for NSCLC, PDE4A expression also showed a
Frontiers in Immunology 09
significant positive correlation with cancer-associated fibroblast in

all methods: EPIC (R = 0.414, p < 0.001), MCPCOUNTER (R =

0.396, p < 0.001), XCELL (R = 0.252, p < 0.001), and TIDE (R =

0.357, p < 0.001) (Figure 8E).
Diversified treatment response of NSCLC
with different PDE4A expression levels

Finally, we sought to figure out whether PDE4A expression

would affect the treatment response of different NSCLC drugs.

According to Figure 9, PDE4A expression has specific impacts

on the treatment response of trametinib (R2 = −0.28,

p < 0.001), docetaxel (R2 = 0.22, p < 0.001), bleomycin (R2 = −0.25,

p < 0.001), cisplatin (R2 = 0.42, p < 0.001), temozolomide (R2 = 0.39, p <

0.001), vinorelbine (R2 = 0.25, p < 0.001), rapamycin (R2 = −0.27,

p < 0.001), vinblastine (R2 = 0.26, p < 0.001), pyrimethamine

(R2 = −0.28, p < 0.001), and crizotinib (R2 = −0.24, p < 0.001) during

treatment of NSCLC.
B

C

D

E
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FIGURE 6

The expression of PDE4A and its impact on survival of NSCLC patients. (A) The expression of PDE4A on various cancers and normal tissues. (B) The
expression of PDE4A on LUSC. (C) The protein level of PDE4A on normal lung tissue test by IHC. (D) The protein level of PDE4A on NSCLC tumor
tissue test by IHC. (E) The impact of PDE4A expression on survival of NSCLC patients. NSCLC, non-small cell lung cancer; LUSC, lung squamous cell
carcinoma; IHC, immunohistochemistry. *p<0.05 , **p<0.01, ***p<0.001.
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Discussion

With the development of society, chronic diseases and

comorbidities (including complex diseases) have become the main

health problems and causes of death. MS, the most common

demyelinating disease of the central nervous system, has caused

pain and inconvenience to more than 2 million people worldwide.

Although multiple sclerosis itself does not cause death, a number of

complications can seriously affect the quality of life and mortality of

patients. The prospective cohort study by Grytten et al. found that

MS patients had a higher risk of cancer than the population control

group, with a 66% increased risk of respiratory system tumors at 65

years of age (1). NSCLC is the most prevalent type of lung cancer,

accounting for 85% of all lung cancer cases (7). Most patients are

diagnosed at an advanced stage, resulting in poor prognoses. The

association between MS and NSCLC has been demonstrated in

previous clinical cohorts, and earlier studies have explored genomic

profiles associated with MS and NSCLC (8, 9). However, the

molecular mechanisms underlying this association have not been

comprehensively studied.

It has been reported that immune dysregulation, both locally

and systemically, plays a pivotal role in the development of MS (10).

Similarly, there is compelling evidence that the development of

NSCLC is closely related to alterations in the tumor immune

microenvironment (11). Given these observations, it is intriguing
Frontiers in Immunology 10
to ask whether the two diseases share similar immune

microenvironments during their pathogenesis. To address this

question, we conducted a joint analysis to identify characteristic

genes involved in the development of both lung cancer and MS. Our

investigation resulted in the identification of 102 common genes,

including PDE4A, TTR, NPTX2, IGHG1, ALOX15B, CD163, MT3,

and IL1RL1. Significantly, this set of common genes includes a large

number of immune-related genes, suggesting that the two diseases

may share similar alterations in the immune microenvironment

during their pathogenesis. Moreover, pathway enrichment analysis

supports the involvement of immune responses, immune effector

processes, and cytokine signaling pathways in the common

pathogenesis of these two diseases.

