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Introduction: The association between multiple sclerosis (MS) and non-small
cell lung cancer (NSCLC) has been the subject of investigation in clinical cohorts,
yet the molecular mechanisms underpinning this relationship remain
incompletely understood. To address this, our study aimed to identify shared
genetic signatures, shared local immune microenvironment, and molecular
mechanisms between MS and NSCLC.

Methods: We selected multiple Gene Expression Omnibus (GEO) datasets,
including GSE19188, GSE214334, GSE199460, and GSE148071, to obtain gene
expression levels and clinical information from patients or mice with MS and
NSCLC. We employed Weighted Gene Co-expression Network Analysis
(WGCNA) to investigate co-expression networks linked to MS and NSCLC and
used single-cell RNA sequencing (scRNA-seq) analysis to explore the local
immune microenvironment of MS and NSCLC and identify possible
shared components.

Results: Our analysis identified the most significant shared gene in MS and
NSCLC, phosphodiesterase 4A (PDE4A), and we analyzed its expression in
NSCLC patients and its impact on patient prognosis, as well as its molecular
mechanism. Our results demonstrated that high expression of PDE4A was
associated with poor prognoses in NSCLC patients, and Gene Set Enrichment
Analysis (GSEA) revealed that PDE4A is involved in immune-related pathways and
has a significant regulatory effect on human immune responses. We further
observed that PDE4A was closely linked to the sensitivity of several
chemotherapy drugs.
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Conclusion: Given the limitation of studies investigating the molecular
mechanisms underlying the correlation between MS and NSCLC, our findings
suggest that there are shared pathogenic processes and molecular mechanisms
between these two diseases and that PDE4A represents a potential therapeutic
target and immune-related biomarker for patients with both MS and NSCLC.

KEYWORDS

shared gene signature, molecular mechanisms, multiple sclerosis, non-small cell lung
cancer, shared local immune environment

Introduction

In recent years, the investigation of cancer risks in various chronic
diseases has gained increasing attention in the scientific community.
Notably, a long-term study conducted in Norway suggests that patients
with multiple sclerosis (MS) may face an elevated risk of developing
cancers, particularly respiratory, urogenital, and central nervous system
cancers, with a 66% increased risk of respiratory system cancers (1). It
is worth noting that cancer has been suggested as one of the principal
causes of mortality among MS patients, who have a significantly
reduced life expectancy (2). The etiology of MS involves a
combination of autoimmunity, viral infection, genetic susceptibility,
environmental factors, and individual predisposing factors (3).
Notably, the malfunction and activation of self-reactive immune cells
may underlie the pathogenesis of MS.

The association between MS and cancer risks has been
extensively investigated, with evidence suggesting that MS
patients may exhibit health behaviors associated with increased
lung cancer risk, including smoking, lack of exercise, and obesity.
Additionally, neurologic adverse events, including MS, have been
identified as rare but potentially fatal complications of
immunotherapy using immune checkpoint inhibitors (ICIs) for
lung cancer, further highlighting the potential connection between
MS and lung cancer (4). A few studies support an inflammatory
patient-dependent immune-mediated component for MS,
identifying genetic and environmental risk factors and showing
that the pathogenic mechanism of T cell-mediated MS is similar to
that of ICIs (5, 6), which suggests that MS and lung cancer might
share common risk factors and potentially similar pathogenic
mechanisms. Non-small cell lung cancer (NSCLC) accounts for
85% of all cases of lung cancer (7). However, to date, there have
been few studies exploring the molecular mechanisms underlying
the correlation between MS and NSCLC, and the common
pathogenic mechanisms of MS and NSCLC are still unclear. As
NSCLC has a high incidence in MS, investigating the mechanisms
by which MS’s autoimmune processes promote NSCLC
development can provide unique insights into the complex events
behind NSCLC occurrence and help identify potential diagnostic
and prognostic biomarkers and therapeutic targets.
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In this study, we employed bioinformatics analysis techniques to
uncover shared mechanisms and potential therapeutic targets for
both diseases. The identification of these mechanisms and targets
may aid in improving the management of MS patients and lead to
earlier detection and treatment of NSCLC.

