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Mesenchymal stem cells (MSCs) from multiple tissues have the capability of

multidirectional differentiation and self-renewal. Many reports indicated that

MSCs exert curative effects on a variety of age-related diseases through

regeneration and repair of aging cells and organs. However, as research has

progressed, it has become clear that it is the MSCs derived exosomes (MSC-Exos)

that may have a real role to play, and that they can be modified to achieve better

therapeutic results, making them even more advantageous than MSCs for

treating disease. This review generalizes the biological characteristics of MSCs

and exosomes and their mechanisms in treating age-related diseases, for

example, MSCs and their exosomes can treat age-related diseases through

mechanisms such as oxidative stress (OS), Wnt/b-catenin signaling pathway,

mitogen-activated protein kinases (MAPK) signaling pathway, and so on. In

addition, current in vivo and in vitro trials are described, and ongoing clinical

trials are discussed, as well as the prospects and challenges for the future use of

exosomes in disease treatment. This review will provide references for using

exosomes to treat age-related diseases.
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1 Introduction

The global average life span has increased in recent years, with the number of people

over 60 years of age rising to 22% between 2000 and 2050, indicating that aging remains a

serious problem (1). Aging is seen as a huge socio-economic challenge that most countries

will face in the coming decades. Cellular aging is a state of replication stagnation in cells

and is also an important marker of aging, closely related to aging-related diseases. With age,

the accumulation of aging cells accelerates the aging process of the body (2). Aging causes

gradual loss of function in tissues and organs. This is a natural, inevitable, physiological

phenomenon, which causes the degradation of various physiological functions and

weakens the ability to repair and regenerate (3). As research deepens, people regard
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preventing or reducing aging cells as an important means of

mitigating aging (4). Many studies have found that MSCs can be

effective in repairing and regenerating cells and have therapeutic

effects on age-related diseases. However, due to its intrinsic

characteristics and the limitations of transplantation technology,

the current trend is to develop and study various functions of

exosomes. For example, research has shown that as one of the

methods for treating osteoarthritis (OA), exosomes can act as

carriers to deliver microRNA-140 specifically into chondrocytes

for therapeutic effects (5). MSC-Exos combined with curcumin

reach target cells and relieve Parkinson’s disease (PD) progression

through a variety of functions, such as increasing drug

concentration, reducing inflammation response, and promoting

neuronal repair (6). In addition, in the myocardial ischemia-

reperfusion (I/R) model, MSC-Exos have immunomodulatory

effects on macrophages mainly by inhibiting Toll-like receptor 4

activity through the transfer of exosomal miR-182, thereby

alleviating myocardial injury (7). Finally, Xia et al. used the rabbit

intervertebral disc degeneration (IVDD) model to discover that

MSC-Exos can improve the degenerative changes of IVDD by

suppressing inflammation and supplementing mitochondrial

proteins (8). The study of exosomes is not only limited to cellular

or animal experiments but many related clinical trials have also

been conducted, which provides assistance for the future clinical

application of exosomes.
2 MSCs and exosomes

2.1 Biological characteristics of MSCs

Commonly, stem cells could be classified into adult stem cells

such as MSCs, induced pluripotent stem cells (iPSCs), embryonic

stem cells (ESCs), and other types of stem cells (9). ESCs are stem

cells that can proliferate indefinitely and differentiate into almost all

cell lines without showing senescence (10, 11). The complex ethics

of stem cells make their use even more subject to caution. MSCs can

be found in nearly all tissues, such as bone marrow derived MSCs

(BMSCs), adipose-derived MSCs (ADMSCs), human umbilical

cord-derived MSCs (huMSCs), human placenta-derived MSCs

(hpMSCs), and MSCs in other tissues (11). At present, research

has found that some mechanisms of MSCs therapy for diseases

include 1) secretion of proteins/peptides and hormones; 2) transfer

mitochondria in a variety of ways; and 3) transfer microvesicles or

microcapsules containing RNA, protein, and other substances (12).

Many studies have proved that MSCs are also widely used to cure

age-related diseases. For instance, MSCs can reduce skin

contraction and improve appearance when treating skin wounds

(13), having the potential to ameliorate myocardial infarction in

cardiovascular (14), MSCs also can alleviate the degeneration of

articular cartilage (15) and improve a variety of neurological

diseases (16). Although the mechanisms of aging are complex,

MSCs attenuate aging through a variety of pathways. The

mechanisms of MSCs and exosomes in different diseases in this

review are displayed in Table 1.
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2.2 Function of MSCs

Many data support the view that MSCs play a role in a paracrine

way. Studies proved that MSC-Exos have functions akin to MSCs,

such as repairing tissue damage, inhibiting inflammatory response,

and regulating the immune system. They also exhibit antioxidant

and anti-apoptotic abilities. For example, transplantation of human

MSCs into diabetic mice promoted healing by aggregating large

numbers of MSCs to the wound site and producing growth factors

such as platelet-derived growth factor (PDGF) receptor-a and

vascular endothelial growth factor (VEGF). Endothelial cells can

promote angiogenesis and express various cytokines and growth

factors that contribute to wound repair, involving transforming

growth factor (TGF)-b, interleukin-1 (IL-1), IL-5, and IL-6, which

are beneficial to wound repair (13). Research has shown that

BMSCs have a positive effect on the damaged microenvironment

and promote tissue regeneration by releasing bioactive factors (37).

