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Background: Cuproptosis plays a crucial role in cancer, and different subtypes of

cuproptosis have different immune profiles in prostate adenocarcinoma (PRAD).

This study aimed to investigate immune genes associated with cuproptosis and

develop a risk model to predict prognostic characteristics and chemotherapy/

immunotherapy responses of patients with PRAD.

Methods: The CIBERSORT algorithm was used to evaluate the immune and

stromal scores of patients with PRAD in The Cancer Genome Atlas (TCGA)

cohort. Validation of differentially expressed genes DLAT and DLD in benign and

malignant tissues by immunohistochemistry, and the immune-related genes of

DLAT and DLD were further screened. Univariable Cox regression were

performed to select key genes. Least absolute shrinkage and selection

operator (LASSO)–Cox regression analyse was used to develop a risk model

based on the selected genes. The model was validated in the TCGA, Memorial

Sloan-Kettering Cancer Center (MSKCC) and Gene Expression Omnibus (GEO)

datasets, as well as in this study unit cohort. The genes were examined via

functional enrichment analysis, and the tumor immune features, tumor mutation

features and copy number variations (CNVs) of patients with different risk scores

were analysed. The response of patients to multiple chemotherapeutic/targeted

drugs was assessed using the pRRophetic algorithm, and immunotherapy was

inferred by the Tumor Immune Dysfunction and Exclusion (TIDE) and

immunophenoscore (IPS).

Results: Cuproptosis-related immune risk scores (CRIRSs) were developed

based on PRLR, DES and LECT2. High CRIRSs indicated poor overall survival

(OS), disease-free survival (DFS) in the TCGA-PRAD, MSKCC and GEO datasets

and higher T stage and Gleason scores in TCGA-PRAD. Similarly, in the sample

collected by the study unit, patients with high CRIRS had higher T-stage and

Gleason scores. Additionally, higher CRIRSs were negatively correlated with the

abundance of activated B cells, activated CD8+ T cells and other stromal or

immune cells. The expression of some immune checkpoints was negatively

correlated with CRIRSs. Tumor mutational burden (TMB), mutant-allele tumor
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heterogeneity (MATH) and copy number variation (CNV) scores were all higher in

the high-CRIRS group. Multiple chemotherapeutic/targeted drugs and

immunotherapy had better responsiveness in the low-CRIRS group.

Conclusion: Overall, lower CRIRS indicated better response to treatment

strategies and better prognostic outcomes.
KEYWORDS

cuproptosis, PrlR, des, LECT2, prostate cancer
1 Introduction

Prostate adenocarcinoma (PRAD) is a major disease affecting

the health of men worldwide and is the second most common

malignancy among men (1). In 2020, more than 1.4 million new

cases of PRAD were reported worldwide (2). Recent changes in

acquired risk factors have led to an increase in the incidence of

PRAD in Asian countries (3). Radical prostatectomy (RP) or

radiotherapy is the standard treatment for most patients with

local PRAD (4). However, biochemical relapse occurs in 30%–

50% of patients after treatment (5). Approximately 20% of

intermediate-risk patients experience biochemical failure within

18 months of initial local treatment (6, 7). The oncogenic

mechanisms underlying PRAD remain unclear, and targeted

therapy, especially for high-risk PRAD and castration-resistant

prostate cancer (CRPC), remains challenging (8, 9). Therefore, an

in-depth understanding of the multiple characteristics of PRAD and

the identification of effective prognostic indicators can help to

develop more effective treatment strategies for PRAD.