Methods
Data collection and processing

We searched MS data using the keyword “multiple sclerosis” and
NSCLC data using the keyword “non-small cell lung cancer” within
the Gene Expression Omnibus (GEO) dataset collection. The
following conditions were required for each dataset: 1) the datasets
must be complete and correct. 2) The datasets must be normalized
using the corresponding method, such as the robust multi-array
average (RMA) method. 3) The number of samples in each group
must be more than three to ensure the accuracy of the conclusion.
Following the above criteria, we finally obtained adequate datasets
including GSE19188, GSE214334, GSE199460, and GSE148071,
some of which included clinical information on patients, such as
age and gender. GSE19188 contained 91 NSCLC and 65 adjacent
normal lung tissue samples. GSE214334 contained three relapse-
remitting MS, four primary progressive MS, four secondary
progressive MS, and seven non-MS control white matter tissues.
GSE199460 contained three experimental autoimmune
encephalomyelitis (EAE) and three controls, which extracted brains
from myelin oligodendrocyte glycoprotein (MOG)-induced EAE at
the peak of the disease and control mice to isolate single cells
following single-cell RNA-sequencing (scRNA-seq) using a
microdroplet-based method from 10X Genomics. GSE148071
contained 42 scRNA-seq of tumor tissues of NSCLC patients.
Moreover, to elevate the reliability of our conclusion, we also
enrolled and filtered The Cancer Genome Atlas (TCGA) lung
squamous cell carcinoma (LUSC) and lung adenocarcinoma
(LUAD) RNA-seq data, as well as The Genotype-Tissue Expression
(GTEx) project lung tissue RNA-seq data, and we excluded those data
with incomplete clinical and survival information.
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Analysis of bulk gene expression data

We analyzed bulk gene expression data mainly using
RNAseqStat (0.1.0) R package, which was an integrated tool for
processing gene expression data. After reading the corresponding
datasets and group information, the pipeline analysis began. First,
principal component analysis (PCA) of all samples in each dataset
was performed to pre-check sample distribution. Second, the
correlation among samples and the standard deviation of genes
were calculated for the evaluation of potential relationships among
samples. Third, after quality control (QC), differentially expressed
genes (DEGs) were computed and exhibited by volcano plot and
heatmap. Fourth, we performed gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment of
upregulated or downregulated genes in each dataset using DEGs.
Moreover, further enrichment analysis was performed on
Metascape. After that, a portion of crucial pathways or processes
was further performed in Gene Set Enrichment Analysis (GSEA)
and visualization. Finally, we used the Venn tool for the
identification of the shared gene signatures of two diseases.

Weighted gene co-expression
network analysis

We used the Weighted Gene Co-Expression Network Analysis
(WGCNA) tool to evaluate gene expression patterns in MS and
NSCLC. The input data were the gene expression matrix and
clinical information of each dataset. After loading the gene
expression matrix, the missing values were checked, and the
outliers were identified. Samples were clustered to figure out
whether there were outliers. Then, the expression networks were
constructed, and gene modules were identified; 7 were chosen for
the soft power of MS and 5 for NSCLC in consideration of the best
soft power estimation. Then, the modules were associated with
phenotypic data and identified hub genes. Finally, the hub gene co-
expression networks were constructed.

Construction of protein—protein
interaction network

We constructed a protein—protein interaction (PPI) network
with the help of STRING (https://string-db.org/). After inputting
sharing proteins of MS and NSCLC identified by the above process,
we constructed the PPI network including many edges and nodes,
representing a potential relationship between two proteins. We
performed GeneMANIA (https://genemania.org) to help to predict
the function of core shared genes of MS and NSCLC and to
construct a PPI network.

ScRNA-seq analysis process

ScRNA-seq analysis was performed on GSE199460 and
GSE148071. The data went through the process of normalizing,
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finding variables, scaling, running PCA, scoring jack straw, finding
neighbors, finding clusters, and running t-distributed stochastic
neighbor embedding (tSNE) with the help of the Seurat package.
After annotation of single cells according to the expression of
markers, DEGs and cell fractions were calculated and visualized
by the scRNAtoolVis package. The CellChat package was used to

construct and visualize intercellular communication networks.