In order to investigate the potential relationship between MS

and NSCLC, we employed WGCNA to identify gene modules

associated with the development of these two diseases. We then

conducted a joint analysis of the modular genes most closely related

to the development of both diseases, identifying overlapping genes

that are considered shared genes and may be related to the

pathogenesis of both MS and NSCLC. Additionally, we examined

the biological processes and signaling pathways in which these

shared genes are involved. Intriguingly, enrichment analysis

revealed that these shared genes were enriched in responses to

bacteria, inflammatory reactions, and immune effects, which are

known to be associated with the pathogenesis of both MS and
B C

D E F

A

FIGURE 7

The influence of PDE4A expression on molecular mechanisms during the progression of NSCLC. (A) Volcano plot shows DEGs between PDE4A
high-expression group and PDE4A low-expression group. (B) GO enrichment analysis of significantly upregulated genes in PDE4A high-expression
group. (C) GO enrichment analysis of significantly downregulated genes in PDE4A high-expression group. (D) KEGG enrichment analysis of
upregulated and downregulated genes in PDE4A high-expression group. (E) GSEA results between PDE4A high-expression group and PDE4A low-
expression group. (F) PPI network of PDE4A. NSCLC, non-small cell lung cancer; DEGs, differentially expressed genes; GO, gene ontology; KEGG,
Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis; PPI, protein–protein interaction.
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FIGURE 8

The association between PDE4A and local immune environment in NSCLC. (A) The association between PDE4A expression and local immune
environment in NSCLC using the XCELL method. (B) The association between PDE4A expression and immune checkpoint in NSCLC. (C) The
association between PDE4A expression and immune checkpoint blockade in NSCLC. (D) The correlation heatmap between PDE4A expression and
local cancer-associated fibroblast in NSCLC. (E) The scatter plot of correlation between PDE4A expression and local cancer-associated fibroblast in
NSCLC using different methods. NSCLC, non-small cell lung cancer. as with immune checkpoint. *p<0.05 , **p<0.01, ***p<0.001.
FIGURE 9

Diversified treatment response of NSCLC with different PDE4A expression. NSCLC, non-small cell lung cancer.
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NSCLC (10, 12, 13). Further analysis of a subset of nodal genes,

including CD163, IL10RA, TLR8, and NFKBIA, indicated potential

shared mechanisms between MS and NSCLC, such as the formation

of local immune environments and cell movement. To enhance our

findings, we integrated TCGA LUSC and GTEx lung tissue RNA-

seq data and ultimately identified only one common gene, PDE4A,

which may be the most crucial shared gene in the progression of

both diseases. Furthermore, we used single-cell sequencing data to

evaluate the local immune microenvironment of MS and NSCLC

and observed some similar immune cell components in the immune

microenvironments of both diseases, such as T cells and fibroblasts.

Interestingly, we also observed that PDE4A expression showed a

significant positive correlation with cancer-associated fibroblast in

most cancer types. As for NSCLC, PDE4A expression also showed a

significant positive correlation with cancer-associated fibroblast.

Based on these findings, we can cautiously hypothesize that the

development of both diseases may involve some potential similar

changes in the immune microenvironment, which may contribute

to the further malignant progression of lung cancer.

The PDE4 family of phosphodiesterases has been identified as the

most diverse among all PDE families, with enzymes that are widely

distributed in various tissues and present in all major organs, including

the brain. Furthermore, PDE4 is abundant in immune and

inflammatory cells in lung diseases such as asthma (14). The PDE4

family is mainly composed of four gene products, PDE4A, PDE4B,

PDE4C, and PDE4D, as well as several N-terminal splice variants that

differ in their tissue and cell expression patterns (15). The hallmark of

this group of enzymes is their high affinity for cAMP and insensitivity

to cGMP and calmodulin (16). Specifically, PDE4A is capable of

hydrolyzing the second messenger cyclic adenosine monophosphate

(cAMP) with a micromolar Km value and acts as a regulator and

mediator of many cell-to-cell signaling responses, thereby playing a

critical role in numerous important physiological processes by

modulating the cellular concentration of cAMP (17). In recent years,

the PDE4 family has been the subject of extensive research due to its

significance as a major therapeutic target for intervention in various

inflammatory diseases, such as asthma, chronic obstructive pulmonary

disease (COPD), and rheumatoid arthritis (RA). This is primarily

because cAMP-specific PDEs, particularly PDE4, are themain subtypes

of PDE that regulate the activity of inflammatory cells. Consequently,

several PDE4 selective inhibitors have been developed for the treatment

of inflammatory diseases, including Zoryve emulsion for psoriasis and

roflumilast for asthma.