Chen et al. (38) discovered that astrocytes cocultured with BMSCs

decreased astrocytes apoptosis by down-regulating pro-

inflammatory factors and up-regulating anti-inflammatory

factors. The paracrine effect of MSCs is to mediate the

communication between surrounding cells through the

production of growth factors, cytokines, and other regulatory

molecules so as to inhibit immune response and improve

antioxidant capacity (39). Many substances are found in the

MSC-derived secretome (40). The extracellular vesicles derived

from MSCs (MSC EVs) contain mRNA, cytokines, microRNAs,

immunomodulatory factors, chemokines, and so on. These

molecules can modulate the function, phenotype, and homing of

immune cells (41). There are various types of extracellular vesicles,

which can be classified according to their diameter size. Small

extracellular vesicles include exosomes, small ectosomes, and so on,

while microvesicles belong to medium-sized vesicles, and large

vesicles include apoptotic bodies, large oncosomes, and so on

(42).Each type has its own characteristics. The diameter of an

exosome is between 30 and 150 nm, nevertheless, exosomes may

differ in size depending on how they are isolated (43). The

membranes of early endosomes bud inward to form exosomes,

which eventually become multivesicular bodies (44). These are

involved in cell-to-cell communication (45, 46). Microvesicles

with sizes ranging from 50 to 1000 nm are derived from the outer

buds of the plasma membrane (PM) of a cell but their formation is

not well defined (47). Apoptotic bodies are formed when apoptotic

cells fragment and a PM bleb forms, and their size ranges from 50 to

5000 nm (48). The stress caused by cell contraction separates the

cytoskeleton from the membrane, and the apoptotic body

forms (44).
2.3 Biogenesis of exosomes

Exosomes are secreted by many different types of cells and are

present in various physiological fluids (49), including amniotic

fluid, blood, urine, saliva, and so on. When exosomes successfully

enter the target cell, they could modulate the function and signal
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TABLE 1 MSCs and their exosomes treat age-related diseases through a variety of mechanisms.

Mechanism Disease Model Animal Source
of MSCs/
Exos/EVs

Effect Ref.

Oxidative
stress

Skin injury H2O2-stimulated epidermal
keratinocytes and UV-irradiated wild
type

Mice MSC-Exos Through the NRF2 signaling pathway to
reduce the generation of ROS

(17)

Skin injury I/R Mice MSCs Reducing ROS generation and apoptosis (18)

AD Vivo AD model Rat MSCs and
MSC-EVs

Reducing AbO-induced oxidative stress and
synapse damage

(19)

Atherosclerosis Endothelial cells isolated from human
umbilical cord veins were cultured in
the presence of H2O2 and monocytes

DBMSCs Reducing oxidative stress and immune cells
induced injury

(20)

IVDD IVDD model rabbit MSC-Exos Inhibit the development of inflammation by
inhibiting the activation of the NLRP3
inflammasome

(8)

COPD Ozone-exposed mice and ASMCs were
cultured in the presence of cigarette
smoke medium

Mouse iPSC-MSCs Reducing oxidative stress-induced
mitochondrial dysfunction

(21)

Wnt/b-catenin
Signaling
Pathwy

SCI SCI model Wistar rat BMSC-
Exos

Reducing tissue damage and neural cell
apoptosis, and promoting functional recovery

(22)

PD MPTP/6OHDA mouse model Mice HSPCs Inhibiting secretion of pro-inflammatory
cytokines and neural cell apoptosis

(23)

AD AD rats and neurons Rat BMSC-EVs Delivering miR-29c-3p to neurons to inhibit
BACE1 expression

(24)

Cerebral
ischemia/
reperfusion injury

MCAO model Male
Wistar rat

hAMSCs Restoring endogenous antioxidant system and
suppressing apoptotic cell death through
FoxO1 and Wnt/b-catenin signaling pathway

(25)

Ischemic
myocardium I/R
injury

Myocardial I/R model Male SD
rat

ADMSC-
Exos

Reducing I/R-induced necrosis,apoptosis and
hypoxia/reoxygenation-induced injury

(26)

Cutaneous wound Rat skin burn model Rat hucMSC-
Exos

Delivering Wnt4 to activate the Wnt/b-
catenin signaling pathway

(27)

Cutaneous
wound

Skin lesion model ADMSC-
Exos

Promoting cell proliferation and migration of
HaCaT cells, and repressing cell apoptosis of
HaCaT cells

(28)

MAPK
signaling
pathway

Cerebral ischemic
injury

MCAO model Adult male
Sprague–
Dawley rat

hDPSCs Increasing neuroprotective and anti-
inflammatory molecules, resulting in the
neuronal rescue and survival

(29)

ONFH ONFH rabbit model Mature
New
Zealand
rabbit

BMSC-
Exos

BMSC-Exos carrying over-expressed miR-122-
5p attenuated ONFH development

(30)

Osteoarthritis BMSCs were cultured with TGF-b1 BMSCs Suppressing the p38 pathway, the
chondrogenesis can be inhibited

(31)

COPD The rats were exposed to cigarette
smoke

Rat MSCs Suppressing the p38 MAPK and ERK
pathway, down-regulating COX-2/PGE2 in
macrophages

(32)

Atherosclerosis Low-density lipoprotein receptor-
deficient mice were fed a high-fat diet

Five- to
six-week-
old male
mice

MSC-EVs Suppressing MAPK signaling pathway, CAM
expression, and macrophage accumulation in
the vascular walls

(33)

Sirtuin Myocardial
infarction

MI rat model Rat hMSC-
Exos

The ncRNA KLF3-AS1 in hMSC-Exos can
inhibit cardiomyocyte activity

(34)

CIA mouse model Mice MSCs (35)

(Continued)
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transduction thereof (45). The biogenesis of exosomes is closely

related to the endosomal system and its transport pathway. Primary

endocytic vesicles, early endosomes (EEs), and multivesicular

bodies (MVBs) all belong to the endosomal system (50). The first

stage is the formation of EEs. Proteins on the PM could be moved to

the exterior of EEs. EEs are located at the cell membrane, where they

can sort the recovered cargoes from the PM and then target the

internal digestion recovery capsule. In the second step, the limiting

membrane invaginates and forms intraluminal vesicles (ILVs).