Protein intensity verification

Protein intensity was the result of gene expression, while
NSCLC patients had diverse protein patterns. The Human
Protein Atlas (https://www.proteinatlas.org/) was an online web
tool for evaluating protein patterns for cancer and normal tissues
using immunohistochemistry (IHC). By carefully searching and
filtering, the expression of the given protein in NSCLC tissue and
normal lung tissue was finally obtained.

Survival analysis

Survival analysis of NSCLC patients was performed on Kaplan-
Meier Plotter (http://kmplot.com/analysis/). Patients were divided
into two groups according to given gene expression. Immune
infiltration condition was used for further stratified analysis to
uncover the potential relationship between a given gene and the
immune microenvironment of NSCLC patients.

Immune infiltration analysis

We used the online immune infiltration analysis tool TIMER 2.0
(http://timer.cistrome.org/) for evaluating the special relationship
between a given gene and the immune microenvironment of
NSCLC. TIMER 2.0 is a comprehensive resource for the systematic
analysis of immune infiltrates across diverse cancer types. The web
server provided immune infiltrate abundances estimated by multiple
immune deconvolution methods, and we used it to generate figures
dynamically to explore tumor immunological, clinical, and genomic
features comprehensively. A portion of immune infiltration analysis
was facilitated and visualized with Aclbi (www.aclbi.com).

Drug sensitivity analysis

Genomics of Drug Sensitivity in Cancer (GDSC) (https://
www.cancerrxgene.org) was used to predict drug treatment
response based on specific gene expression. A total of 1,017
NSCLC patients were taken into consideration. IC50 was an
important indicator in evaluating drug efficacy and sample
treatment response. This tool was based on GDSC, the largest
open pharmacogenomics database at present.
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FIGURE 1
Evaluation of shared local immune environment between MS and NSCLC. (A) tSNE plot of scRNA-seq data of three EAE and three NC samples
grouped by cell types. (B) tSNE plot of scRNA-seq data of three EAE and three NC samples grouped by sample types. (C) Cell fraction of different
cell types in EAE and NC samples. (D) Volcano plot of upregulated and downregulated DEGs of EAE and NC groups. (E) Communication patterns of
target cells in MS. (F) tSNE plot of scRNA-seq data of 42 NSCLC samples grouped by cell types. (G) tSNE plot of scRNA-seq data of 42 NSCLC
samples grouped by samples. (H) Cell fraction of different cell types in NSCLC samples. (I) Volcano plot of upregulated and downregulated DEGs in
each cell type. (J) Communication patterns of target cells in NSCLC. MS, multiple sclerosis; NSCLC, non-small cell lung cancer; tSNE, t-distributed
stochastic neighbor embedding; scRNA-seq, single-cell RNA-sequencing; EAE, experimental autoimmune encephalomyelitis; NC, normal control;
DEGs, differentially expressed genes.

Results

Evaluation of shared local immune
environment between MS and NSCLC

In MS, an immune-related disease, the local immune
environment was one of the most important factors affecting its
progression. Considering the fact that NSCLC has a high incidence
in MS, we speculated whether there was a shared local immune
environment between NSCLC and MS. We used scRNA-seq data of
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the EAE mouse model to imitate the occurrence of MS. Our results
showed that EAE had a unique local immune environment when
compared with normal control (NC), including a reduced B-cell
faction, increased macrophage fraction, reduced fibroblast fraction,
and reduced neutrophils (Figures 1A-C). A portion of immune-
related genes was differentially expressed in the EAE and NC
groups, such as Cd74 and Ccl5 (Figure 1D). A portion of cells
showed a potential relationship in secreted signaling (Figure 1E). As
for NSCLC, different patients had diverse immune infiltration
(Figures 1F-H). However, a portion of immune components in
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NSCLC was the same as that in MS, such as macrophage, B cell, and
fibroblast. These immune cells had different gene expression
patterns (Figure 1I). Similarly, these immune components showed
a potential relationship in secreted signaling (Figure 1J).