There are some existing studies on PDE4A in MS and lung

cancer. MS is characterized by chronic neuroinflammation,

demyelination, and destruction of oligodendrocytes, axons, and

neurons. Pro-inflammatory cytokines, including interferon-gamma

(IFN-gamma), tumor necrosis factor-a (TNF-a), interleukin-6 (IL-

6), interleukin-12 (IL-12), and interleukin-23 (IL-23), are crucial in

the pathogenesis of MS (18, 19). Evidence suggests that cAMP is a

crucial participant in regulating the production of pro-inflammatory

cytokines (20). Notably, cAMP analogs have been shown to have

anti-inflammatory and anti-apoptotic effects. Previous studies have

suggested that Dibutyryl-cAMP recruits endogenous neural stem

cells and promotes their differentiation, thereby facilitating myelin

lipid repair in MS (21). Given the critical role of PDE4A in cAMP
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hydrolysis, it is reasonable to hypothesize that this protein contributes

to the pathogenesis of MS. Previous studies have also highlighted the

importance of PDE4A in various tumors (22). In particular, PDE4A

expression is upregulated in various lung cancer cell lines, and its

expression can induce epithelial–mesenchymal transition in type 1

alveolar epithelial cells after stimulation with transforming growth

factor-b2 (TGF-b2). E-cadherin loss, which is a hallmark of

metastasis, is significantly associated with the upregulation of

PDE4A mRNA and protein expression after stimulation with

transforming growth factor-b1 (TGF-b1) (23). Moreover, hypoxia-

inducible factor (HIF) has been linked to PDE4A expression in a

subset of lung cancer cell lines during hypoxia, and PDE4A

knockdown has been shown to reduce the secretion of vascular

endothelial growth factor (VEGF) and has anti-tumor effects in

lung cancer xenografts (24). Thus, it is clear that PDE4A is a

promising therapeutic target in MS and lung cancer and warrants

further investigation.

In our investigation, we employed a systemic biology analysis

method to identify the genes with the highest correlation in the

comorbidity of MS and NSCLC. Among the genes analyzed, PDE4A

exhibited the highest correlation. Notably, patients with high

PDE4A expression showed poor prognoses, suggesting that this

gene may be associated with increased incidence and mortality of

NSCLC in MS patients. Our investigation further revealed the

regulatory effects of PDE4A on other immune cells and its

association with immune checkpoints, indicating its significant

role in regulating the human immune response in NSCLC.

Additionally, our findings demonstrated that PDE4A was closely

associated with the sensitivity of multiple NSCLC therapeutic drugs.

Future research targeting PDE4A therapy may improve the

incidence and mortality of NSCLC in MS patients.

However, it is important to acknowledge the limitations of our

study. Although our findings suggest a potential molecular

mechanism linking MS and NSCLC, our results are based solely

on data analysis and lack experimental validation, which is not quite

a comprehensive analysis. Therefore, further investigation is

required to confirm our hypothesis and establish a causal

relationship. Nonetheless, our study has contributed novel

insights into the comorbidity of MS and NSCLC and has

identified PDE4A as a promising therapeutic target and immune-

related biomarker for these patients.
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SUPPLEMENTARY FIGURE 1

Gene expression distribution of MS. (A) Top 100 standard deviation genes of
MS. (B) Heatmap of representative DEGs between MS and NC.

SUPPLEMENTARY FIGURE 2

Gene expression distribution of NSCLC. (A) Top 100 standard deviation genes

of NSCLC. (B) Heatmap of representative DEGs between NSCLC and NC.

SUPPLEMENTARY FIGURE 3

WGCNA of MS and NSCLC. Soft power distribution of MS (A) and NSCLC (D).
Correction heatmap among gene modules of MS (B) and NSCLC (E).
Visualization of the gene network of MS (C) and NSCLC (F) using heatmap.
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