Copper is an indispensable trace element involved in biological

processes in eukaryotes, including iron transport, oxygen free
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radical detoxification and mitochondrial respiration (10). The

intracellular copper concentration is in a dynamic gradient-based

equilibrium and various cellular processes such as lipolysis,

proliferation and autophagy are regulated by this dynamic signal

(11–15). Owing to the dysregulation of copper transmembrane

transport, intracellular copper accumulation leads to cytotoxicity

and cell death (16). Excess copper increases intracellular reactive

oxygen species (ROS) levels, induces endoplasmic reticulum stress,

enhances damage-related molecular patterns and promotes

macrophage phagocytosis (17). Peter et al. identified a novel

mechanism by which copper induces cell death: copper directly

binds to the lipoacylated components of the tricarboxylic acid

(TCA) cycle, leading to toxic protein stress and, eventually, cell

death (18). They also identified seven genes positively associated

with cupviaroptosis, including FDX1, LIAS, LIPT1, DLD, DLAT,

PDHA1 and PDHB. Cuproptosis is a new cell death mechanism

that is different from necrosis (19), apoptosis (20), necroptosis (21),

autophagy (22), pyroptosis (23), oxeiptosis (24), parthanatos (25)

and ferroptosis (26). Copper importers (SCL31A1) and exporters

(ATP7A and ATP7B) are key genes that regulate and maintain

intracellular copper concentration (18). Mutations in the ATP7A

and ATP7B genes can lead to deficiency and accumulation of

copper, leading to Menkes and Wilson diseases, respectively.

Supplementation or removal of copper represents a novel

therapeutic strategy for neurodegenerative diseases (27).

Copper may also play a role in the pathogenesis and progression

of cancer (28, 29). Elevated serum copper levels are associated with

tumor stage and disease progression in patients with colorectal, lung

and breast cancers (30–32). Daily administration of copper sulfate

(CuSO4) has been shown to increase tumor growth in a rat model of

chemically induced mammary tumors (33). The cuproenzyme LOX

is involved in the invasion and metastasis of tumor cells (34). In a

mouse model of breast cancer, knockdown of ATP7A reduced LOX

activity, decreased the recruitment of bone marrow cells to the lung,

and inhibited tumor growth and metastasis (35). Further, it has been

reported that patients with high expression of FDX1, SDHB, DLAT

and DLST in colorectal cancer tissues have a better prognosis (36). In

hepatocellular carcinoma, characteristics based on cuproptosis

patterns are important for predicting the tumor microenvironment

(TME) and immunotherapy responses (37). Cuproptosis features can

also help to predict the prognosis and immune microenvironment of

patients with breast cancer (38). Copper chelators can be used as
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antiangiogenic agents to alter the TME (39) and enhance antitumor

immunity (40) in various cancers (39). However, the role of

cuproptosis in prostate adenocarcinoma (PRAD) remains unclear.

An in-depth study on the impact of cuproptosis on the immune

landscape of PRAD may help to elucidate the role of cuproptosis in

PRAD and identify novel therapeutic targets.

In this study, we clustered and analysed alterations in immune-

related genes associated with two subtypes of cuproptosis with different

prognostic features. We developed a new metric named ‘cuproptosis-

related immune risk score’ (CRIRS) based on cuproptosis- and

immune-related genes to assess the immune characteristics and

prognosis of patients with PRAD. Additionally, immune-related

components, metabolic characteristics, and gene mutation profiles

were analysed in different risk groups, and the results showed

significant differences in these aspects between the high- and low-

risk groups. The predictive staging model showed great potential to

guide the classification of patients with PRAD and predict the

chemotherapy and immunotherapy responses of risk-stratified

patients. Overall, the model exhibited potential clinical value.
2 Materials and methods

2.1 Data collection

Survival data, clinical information and mRNA expression data,

CNV and somatic mutation data for PRAD in the TCGA dataset

downloaded from the UCSC-Xena database (https : / /

xenabrowser.net/datapages/). The Memorial Sloan Ketterring

Cancer Center (MSKCC)-PRAD database (Cancer Cell 2010,

https://www.cbioportal.org/) and Gene Expression Omnibus (GEO)

database (GSE70770, https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE70770) were used as validation sets (Supplementary

Table S1). Samples without important clinical or survival data were

excluded from further analysis. Immune-related genes were extracted

from ImmPort Shared Data (http://www.immport.org). Raw reads

were post-processed and normalized using the ‘DESeq2’ (version

1.38.3) package in the R (version 4.2.0) software.
2.2 Estimation of stromal and immune cells