Since late endosomes could include multiple ILVs, they are also

known as MVBs. MVBs fuse with the PM and release ILVs outside

the cell to produce exosomes (51, 52). It is noteworthy that not all

vesicles within the MVBs are released as exosomes; a portion of the

MVBs can be carried into lysosomes for degradation and exosome

fragments are recycled. Exosomes can make contact with target cells

through endocytosis, and ligand-receptor direct or indirect binding
Frontiers in Immunology 04
(53). Other researchers also showed that MSC-Exos have a similar

biological activity to MSCs, therefore it can replace MSCs to treat

certain diseases (54, 55). Exosomes are more convenient and

effective due to their high safety, and low immunogenicity (56).

In short, they can work in a variety of ways, as shown in Figure 1.
2.4 The advantages of exosomes

Although MSCs have many functions, their therapeutic effects

are controversial (57), and some problems may be unavoidable,

such as infusion toxicity (58), cell rejection, the low survival rate in

vivo, and low targeting ability; however, MSC-Exos not only have

similar biological activities as MSCs but also show higher safety, low

immunogenicity and do not directly form tumors (56). Firstly, due

to the ease of obtaining and purification, and the high sensitivity
TABLE 1 Continued

Mechanism Disease Model Animal Source
of MSCs/
Exos/EVs

Effect Ref.

Damaged
cartilage, or in
inflammatory
joint arthritis

Suppressing T helper (Th)-17 cell activation
and increasing the Treg cell population

UV radiation-
induced skin
photodamage and
aging

Rat model of acute skin photodamage Rat hucMSC-
Exos

hucMSC-Exos can promote the expression of
SIRT1 in HaCaT cells by transporting 14-3-3z
protein

(36)
frontier
MSC-Exos, exosomes derived from MSCs; ROS, reactive oxygen species; I/R, ischemia-reperfusion; MSCs, mesenchymal stem cells; AD, Alzheimer’s disease; MSC EVs, mesenchymal stem cell-
derived extracellular vesicles; PD, Parkinson’s disease; DBMSCs, decidua basalis mesenchymal stem/multipotent stromal cells; IVDD, intervertebral disc degeneration; ASMCs, airway smooth
muscle cells; iPSC-MSCs, induced-pluripotent stem cell-derived MSCs; COPD, chronic obstructive pulmonary disease; SCI, spinal cord injury; BM-MSC-EVs, bone marrow MSC-EVs; BMSC-
Exos, exosomes derived from BMSCs; hAMSCs, human amniotic mesenchymal stem cells; MCAO, middle cerebral artery occlusion; ADMSC-Exos, exosomes derived from ADMSCs; hucMSC-
Exos, human umbilical cord mesenchymal stem cells; ADMSCs, adipose-derived MSCs; STZ, streptozotocin; hDPSCs, human dental pulp stem cells; ONFH, osteonecrosis of the femoral head;
BMSCs, bone marrow-derived mesenchymal stem cells; BMSC-Exos, exosomes derived from BMSCs; MI, myocardial infarction; UV, ultraviolet; CIA, collagen-induced arthritis.
FIGURE 1

MSCs and their exosomes have therapeutic effects on multiple human systems and organs. MSCs and their exosomes can treat age-related diseases
involving nervous, skin, skeletal, cardiovascular and other systems through mechanisms such as oxidative stress, Wnt/b-catenin signaling pathway,
MAPK signaling pathway and sirtuin family. MSC: mesenchymal stem cell; EVs: extracellular vesicles; Exos: exosomes.
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and specificity, exosomes have become biological markers for

various diseases. For example, plasma-derived exosomal miR-30e

and miR-92a are expressed more in atherosclerosis and can serve as

biomarkers for the diagnosis and treatment of atherosclerosis (59).

In addition, exosomes can also serve as biomarkers for various

diseases such as PD, fibrosis (60), and cancer (61). Secondly,

exosomes are much smaller than MSCs so can avoid being

engulfed by macrophages and pass through the microvascular

system more smoothly (62). More importantly, exosomes possess

a phospholipid bilayer structure and can also penetrate the blood-

brain barrier, making them effective carriers for the delivery of

proteins, genetic material, and various drugs to target cells (54).

Finally, compared with pathway inhibitors, exosomes can act on

different targets. While inhibiting this pathway, exosomes can also

inhibit cell apoptosis, fibrosis, and inflammation, regulate

immunity, and provide a repairing environment for damaged

cells. In addition, exosomes can be developed and optimized

through various methods, achieving better therapeutic effects by

drug pre-treatment and gene or peptide modifications. Moreover,

exosomes have multiple modes of action (63). They can not only

play a role themselves, but also act as carriers to transport various

substances to targets, with a wider range of effects, and can even

cross capillaries and the blood-brain barrier (64). Overall, the

application of exosomes has more advantages.

3 Mechanism of action of MSCs
and exosomes in the treatment
of age-related diseases

3.1 Oxidative stress

An imbalance between oxidant production and antioxidant

defenses can lead to OS. This phenomenon increases with age

and eventually affects the normal function of certain tissues. OS has

been implicated in a variety of age-related diseases including

atherosclerosis, Alzheimer’s disease (AD), chronic obstructive

pulmonary disease (COPD), etc. (65). There are many ways in

which MSCs and exosomes reduce OS, among which inhibiting

inflammation is one of the most important. Research showed that

ultraviolet (UV) irradiation can reduce the activity of antioxidant

enzymes in skin cells or tissues (66). OS can accompany

inflammation, which may also lead to subsequent oxidative

damage (67). OS is one of the main causes of skin damage caused

by various harmful stimuli such as UV radiation (68). Wang et al.