Uncovering gene characteristics during the
progression of MS

In order to identify molecular mechanisms and gene signatures
between MS and NSCLC, first, the gene variation during the
progression of MS was evaluated. A total of gene expression
profiles of 11 MS white matter tissues and seven non-MS control
white matter tissues were analyzed. PCA of these samples showed
different gene expression patterns of MS tissue and relatively
concentrated patterns of NC tissue (Figure 2A), which was
possibly a result of different subtypes of MS. Although there were
differences between MS subtypes, the correlation of samples
suggested the potential correlation among MS (Figure 2B).

After calculating the standard deviation expression of genes
(Figure S1A) and dividing samples into two groups, we obtained
DEGs between MS and normal control (Figure 2C). IGHGI, IGKC,
IGLC2, and IGHG2 were significantly upregulated in MS, while
MEFRP, NTS, KC6, and TTR were significantly downregulated in
MS. A portion of important genes was exhibited by heatmap (Figure
S1B). GO analysis showed that upregulated genes in MS were
enriched in the regulation of trans-synaptic signaling, synaptic
membrane, and ion channel activity (Figure 2D), while
downregulated genes in MS were enriched in cilium organization,
motile cilium, and tubulin binding (Figure 2E). KEGG analysis
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showed that upregulated genes in MS were enriched in the
Neuroactive ligand-receptor interaction and Calcium signaling
pathway, while downregulated genes in MS were enriched in
Malaria and ECM-receptor interaction (Figure 2F).

Identification of the unique gene
signatures of NSCLC

Next, we sought to unveil the unique gene signatures of NSCLC.
By integrating 191 NSCLC and 65 adjacent normal lung tissue
samples in the GSE19188 dataset and performing PCA, we found
that there was an obvious distinction between NSCLC and NC
(Figure 3A). Correlation analysis also showed homogeneity among
NSCLC samples (Figure 3B).

After calculating the standard deviation expression of genes
(Figure S2A) and dividing samples into two groups, we obtained
DEGs between NSCLC and NC (Figure 3C). CHGA, SST, DLK1,
and PCKI1 were significantly upregulated in NSCLC, while IL6,
IL1RL1, SELE, and S100A12 were significantly downregulated in
NSCLC. A portion of important genes is exhibited by heatmap
(Figure S2B).

GO analysis showed that upregulated genes in NSCLC were
enriched in epidermis development, spindle, and microtubule
binding (Figure 3D), while downregulated genes in NSCLC were
enriched in regulation of vasculature development, collagen-
containing extracellular matrix, and enzyme inhibitor activity
(Figure 3E). KEGG analysis showed that upregulated genes in
NSCLC were enriched in Cell cycle and DNA replication, while
downregulated genes in NSCLC were enriched in viral protein
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Uncovering gene characteristics during progression of MS. (A) PCA of MS samples of GSE214334 datasets including 11 MS white matter tissues and
seven non-MS control white matter tissues. (B) Correlation heatmap among each MS sample in GSE214334. (C) Volcano plot of DEGs between MS
and NC. (D) GO enrichment analysis of upregulated genes in MS compared with NC. (E) GO enrichment analysis of downregulated genes in MS
compared with NC. (F) KEGG enrichment analysis of upregulated and downregulated genes in MS compared with NC. MS, multiple sclerosis; PCA,
principal component analysis; DEGs, differentially expressed genes; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Identification of the unique gene signatures of NSCLC. (A) PCA of NSCLC samples of the GSE19188 dataset including 191 NSCLC and 65 adjacent
normal lung tissue samples. (B) Correlation heatmap among NSCLC samples in GSE19188. (C) Volcano plot of DEGs between NSCLC and NC.