The CIBERSORT algorithm was used to assess the proportion

of immune cell subpopulations in each PRAD sample (41). The

single-sample gene set enrichment analysis (ssGSEA) algorithm was

used to assess the levels of human leukocyte antigens (HLAs),

immune cell infiltration and immune cell function (42). In addition,

the proportion of 64 cell types in the TME of patients in TCGA-

PRAD cohort was assessed using the xCell algorithm, and elements

of TME, including immune, stromal and microenvironment scores,

were estimated (43).
2.3 Consensus clustering

To examine the effects of cuproptosis on the immune function

of patients with PRAD, the correlation between the expression
Frontiers in Immunology 03
of cuproptosis-related positive regulators and CIBERSORT

results was examined via Spearman analysis. The R package

‘ConsensusClusterPlus’ was used for consensus clustering of

tumor samples based on the expression of DLAT and DLD and

for visualisation of the results (44). The Kaplan–Meier method and

log-rank test were used to compare OS between two clusters.
2.4 Analysis and validation of scRNA data

IMMUcan Database (https://immucanscdb.vital-it.ch/) is a

comprehensive tumor microenvironment database platform that

mines the single cell characteristics of tumor immune

microenvironment based on a large collection and integrated

analysis of single cell data (45). To validate the expression of

DLAT and DLD in prostate cancer immune cells, the prostate

cancer single-cell sequencing dataset GSE141445 was analyzed

using the UMAP algorithm in the IMMUcan Database.
2.5 Differentially expressed genes and
cuproptosis-related immune scores

Differentially expressed genes (DEGs) in cancerous and

paraneoplastic tissues were identified using the ‘DESeq2’ package

in R in TCGA-PRAD cohort, with the threshold set as log2

foldchange (FC) values of ≥1 and FDR < 0.05. Pearson

correlation analysis was performed to select DEGs associated with

DLAT and DLD (cor > 0.3, P < 0.05), named cuproptosis-related

DEGs (CR-DEGs). On the other hand, crossover between immune-

related genes and DEGs was performed to obtain immune-related

DEGs (IR-DEGs); the latter immune-related genes (n = 2,483) were

extracted from the Immunology Database and Analysis Portal

(ImmPort, https://www.immport.org/) database. The cuproptosis-

and immune-related genes are the intersecting genes of CR-DEGs

and IR-DEGs (CR-IRGs). The screening process of CR-IRGs is

shown in Figure 1. The potential function of these CR-DEGs and

CR-IRGs was then determined by Gene Ontology (GO) annotation

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment pathway analysis using the “clusterProfiler” package

in R. Univariable Cox regression analysis was performed to screen

for CR-IRGs related to the prognosis of PRAD (P < 0.05).

Subsequently, a CR-IRGs signature was constructed via least

absolute shrinkage and selection operator (LASSO)–Cox

regression analysis. The risk score was calculated as follows: Risk

score = oCoefi ∗ Expi, where Coefi represents the coefficients and

Expi represents the expression levels of the three key genes.
2.6 Functional enrichment analysis

The ‘GSVA’ (version 1.30.0) package was used to identify the

different pathways associated with cuproptosis-related genes and

analyse the relationship between CRIRSs and HALLMARK

pathways. Heatmaps were drawn using the ‘heatmap’ package in

R to visualise the results. GSEA was performed for CRIRS-based
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classification of patients with PRAD. Line plots were drawn using

the ‘ggplot2’ package in R.
2.7 Survival analysis

FPKM method was used to normalize the raw data. Based on

the best survival cut-off grouping, we classified patients into high-

or low-CRIRS groups. For Kaplan–Meier curves, P-values and

hazard ratios (HRs) with 95% confidence intervals (CIs) were

calculated via the log-rank test. HRs of > 1 indicated risk factors,

whereas HRs of < 1 indicated protective factors. The R packages

‘survival’, ‘survminer’ and ‘timeROC’ were used for survival

analysis. P-values of < 0.05 were considered statistically

significant. More importantly, 1-year, 3-year and 5-year

prognostic values for OS and DFS, survival-dependent subject

operating characteristic (ROC) curves and calibration curves were

used to evaluate the CRIRS model in the TCGA training set and

robustly validated in the MSKCC and GSE70770 cohorts.
2.8 Correlations between CRIRS model and
clinical characteristics

A subgroup analysis of the three signature genes in the

prognostic profile associated with cuproptosis was performed

according to the clinical characteristics of the patients. Next,

univariable and multivariable Cox regression analyses were

performed to determine the prognostic role of the CRIRS model.