(17) have demonstrated that co-culturing 5mg/ml of extracellular

vesicles with H2O2-stimulated keratinocytes for 12 hours, and

injecting 2mg of MSC-Exos into UV-irradiated mouse models

daily for 5 consecutive days, resulted inreduced ROS production,

abnormal calcium signal, DNA damage, and mitochondrial

changes, thereby reducing inflammatory responses and alleviating

cell and tissue responses induced by OS. These effects are mainly

mediated by the NrF2 signaling pathway. Nrf2 is a transcription

factor with numerous target genes, which can play a role through a

variety of signal axes to reduce the damage caused by OS and

inflammation. Nrf2 also plays a part in the anti-oxidative stress
Frontiers in Immunology 05
effect of MSCs and their exosomes. The positive effects of Nrf2-ARE

Pathway in improving nerve function and alleviating nerve injury

(69) and kidney injury (70) have been reported in kinds of

literature. In addition, the signaling pathway Nrf2/HO-1 not only

helps neurodegenerative diseases (71) but also alleviates myocardial

infarction (MI) (72). In addition, I/R injury is one of the

developmental mechanisms of pressure ulcers, and inhibiting OS

can effectively alleviate I/R injury. Motegi et al. (18) proved that the

injection of MSCs (2 × 106 cells) in the mice I/R model could reduce

the levels of Nrf2, Nox2, and HO-1 and promote the secretion of

growth factors or cytokines such as VEGF, basic fibroblast growth

factor, PDGF, and angiopoietin-1. It is suggested that the injection

of MSCs may prevent the occurrence and development of pressure

ulcers by reducing cellular and vascular damage, OS, and apoptosis.

As aging intensifies, it is estimated that in the future, 3% to 5%

of the population aged 65 and above may suffer from AD (73). The

abnormal accumulation of amyloid-b peptide oligomers (AbOs) is
one of the causes of AD, and it also participates in neuronal OS (74).

Godoy et al. (19) revealed that MSCs and MSC EVs inhibit

neurocyte damage caused by AbOs through the following

mechanisms:1) accelerating AbOs internalization and

degradation; 2) release of EVs including antioxidant enzyme and

catalase; 3) selective secretion of IL-10, VEGF, and IL-6. Cui et al.

(75) discovered that the expressions of IL-6, IL-b, and TNF-a were

remarkably down-regulated, while the expressions of IL-4, IL-13,

and IL-10 were remarkably increased after injecting 5 × 1011 MSC-

Exos into the brain tissue of AD mice. Diseases of cardiovascular

and cerebrovascular aging, such as atherosclerosis, and OS results

from the accumulation of low-density lipoprotein (LDL) and

immune cells, thereby changing the functional activity of

proteins, producing more toxic free radicals and causing

endothelial cell damage (76). Concerning this aspect of the

problem, Alshabibi et al. (20) stated that human decidua basalis

mesenchymal stem/multipotent stromal cells (DBMSCs) can

regulate some genes that mediate endothelial cell proliferation,

permeability, and monocyte infiltration, and enhance glutathione

and thioredoxin reductases activities. These results implied that

DBMSCs can protect endothelial cells from OS and inflammation to

treat inflammatory diseases such as atherosclerosis. Similarly,

BMSCs derived exosome miR-181a-5p combined with ATF2

alleviates cardiomyocyte inflammation induced by OS (77).

Links between OS and other age-related diseases have also been

reported in the literature, for instance, long-term OS and

inflammation are important factors leading to the development of

IVDD. OS has been linked to the pathological mechanism of IVDD

in numerous studies (78). Xia et al. (8) injected 15mg MSC-Exos into

the intervertebral disc of the rabbit IVDD model to estimate the

interference effect of MSC-Exos on H2O2 production: in this

process, the low levels of caspase-9 and caspase-3 indicated that

MSC-Exos could downregulate the ROS level in NP cells and reduce

NP cell apoptosis. MSC-Exos can inhibit the development of

inflammation through inhibiting the activation of NLRP3, which

may provide a reference for the treatment of IVDD (79). In

addition, huMSCs derived exosome miR-100-5p protects

chondrocytes by targeting NOX4, thus treating OA (80). Cigarette

smoke is one of the sources of ROS, and sustained OS is an
frontiersin.org
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important factor leading to COPD. Li et al. (21) verified that iPSC

derived MSCs (iPSC-MSCs) could ameliorate OS-induced

mitochondrial function changes by decreasing inflammation and

airway hyperreactivity. These effects depend in part on

mitochondrial transfer and communication between cells.

Consequently, iPSC-MSCs have the potential to treat COPD and

other lung diseases caused by OS.

Finally, suppressing inflammation is one of the important ways

to alleviate OS, and exosomes can also improve OS in other ways.

For example, they can play a role through various means such as the

NF-kB signaling pathway (81) and the Nrf2/Keap1 signaling

pathway (82), and can also regulate mitochondrial membrane

potential and reduce the production of mitochondrial ROS (83).
3.2 Wnt/b-catenin signaling pathway

The Wnt/b-catenin signaling pathway contains an abundance

of glycoproteins with unique characteristics and is associated with a

variety of physiological activities and diseases. It can participate in

growth and development, physiological homeostasis, and tissue

recondition (84). Many reports suggest that MSCs and their

exosomes positively contribute to the treatment of the nervous

system, cardiovascular system, skin, and other diseases through the

Wnt/b-catenin signaling pathway.