(D) GO enrichment analysis of upregulated genes in NSCLC compared with NC. (E) GO enrichment analysis of downregulated genes in NSCLC
compared with NC. (F) KEGG enrichment analysis of upregulated and downregulated genes in NSCLC compared with NC. (G) GSEA results between
NSCLC and NC in Cell cycle. (H) GSEA results between NSCLC and NC in Neuroactive ligand-receptor interaction. (I) GSEA results between NSCLC
and NC in Pentose and glucuronate interconversions. NSCLC, non-small cell lung cancer; PCA, principal component analysis; DEGs, differentially
expressed genes; NC, normal control; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis.

interaction with cytokine and cytokine receptor, Cytokine—cytokine
receptor interaction, and Chemokine signaling pathway (Figure 3F).
Indeed, GSEA results showed NSCLC was significantly enriched
1.68, q
value < 0.001) and Neuroactive ligand—receptor interaction (NES =
1.44, q value < 0.001) and significantly not enriched in Th17 cell
differentiation (NES = -2.19, q value < 0.001) (Figures 3G-I).

in the Cell cycle (normalized enrichment score (NES) =

Identification of shared gene signatures
between MS and NSCLC

A total of 239 DEGs between MS and NC (false discovery rate
(FDR) < 0.05) and 9,503 DEGs between NSCLC and NC (FDR <
0.05) were identified. Using the Venn tool, we finally obtained 102
shared genes, including PDE4A, TTR, NPTX2, IGHG1, ALOX15B,
CD163, MT3, and IL1IRL1 (Figure 4A). Enrichment analysis
showed the shared genes enriched response to the bacterium,
inflammatory response, and immune effector process (Figure 4B).
Co-expression network showed potential correlations among these

Frontiers in Immunology

06

shared genes (Figures 4C, D). PPI network analysis showed a shared
regulatory network between MS and NSCLC (Figure 4E). A portion
of node genes, including CD163, ILI0RA, TLR8, and NFKBIA, were
identified, implying the potential shared mechanisms between MS
and NSCLC, such as the formation of the local immune
environment and cell motility.

Further analysis of shared molecular
mechanisms between MS and NSCLC

We used WGCNA with adequate soft power for the further
analysis of shared molecular mechanisms between MS and NSCLC
(Figures S3A, D). MS patients were divided into relapse-remitting
MS, primary progressive MS, and secondary progressive MS groups.
By performing the analysis on GSE214334, we obtained 16 modules
of genes closely related to the occurrence of MS compared to
normal white matter (Figure 5A). WGCNA of GSE19188 showed
13 modules of genes closely related to the occurrence of NSCLC
compared to normal lung tissue (Figure 5B). These modules showed
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respective associations with other modules (Figures S3B, E) and
formed specific gene networks (Figures S3C, F). The blue module in
GSE214334 showed the highest correlation with MS occurrence (R
= 0.68, p = 0.002), while the blue module in GSE19188 showed the
highest correlation with NSCLC occurrence (R = 0.79, p < 0.001)
(Figures 5C, D). Moreover, the blue module in GSE214334 showed
a correlation with the gender of MS patients (R = 0.3, p = 0.2), while
the gray module in GSE19188 showed a significant correlation with
the gender of NSCLC patients (R = 0.25, p = 0.001).

There was a high (R = 0.94, p < 0.001) significant correlation
between gene significance for overall survival (OS) module
members in the blue module (Figure 5E). Venn plot shows the
blue module in MS, blue module in NSCLC, DEGs in MS, and
DEGs in NSCLC. Particularly, in order to improve accuracy, we
introduce LUSC and GTEx lung tissue RNA-seq data and
successfully identified the DEGs (log2FC > 1, q value < 0.05),
with a total of 5,964 genes. Finally, we obtained one shared gene,
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PDE4A, which might be the most important shared gene during the
progression of these two diseases (Figure 5F).