The ‘forestplot’ R package was used to draw a forest plot to

demonstrate P-values, HRs and 95% CIs for each variable. Then,
Frontiers in Immunology 04
the association between CRIRSs and each clinical parameter was

further analyzed and presented by boxplots and pieTable.
2.9 Quantitative real-time PCR

Total RNA was extracted from paraffin-embedded tissues using

a reliable RNA-isolation kit from Thermo Fisher Scientific, USA.

The mRNA levels of specific genes, PRLR, DES and LECT2, were

measured by qRT-PCR using SYBR green Master MIX from

Applied Biosystems, which fluoresces when it binds to double-

stranded DNA during the PCR reaction. GAPDH was used as an

endogenous control. The primer sequences are presented below:

GAPDH: 5’- TGGCCATTATAGGACCGAGACTT -3’ (forward)

and 5’- CACCCTGTTGCTGTAGCCAAA -3’ (reverse); PRLR: 5’-

TCTCCACCTACCCTGATTGAC -3’ (forward) and 5’- CGAACC

TGGACAAGGTATTTCTG -3’ (reverse); DES: 5’- TCGGCTCTA

AGGGCTCCTC -3’ (forward) and 5’- CGTGGTCAGAAACTCCT

GGTT -3’ (reverse); LECT2: 5’- TGGGCCAGGAGAAACCTTATC

-3’ (forward) and 5’- CAAGGGCAATAGAGTTCCAAGTT -3’

(reverse).
2.10 Immunohistochemistry

Immunohistochemistry (IHC) was utilized to evaluate the

protein expression of DLD and DLAT in paraffin sections

obtained from patients diagnosed with prostate cancer and

benign prostatic hyperplasia. Mouse monoclonal antibodies

(Proteintech Group, Inc, Chicago, USA) for DLAT (1: 1000) and

DLD (1:500) were used, respectively. All tissue information on the
FIGURE 1

Venn diagram of the CR-IRGs screening process.
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sections was captured using the Panoramic MIDI (manufacturer:

3D HISTECH).
2.11 Frequency of somatic mutations and
copy number variations

The somatic mutation data of TCGA-PRAD cohort were

extracted in the varscan file format. CNV data were downloaded

from UCSC Xena (https://xenabrowser.net/datapages/). To

determine the somatic mutation patterns of patients with PRAD

in the high- and low-CRIRS groups, the data were converted into

the mutation annotation format (MAF) using the ‘maftools’ R

package. Tumor mutation burden (TMB) and mutant-allele

tumor heterogeneity (MATH) scores were also evaluated in

both groups.
2.12 Chemotherapy and immunotherapy
drug sensitivity

The Genomics of Drug Sensitivity in Cancer (GDSC; https://

www.cancerrxgene.org/) database was used to assess the sensitivity

of each patient to several chemotherapeutic agents, and the half-

maximal inhibitory concentration (IC50) was quantified using the

‘pRRophetic’ package in R. The response to immune checkpoint

blockade therapy (ICB) was predicted using the TIDE score (http://

tide.dfci.harvard.edu/login/) and immunophenoscore (IPS) (TCIA,

https://tcia.at/patients).
2.13 Statistical analysis

Survival analysis was performed using the R survival package,

and the survival rate of each group was evaluated using the log-rank

test. Student T test and Wilcoxon test were used to compare data

between groups. The Kaplan–Meier method was used to generate

survival curves. The chi-square test was used to analyse the

association of CRIRS subgroups and clinicopathological

parameters. Pearson and Spearman methods were used for

correlation analysis. All statistical analyses were performed using

the R software. In the analysis of differences between cancerous and

paraneoplastic tissues in PRAD, the screening condition was FDR <

0.05 and |log2 FC| > 1. A P-value of < 0.05 indicated significant

differences in other analyses.
3 Results

3.1 Consensus clustering of patients with
PRAD based on cuproptosis-related genes

The analysis flow chart of this study is shown in Figure 2. After

excluding primary tumor samples without sufficient survival

information, 499 samples were selected for follow-up analysis. To

assess whether the expression of cuproptosis regulators affects the
Frontiers in Immunology 05
immune status of patients with PRAD, the expression of seven