Wnt signaling plays multiple roles in the neurogenesis, self-

renewal, and homeostasis of neural stem/progenitor cells (NSCs)

(85). Severe spinal cord injury (SCI) is currently incurable, and its

pathological changes are complex. However, effective relief of SCI

can be achieved through the improvement and recovery of neuronal

function. Li et al. (22) designed a model of SCI, culturing neuron

cells using exosomes derived from BMSCs (BMSC-Exos) at a

concentration of 100mg/ml, and the data proved that BMSC-Exos

could significantly reduce the protein expression levels of Bax,

cleaved caspase-9, and cleaved caspase-3 and increase the

expression of Bcl-2, b-catenin, and TCF-4. The results also

indicated that the spinal cord and neurons were in a more

mature state, and the number of neurons was greater. Their study

elucidates the role of BMSC-Exos in reducing tissue damage,

promoting repair, and inhibiting neuronal apoptosis by activating

of Wnt/b-catenin signaling pathway. The occurrence of PD is

related to the degeneration and death of dopamine neurons in the

substantia nigra, and is the result of the combined action of multiple

factors (86). Altarche-Xifro et al. (23) discovered that implantation

of hematopoietic stem and progenitor cells into PD mouse models

can fuse with neurons and some with glial cells, and then activate

the Wnt/b-catenin canonical pathway, which prevents microglia

from secreting pro-inflammatory cytokines. Therefore, the Wnt/b-
catenin signal is crucial for maintaining the normal function of

neurons and can provide help for the treatment of PD and AD (87).

Sha et al. (24) emphasized that BMSC-EVs can be absorbed by

neurons and released the miR-29c-3p carried by them, up-

regulating the level of miR-29c-3p can inhibit BACE1, activate

the Wnt/b-catenin pathway, decrease the expression of Ab1-42 IL-
1b, TNF-a, and IL-6, increase neuron viability and reduce

apoptosis, thus it has a curative effect on the occurrence and
Frontiers in Immunology 06
development of AD. These results imply that the Wnt/b-catenin
pathway is of great importance in brain development and the

occurrence and development of nervous system diseases.

Ischemic stroke is caused by poor blood flow, leading to damage

such as hypoxia and inflammation, resulting in cell death and

apoptosis. Nazarinia et al. (25) Using 1cc of human amniotic

mesenchymal stem cells (hAMSC-CM) in male Wistar rat model

of middle cerebral artery occlusion to study cardiovascular diseases

in the elderly; treatment with hAMSC-CM after cerebral

reperfusion caused decreased infarct size, inhibition of

inflammation, and apoptosis, enhanced antioxidant capacity, and

increased activity of the Wnt/b-catenin signaling pathway. In

addition, the degree of antioxidants is related to the form of

FoxO1 protein. Reperfusion therapy for ischemic heart disease

can cause myocardial cell injury, which can lead to heart failure

when severe. Cui et al. (26) injecting 200µL PBS containing 400µg of

exosomes derived from ADMSCs (ADMSC-Exos) into the tail vein

of rats in the myocardial I/R model, found that ADMSC-Exos can

significantly reduce I/R-induced cardiomyocyte apoptosis, up-

regulate the levels of Bcl-2 and Cyclin D1, down-regulate the

expression of Bax, and inhibit the activity of Caspase3. In

addition, ADMSC-Exos promoted the activation of the Wnt/b-
catenin signaling pathway through the regulation ofWnt3a, p-GSK-

3b (Ser9), and b-catenin.
On the other hand, skin trauma is a soft tissue injury that is

difficult to cure with age. The role of the Wnt pathway in skin

wound healing cannot be ignored. Zhang et al. (27) revealed that

exosomes derived from human umbilical cord MSCs (hucMSC-

Exos) can enhance the nuclear transfer of b-catenin, increase the

levels of N-cadherin, cyclin D3, and b-catenin, and decrease the

levels of E-cadherin. These results indicate that hucMSC-Exos

regulated endothelial cell proliferation, migration, vascular

sprouting, remodeling, and vascular system maturation by

releasing Wnt4 and activating the Wnt/b-catenin signaling

pathway. During the aging process, skin injuries are difficult to

heal. Ma et al. (28) prepared a skin lesion model by exposing HaCaT

cells to hydrogen peroxide to reveal its possible mechanism of

action. Their result indicated that HaCaT cells can be promoted to

proliferate and migrate by ADMSC-Exos, meanwhile, ADMSC-

Exos inhibit apoptosis and increase the expression of b-catenin to

enhance the activation of the Wnt/b-catenin signaling pathway.
3.3 MAPK signaling pathway

Mitogen-activated protein kinases are involved in various

cellular processes including embryogenesis, proliferation,

apoptosis, and differentiation. The most common are ERK1/2,

JNK(1–3), and p38(a, b, g, and d) families (88). MSCs are

capable of treating age-related diseases through the MAPK

signaling pathway under different conditions.