The expression of PDE4A and its impact on
the survival of NSCLC patients

Next, we speculated whether PDE4A had different expression
patterns in normal and tumor tissues. Indeed, it seemed that
PDE4A was differentially expressed in diverse cancer types
(Figure 6A). For example, PDE4A was expressed significantly
higher in stomach adenocarcinoma rather than in normal
stomach tissue, and it was expressed significantly higher in
cholangiocarcinoma rather than in normal biliary tract tissue,
which suggested a crucial role of PDE4A in cancer progression.
Moreover, PDE4A was expressed significantly lower in NSCLC
tissue compared with normal lung tissue (Figure 6B). However, the
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protein level of PDE4A was opposite from the RNA level,
suggesting potential post-translational regulation (Figures 6C, D).
Survival analysis showed NSCLC patients with higher PDE4A
expression levels had worse prognoses, indicating the pro-tumor
role of PDE4A (Figure 6E).

The influence of PDE4A expression on
molecular mechanisms during the
progression of NSCLC

In order to figure out how PDE4A affects the progression of
NSCLC, we divided NSCLC patients into two groups: the PDE4A
high-expression group and the PDE4A low-expression group. The
volcano plot shows that there were different expressed patterns
between the PDE4A high-expression group and the PDE4A low-
expression group (Figure 7A). The PDE4A high-expression group
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expressed significantly higher levels of AGER, ITLN1, GKN2, and
PAEP, whereas it expressed significantly lower levels of GHRH,
ATP4B, APOA1L, and APOA2.

GO analysis showed that upregulated genes in the PDE4A high-
expression group were enriched in extracellular structure
organization, collagen-containing extracellular matrix, and
carbohydrate binding (Figure 7B), while downregulated genes in
the PDE4A high-expression group were enriched in epidermis
development, intermediate filament cytoskeleton, and signaling
receptor activator activity (Figure 7C). KEGG analysis showed
that upregulated genes in the PDE4A high-expression group were
enriched in complement and coagulation cascades and malaria,
while downregulated genes in NSCLC were enriched in retinol
metabolism and drug metabolism-cytochrome P450 (Figure 7D).

GSEA results showed the PDE4A high-expression group was
significantly enriched in complement and coagulation cascades
(NES = 2.07, q value < 0.001), chemokine signaling pathway
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(NES = 1.90, q value < 0.001), Th17 cell differentiation (NES = 2.19,
q value < 0.001), and cytokine-cytokine receptor interaction (NES =
2.11, q value < 0.001) (Figure 7E). The PPI network of PDE4A
showed that PDE4A, PDE4D, and PDE4B might integrally work
together to influence the progression of NSCLC (Figure 7F).

The association between PDE4A and the
local immune environment in NSCLC

Considering that PDE4A could influence the immune process
according to the above analysis, we next tried to elucidate the
association between PDE4A and the local immune environment in
NSCLC. PDE4A expression showed a significantly high association with
the local immune environment in NSCLC (Figure 8A), as with immune
checkpoint (Figure 8B) and immune checkpoint blockade (Figure 8C).

Interestingly, PDE4A expression showed a significant positive
correlation with cancer-associated fibroblast in most cancer types
(Figure 8D). As for NSCLC, PDE4A expression also showed a
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significant positive correlation with cancer-associated fibroblast in
all methods: EPIC (R = 0.414, p < 0.001), MCPCOUNTER (R =
0.396, p < 0.001), XCELL (R = 0.252, p < 0.001), and TIDE (R =
0.357, p < 0.001) (Figure 8E).

Diversified treatment response of NSCLC
with different PDE4A expression levels

Finally, we sought to figure out whether PDE4A expression
would affect the treatment response of different NSCLC drugs.
According to Figure 9, PDE4A expression has specific impacts
on the treatment response of trametinib (R2 = —0.28,
p < 0.001), docetaxel (R* = 0.22, p < 0.001), bleomycin (R* = —0.25,
p < 0.001), cisplatin (R? = 0.42, p < 0.001), temozolomide (R* = 0.39, p <
0.001), vinorelbine (R* = 0.25, p < 0.001), rapamycin (R* = —0.27,
p < 0.001), vinblastine (R*> = 0.26, p < 0.001), pyrimethamine
(R? = -0.28, p < 0.001), and crizotinib (R* = —0.24, p < 0.001) during
treatment of NSCLC.
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Discussion