The various cellular damage caused by stroke is difficult to

restore to the previous state of health. Song et al. (29) injected

human dental pulp stem cells (hDPSCs) (4×106 cells) into the

caudal vein of the rat stroke model and ischemia model, in-vivo data

confirmed that hDPSCs induce neuronal survival by releasing
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neuroprotective and anti-inflammatory molecules, various

cytokines and growth factors through up-regulating the MAPK

signaling pathway. Femoral head necrosis are caused by various

reasons of insufficient blood supply, resulting in bone cell necrosis

and changes in the structure, which may eventually lead to the

collapse of the femoral head. Liao et al. (30) on osteonecrosis of the

femoral head indicated that over-expression of miR-122-5p in

exosomes increased the levels of VEGFR-1, PDGFR-a, ERK, JNK,
and p38, reduce the expression of SPRY2 and enhanced the activity

of receptor tyrosine kinase RTK, thus promoting osteoblast

proliferation, differentiation, osteogenesis, and angiogenesis. OA

is a degenerative change in articular cartilage that involves other

structures such as synovium and joint capsule. It is common in the

knee and hip joints (89). Ma et al. (31) concluded that TGF-b
induced BMSCs can activate p38, and regulate the levels of sGAG,

type II collagen, SOX9, and other genes by regulating P38/ERK/JNK

and other signaling pathways, which has a guiding role in the

treatment t of OA.

Treatments for other age-related diseases have also been reported.

In terms of respiratory diseases, Gu et al. (32) showed that MSCs may

reduce airway inflammation and emphysema in a rat model of cigarette

smoke exposure, by inhibiting COX-2/PGE2 in alveolar macrophages,

which is partly regulated by p38 MAPK and ERK signaling pathways;

this is strong scientific evidence that MSCs alleviates COPD. In

cardiovascular disease, Takafuji et al. (33) injected 10×MSC-CM

200mL twice a week into the tail vein of mice on a high-fat diet, and

found that in TNF-a-stimulated human aortic endothelial cells, both

the MSC EVs and conditioned medium from cultured MSCs (MSC-

CM) supernatant could decrease the number of cell adhesionmolecules

by inhibiting MAPK pathways; similarly, in macrophages, MSC-CM

also acts by inhibiting this signaling pathway, which may lessen the

damage caused by coronary artery disease.
3.4 Sirtuin

The sirtuin (SIRT) family consisting of seven proteins (90), can

participate in many biological metabolic pathways, including cell

growth, proliferation, senescence, and apoptosis. Members of this

family of enzymes have been identified to be ginvolved in human

physiology and pathology processes and disease genesis, including

cardiovascular diseases, neurodegenerative diseases, and so on (91).

MSCs and their exosomes can also treat age-related diseases

through this pathway, which has the potential for development

despite related studies remaining incomplete.

In the treatment of myocardial infarction MI, Mao et al. (34)

injected 40mg of MSC-Exos into each MI rat, and found that the

lncRNA KLF3-AS1 in human MSC-Exos can inhibit cardiomyocyte

activity, inflammation, and apoptosis by regulating the mir-138-5p/

SIRT1 signaling pathway, thereby alleviating the symptoms of MI.

The data showed that SIRT1 not only inhibited the expression of

NLRP3 but also suppressed caspase-1 and inflammatory factors,

suggesting that SIRT1 inhibits NLRP3 inflammasome activation

and has a protective effect on vascular endothelial cells (92). Chae
Frontiers in Immunology 07
et al. (35) inserted the SIRT1 gene into a genomic locus in amniotic

MSCs (AMMs) and investigated therapeutic potentials to treat a

mouse model of collagen-induced arthritis (CIA): they discovered

that AMMs transplantation blunted CIA progression inhibited Th-

17 cell activation, and decreased the levels of pro-inflammatory

factors, such IL-1b, TNF-a, MCP-1, and IL-6 while increasing the

number of Treg cell in CIA mice which can help repair and treat

damaged cartilage or inflammatory arthritis. Furthermore, as age

increases, photoaging and photodamage are inevitable, and

preventing or treating UV radiation can effectively alleviate it.

Wu et al. (36) treated the acute skin damage model caused by UV

radiation with 600µg of hucMSC-Exos, they believed that hucMSC-

Exos could promote skin regeneration and repair, and studies found

that it also can promote the expression of SIRT1 in HaCaT cells by

transporting 14-3-3z protein and enhance autophagy activation to

alleviate the OS injury induced by UV radiation and H2O2.
3.5 Exosomes derived from the SASP

Aging cells can secrete senescence-associated secretory phenotype

(SASP), which is an important characteristic of cell aging. SASP

includes interleukins, inflammatory factors, chemokines, proteases,

and growth factors, among others. These factors can play various

roles through autocrine or paracrine effects, such as participating in the

aging, inflammation, and tumor formation processes (93). And there is

research showing that aging may increase the secretion of exosomes

(94). The functions of exosomes derived from SASP are also diverse.

For example, exosomes derived from M2 macrophages can deactivate

the TLR4/NF-kB/NLRP3 signaling pathway, increase cardiomyocyte

vitality, inhibit inflammatory reactions, and reduce I/R injury (95).

However, M1macrophages release pro-inflammatory exosomes, which

accelerate the damage of MI (96). Similarly, exosomes derived from

dendritic cells can exacerbate atherosclerosis in mice (97), but can also

have a protective effect on MI and I/R (98). From this, it can be seen

that the functions of exosomes secreted by different cells vary, and the

functions of exosomes also change with changes in the physiological

state of the cells.
3.6 Clinical trials

We also summarized the relevant clinical trials conducted in recent

years. Kim et al. treated 9 Alzheimer’s disease patients with

intraventricular injection, with 3 patients receiving 1.0 × 107 cells/

2mL of huMSCs and 6 patients receiving 3.0 × 107 cells/2mL of hUCB-

MSC for long-term follow-up to explore therapeutic effects on AD (99).

Although it can not show the clinical effect for the time being, it also

provides a reference for future clinical research. Assia Jaillard et al.

conducted a randomized controlled trial of ischemic stroke, they

administered intravenous injections of BMSCs to patients with

moderate to severe ischemic stroke occurring within 2 weeks, and

found that exercise-related measures and scores improved after BMSCs

treatment (100). Bartolucci et al. injected 1 × 106 Cells/kg umbilical
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cord-derived MSCs (UC-MSCs) into patients with heart failure and

decreased ejection fraction (101). There were no adverse events during

the trial process, and the patients’ conditions and quality of life

improved, indicating that intravenous UC-MSCs infusion is safe and

feasible. Mathiasen et al. injected 0.2 mL of BMSCs intramyocardially

10-15 times in 60 patients with ischemic heart failure, and found

cardiac systolic function was obviously improved (102). OA is common

in elderly people, causing joint pain, deformity, and limited movement.

In severe cases, surgical treatment is required to replace the joint. We

have also summarized the related clinical studies on OA. For example,
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Chahal et al. injected different concentrations of BMSCs (1 × 106 cells,

10 × 106 cells and 50 × 106 cells) into the knee joints of patients with

knee OA. The final results showed a reduction in inflammatory cells,

decreased levels of pro-inflammatory factors, and reduced pain in

patients (103). Besides that, Emadedin et al. conducted a randomized

controlled trial in which they implanted BMSCs (40 × 106 cells) into

the joints of knee OA patients. After 6 months of follow-up, they found

improvements in pain and walking distance (104). Similarly, Matas and

his colleagues’ clinical trial also involved injecting UC-MSCs (20 × 106

cells) into the knee joint of patients with knee OA. What sets this trial
TABLE 2 Clinical trials of MSCs and their exosomes in the treatment of age-related diseases.

Source
of
MSCs/
Exos

Disease Route Dosage/
cells

Follow-
up

period

Participants Benefits Adverse
events

Ref./
Number

UC-
MSCs

AD Intracerebroventricular
injections

1.0 × 107

cells 3.0 ×
107 cells

36
months

9 As this was an open-
label phase I clinical
trial, we could not prove
the clinical efficacy of
hUCB-MSC injection

The most
common adverse
event was fever,
headache,
nausea, and
vomiting

(99)

BMSCs Ischemic
Stroke

Intravenous injection 1.0×107

3.0×107
2 years 31 Improve motor recovery

through sensorimotor
neuroplasticity

Seizures, urinary
tract infection,
algodystrophia,
pneumonia, and
so on

(100)

UC-
MSCs

Heart failure Intravenous Infusion 1×106

cells/kg
12months 30 Left ventricular

function, functional
status and quality of life
were significantly
improved

Stroke, sustained
ventricular
arrhythmias,
incident
malignancy, and
so on

(101)

BMSCs Ischaemic
heart failure

Intramyocardial
injections

0.2 mL 12months 60 Improve myocardial
function and myocardial
mass in patients

Double-vision,
dizziness, stroke,
angina, and so
on

(102)

BMSCs Osteoarthritis Intra-articular injection 1 × 106

10 × 106

50 × 106

24
months

12 Symptoms of
osteoarthritis improve,
with less pain and
stiffness

Local transient
adverse events
such as pain
and/or swelling
at the injection
site

(103)

BMSCs Knee os-
teoarthri-tis

Intra-articular
implantations

40×106cells 6 months 43 WOMAC total score,
pain, and painless
walking distance
improved significantly

There were no
major adverse
events

(104)

UC-
MSCs

Knee
osteoarthritis

Intra-articular injection 20 × 106 1 year 26 Pain and function
improved

The most
common adverse
events were
acute synovitis
and pain

(105)

MSCs-
Exos

Ischemic
Stroke

Intraparanchymal
injection

12months 5 NCT03384433

MSCs-
Exos

AD Nasal drip 5mg/ml
10mg/ml
20mg/ml

48 weeks 9 NCT04388982

MSCs-
Exos

Knee
osteoarthritis

Intra-articular Injection 3-5×1011 12months 10 NCT05060107
UC-MSCs, umbilical cord-derived MSCs; AD, Alzheimer’s disease; BMSCs, bone marrow-derived MSCs; MSCs-Exos, exosomes derived from MSCs.
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apart from others is that it is a repeated injection trial within the joint

(105). There have also been some exosome trials, but many have not

yet been completed, with no published results available at the time of

writing. The specific experimental content is summarized in Table 2. In

summary, the majority of trials are conducted to verify the safety and

effectiveness of clinical applications of stem cells and their exosomes.

However, some trials may not have produced accurate conclusions due

to limitations such as short follow-up time and small sample size.

Therefore, more large-scale randomized controlled trials are needed to

verify the efficacy of stem cells and their exosomes.
3.7 Summary

From the above discussion, we can learn that MSCs and their

exosomes can alleviate age-related diseases in multiple systems

through these four signaling pathways.

The specific mechanisms by which exosomes exert their effects

include anti-inflammatory, antioxidant, anti-apoptotic, promotion

of cell proliferation, and serving as carriers to transport various

substances, and so on. (Figure 2)
4 Problems and prospects

Many authors show support for the use of MSCs and their

exosomes which can, through various mechanisms, be used to treat

age-related diseases, but these mechanisms are complex, and there

may be cross-over and synthesis issues arising therewith. In OS

mechanisms, MSCs are able to inhibit the expression of Nox2 in the

skin caused by I/R, however, the current problem is that Nox2 is

mainly expressed in macrophages and neutrophils, and also in

vascular endothelial cells and fibroblasts (106), thus, it has not been
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thoroughly explored as to which cells MSCs inhibit to exert their

regulatory effects on OS. In the Wnt/b-catenin signaling pathway,

although studies clarified that hucMSC-Exos may achieve a

therapeutic effect on skin by promoting angiogenesis (27), it is

unclear which of these components are involved in promoting

angiogenesis. There is also evidence that ADMSC-Exos could

alleviate I/R-induced myocardial injury through the Wnt/b-
catenin signaling pathway (26). Nevertheless, the present study

does not expound how ADMSC-Exos regulate Wnt/b-catenin
signaling and which molecules secreted by ADMSC-Exos are

engaged in the regulation. At present, the evidence is not

comprehensive, and more detailed mechanisms of action should

be investigated.