With the development of society, chronic diseases and
comorbidities (including complex diseases) have become the main
health problems and causes of death. MS, the most common
demyelinating disease of the central nervous system, has caused
pain and inconvenience to more than 2 million people worldwide.
Although multiple sclerosis itself does not cause death, a number of
complications can seriously affect the quality of life and mortality of
patients. The prospective cohort study by Grytten et al. found that
MS patients had a higher risk of cancer than the population control
group, with a 66% increased risk of respiratory system tumors at 65
years of age (1). NSCLC is the most prevalent type of lung cancer,
accounting for 85% of all lung cancer cases (7). Most patients are
diagnosed at an advanced stage, resulting in poor prognoses. The
association between MS and NSCLC has been demonstrated in
previous clinical cohorts, and earlier studies have explored genomic
profiles associated with MS and NSCLC (8, 9). However, the
molecular mechanisms underlying this association have not been
comprehensively studied.

It has been reported that immune dysregulation, both locally
and systemically, plays a pivotal role in the development of MS (10).
Similarly, there is compelling evidence that the development of
NSCLC is closely related to alterations in the tumor immune
microenvironment (11). Given these observations, it is intriguing
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to ask whether the two diseases share similar immune
microenvironments during their pathogenesis. To address this
question, we conducted a joint analysis to identify characteristic
genes involved in the development of both lung cancer and MS. Our
investigation resulted in the identification of 102 common genes,
including PDE4A, TTR, NPTX2, IGHGI, ALOX15B, CD163, MT3,
and ILIRLI. Significantly, this set of common genes includes a large
number of immune-related genes, suggesting that the two diseases
may share similar alterations in the immune microenvironment
during their pathogenesis. Moreover, pathway enrichment analysis
supports the involvement of immune responses, immune effector
processes, and cytokine signaling pathways in the common
pathogenesis of these two diseases.

In order to investigate the potential relationship between MS
and NSCLC, we employed WGCNA to identify gene modules
associated with the development of these two diseases. We then
conducted a joint analysis of the modular genes most closely related
to the development of both diseases, identifying overlapping genes
that are considered shared genes and may be related to the
pathogenesis of both MS and NSCLC. Additionally, we examined
the biological processes and signaling pathways in which these
shared genes are involved. Intriguingly, enrichment analysis
revealed that these shared genes were enriched in responses to
bacteria, inflammatory reactions, and immune effects, which are
known to be associated with the pathogenesis of both MS and
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NSCLC (10, 12, 13). Further analysis of a subset of nodal genes,
including CD163, IL10RA, TLR8, and NFKBIA, indicated potential
shared mechanisms between MS and NSCLC, such as the formation
of local immune environments and cell movement. To enhance our
findings, we integrated TCGA LUSC and GTEx lung tissue RNA-
seq data and ultimately identified only one common gene, PDE4A,
which may be the most crucial shared gene in the progression of
both diseases. Furthermore, we used single-cell sequencing data to
evaluate the local immune microenvironment of MS and NSCLC
and observed some similar immune cell components in the immune
microenvironments of both diseases, such as T cells and fibroblasts.
Interestingly, we also observed that PDE4A expression showed a
significant positive correlation with cancer-associated fibroblast in
most cancer types. As for NSCLC, PDE4A expression also showed a
significant positive correlation with cancer-associated fibroblast.
Based on these findings, we can cautiously hypothesize that the
development of both diseases may involve some potential similar
changes in the immune microenvironment, which may contribute
to the further malignant progression of lung cancer.