In addition, when it comes to a specific pathway, the mode of

action of this pathway is changed. MSCs and their exosomes can

activate this pathway to play a positive role and inhibit this pathway

under certain conditions. For example, in the MAPK signaling

pathway, MSC-Exos promote the expression of related proteins

therein, thus promoting osteoblast proliferation and improving

osteoporosis (107). miR-181a-2-3p encapsulated in extracellular

vesicles derived from MSCs can regulate EGR1 and inhibit

apoptosis and MDA and ROS levels by inhibiting NOX4/p38

MAPK, thereby reducing OS in PD (108). Likewise, the

expression of Wnt/b-catenin signaling is different in various

diseases: for example, Wnt/b-catenin signaling is up-regulated in

bipolar disorder but down-regulated in AD, PD, and other diseases,

making it more difficult to develop novel therapeutic strategies. It is

also important to note whether in vitro and in vivo studies of the

same mechanism have been conducted and whether their

conclusions are consistent.

Finally, in clinical trials, exosomes can be used not only as

biomarkers, but also as a vehicle with stronger targeting ability and

lower cytotoxicity. Multiple preclinical data have shown that in
FIGURE 2

Specific mechanisms of MSCs and their exosomes in the treatment of age-related diseases. The specific mechanisms by which exosomes exert their
effects include anti-inflammatory, antioxidant, anti-apoptotic, promotion of cell proliferation, and serving as carriers to transport various substances,
and so on.MSC: mesenchymal stem cell; Exos: exosomes.
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disease treatment, exosomes may have better safety and

functionality than cellular therapy (109). However, in clinical

experiments, the use of exosomes also has some drawbacks. The

activity of the loaded substances may be lost in the process of

delivery. The specific effect of exosomes should also consider the cell

source, isolation and storage, dose and other issues. Complete

production equipment and quality assurance are the most

important factors for the mass production of exosomes (110),

because different production processes will cause the function of

exosomes to be different, thus causing interference to the treatment

effect of diseases (111). Firstly, according to the MISEV2018,

complete purification of exosomes is almost impossible. Instead,

multiple purification methods should be combined according to the

specific use of EVs. According to the recovery and specificity of EVs,

the guidelines give four recommendations, one of which should be

selected for the application of a specific isolation technique. If there

are special circumstances, they should also be stated (112).

Secondly, thrombosis and hemostatic disorders may be a difficult

problem for the widespread application of exosomes in systemic

therapy. Notably, the larger the exosome, the more likely it is to lead

to the production of pro-thrombotic factors (113). Thirdly, the

most important thing is to establish uniform potency criteria for

exosomes, which is a key step toward clinical application (114).

Finally, problems of separation and storage need to be solved, and

more importantly, production is required to be perfected with

technology that can guarantee patient safety (115).
5 Conclusion

In this review, we summarized the various mechanisms of

MSCs and their exosomes in the treatment of age-related diseases,

including OS, Wnt/b-catenin signaling pathway, MAPK signaling

pathway, and SIRT family. At present, research into the therapeutic

effects of MSCs and exosomes on aging diseases remains in the

preclinical stage, which warrants further clinical trials, but much of

the literature shows that the direction of study can provide new

treatment methods and strategies for clinical application.
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Glossary

MSCs mesenchymal stem cells

MSC-Exos exosomes derived from MSCs

OS oxidative stress

MAPK mitogen-activated protein kinases

I/R ischemia-reperfusion

IVDD intervertebral disc degeneration

PD Parkinson’s disease

iPSCs pluripotent stem cells

ESCs embryonic stem cells

BMSCs bone marrow-derived mesenchymal stem cells

ADMSCs adipose-derived MSCs

huMSCs human umbilical cord-derived MSCs

hpMSCs human placenta-derived MSCs

PDGF platelet-derived growth factor

VEGF vascular endothelial growth factor

IL-1 interleukin-1

TGF transforming growth factor

MSC EVs mesenchymal stem cell-derived extracellular vesicles

PM plasma membrane

EEs early endosomes

MVBs multivesicular bodies

ILVs intraluminal vesicles

mRNA messenger RNA

miRNAs microRNAs

TGN trans Golgi network

AD Alzheimer’s disease

UV ultraviolet

COPD chronic obstructive pulmonary disease

AbOs amyloid-b peptide oligomers

LDL low-density lipoprotein

DBMSCs decidua basalis mesenchymal stem/multipotent stromal cells

ROS reactive oxygen species

iPSC-MSCs induced-pluripotent stem cell-derived MSCs

ASMCs airway smooth muscle cells

SCI spinal cord injury

BMSC-Exos exosomes derived from BMSCs

hAMSC-CM human amniotic mesenchymal stem cells conditioned
medium

ADMSC-Exos exosomes derived from ADMSCs

(Continued)
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hucMSC-Exos exosomes derived from human umbilical cord MSCs

hDPSCs human dental pulp stem cells

OA osteoarthritis

MSC-VEGF-
CM

MSCs over-expressing VEGF conditioned medium

MSC-CM conditioned medium from cultured MSCs

MI myocardial infarction

AMMs amniotic MSCs

CIA collagen-induced arthritis

SASP senescence-associated secretory phenotype

UC-MSCs umbilical cord-derived MSCs
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