The PDE4 family of phosphodiesterases has been identified as the
most diverse among all PDE families, with enzymes that are widely
distributed in various tissues and present in all major organs, including
the brain. Furthermore, PDE4 is abundant in immune and
inflammatory cells in lung diseases such as asthma (14). The PDE4
family is mainly composed of four gene products, PDE4A, PDE4B,
PDEAC, and PDE4D, as well as several N-terminal splice variants that
differ in their tissue and cell expression patterns (15). The hallmark of
this group of enzymes is their high affinity for cAMP and insensitivity
to cGMP and calmodulin (16). Specifically, PDE4A is capable of
hydrolyzing the second messenger cyclic adenosine monophosphate
(cAMP) with a micromolar Km value and acts as a regulator and
mediator of many cell-to-cell signaling responses, thereby playing a
critical role in numerous important physiological processes by
modulating the cellular concentration of cAMP (17). In recent years,
the PDE4 family has been the subject of extensive research due to its
significance as a major therapeutic target for intervention in various
inflammatory diseases, such as asthma, chronic obstructive pulmonary
disease (COPD), and rheumatoid arthritis (RA). This is primarily
because cAMP-specific PDEs, particularly PDE4, are the main subtypes
of PDE that regulate the activity of inflammatory cells. Consequently,
several PDE4 selective inhibitors have been developed for the treatment
of inflammatory diseases, including Zoryve emulsion for psoriasis and
roflumilast for asthma.

There are some existing studies on PDE4A in MS and lung
cancer. MS is characterized by chronic neuroinflammation,
demyelination, and destruction of oligodendrocytes, axons, and
neurons. Pro-inflammatory cytokines, including interferon-gamma
(IFN-gamma), tumor necrosis factor-o. (TNF-a), interleukin-6 (IL-
6), interleukin-12 (IL-12), and interleukin-23 (IL-23), are crucial in
the pathogenesis of MS (18, 19). Evidence suggests that cAMP is a
crucial participant in regulating the production of pro-inflammatory
cytokines (20). Notably, cAMP analogs have been shown to have
anti-inflammatory and anti-apoptotic effects. Previous studies have
suggested that Dibutyryl-cAMP recruits endogenous neural stem
cells and promotes their differentiation, thereby facilitating myelin
lipid repair in MS (21). Given the critical role of PDE4A in cAMP
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hydrolysis, it is reasonable to hypothesize that this protein contributes
to the pathogenesis of MS. Previous studies have also highlighted the
importance of PDE4A in various tumors (22). In particular, PDE4A
expression is upregulated in various lung cancer cell lines, and its
expression can induce epithelial-mesenchymal transition in type 1
alveolar epithelial cells after stimulation with transforming growth
factor-f2 (TGF-B2). E-cadherin loss, which is a hallmark of
metastasis, is significantly associated with the upregulation of
PDE4A mRNA and protein expression after stimulation with
transforming growth factor-B1 (TGF-B1) (23). Moreover, hypoxia-
inducible factor (HIF) has been linked to PDE4A expression in a
subset of lung cancer cell lines during hypoxia, and PDE4A
knockdown has been shown to reduce the secretion of vascular
endothelial growth factor (VEGF) and has anti-tumor effects in
lung cancer xenografts (24). Thus, it is clear that PDE4A is a
promising therapeutic target in MS and lung cancer and warrants
further investigation.

In our investigation, we employed a systemic biology analysis
method to identify the genes with the highest correlation in the
comorbidity of MS and NSCLC. Among the genes analyzed, PDE4A
exhibited the highest correlation. Notably, patients with high
PDE4A expression showed poor prognoses, suggesting that this
gene may be associated with increased incidence and mortality of
NSCLC in MS patients. Our investigation further revealed the
regulatory effects of PDE4A on other immune cells and its
association with immune checkpoints, indicating its significant
role in regulating the human immune response in NSCLC.
Additionally, our findings demonstrated that PDE4A was closely
associated with the sensitivity of multiple NSCLC therapeutic drugs.
Future research targeting PDE4A therapy may improve the
incidence and mortality of NSCLC in MS patients.

However, it is important to acknowledge the limitations of our
study. Although our findings suggest a potential molecular
mechanism linking MS and NSCLC, our results are based solely
on data analysis and lack experimental validation, which is not quite
a comprehensive analysis. Therefore, further investigation is
required to confirm our hypothesis and establish a causal
relationship. Nonetheless, our study has contributed novel
insights into the comorbidity of MS and NSCLC and has
identified PDE4A as a promising therapeutic target and immune-
related biomarker for these patients.
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