cuproptosis regulators, including FDX1, LIAS, LIPT1, DLD, DLAT,

PDHA1 and PDHB, was compared among patients, and the

immune cell infiltration levels of patients were calculated using

the CIBERSORT algorithm. The results were ordered by absolute

value of correlation with the ImmuneScore, and the expression of

the seven cuproptosis regulators was significantly correlated with

the infiltration of immune cells (Figure 3A). The expressions of the

three highest correlated regulators with ImmuneScore, PDHB,

DLAT and DLD, were compared among 550 samples. PDHB

expression was not significantly different in cancerous and

paracancerous tissues, and DLAT and DLD were significantly

downregulated in cancerous tissues (Figure 3B). To further assess

the expression of DLAT and DLD in prostate cancer tissues, we

conducted IHC assays. Consistent with the aforementioned

findings, our results indicated that DLAT and DLD expression

was higher in benign prostatic hyperplasia tissues compared to

prostate cancer tissues (Figure 3C). Next, the scRNA data were

analyzed using the IMMUcan database to explore the expression of

DLAT and DLD in the immune microenvironment of prostate

cancer. Figure 4A shows the results of annotating prostate cancer

cell types at the immune level. DLAT and DLD are expressed in

both tumor cells and different types of stromal and immune cell

subsets (Figures 4B, C). In stromal cell subpopulations, DLAT

expression was mainly in fibroblasts, pericytes and myofibroblasts

(Figure 4D), whereas DLD was mainly expressed in mast cells, NK

cells and macrophages (Figure 4E). Subsequently, we selected

DLAT and DLD to construct a risk profile and consensus

clustering was performed to obtain two cuproptosis-associated

clusters (Figures 4F, G). The survival of patients in the two

clusters was analysed based on Kaplan–Meier curves. As shown

in Figure 4H, patients in Cluster 2 had significantly better OS than

patients in Cluster 1 (P = 0.034).
3.2 Identification and annotation
cuproptosis- related and immune- related
PRAD DEGs

To determine the correlation between cuproptosis subtypes and

immune function, 2483 IRGs were obtained from the ImmPort

database. The ‘DESeq2’ package was used to identify differentially

expressed genes (DEGs) in cancerous and paraneoplastic tissues

(FDR < 0.05, |log2 FC| > 1). Further investigation of the relationship

between PRAD DEGs and cuproptosis-related genes by Pearson

correlation analysis showed 603 cuproptosis-related DEGs (CR-

DEGs) (Figure 5A) (Supplementary Table S2). As shown in

Figure 5B, 223 immune-related DEGs were screened in PRAD

(IR-DEGs) (Supplementary Table S3). By taking the intersection

of CR-DEGs and DE-IRGs, we identified 50 cuproptosis- related

immune-related DEGs and were therefore referred to as CR-IRGs

(Supplementary Table S4). Analysis of the GO and KEGG pathways

of CR-DEGs and IR-DEGs showed intriguing results. Some of the

pathways most enriched by CR-DEGs are overlapping with

pathways associated with the most enriched by IR-DEGs,

including Ras signaling pathway, Neuroactive ligand-receptor
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interaction, Regulation of actin cytoskeleton, Calcium signaling

pathway and Axon guidance (Figures 5C–F), suggesting that the

different cuproptosis states affecting PRAD prognosis may be

associated with activation of immune pathways.
3.3 Construction of a prognostic model
based on cuproptosis-related immune-
related genes in TCGA-PRAD cohort

Based on the expression profiles of the 50 CR-IRGs, 3 significant

CR-IRGs were initially screened via univariable Cox regression

analysis (Supplementary Table S5). Subsequently, a prognostic

model based on these genes was established via LASSO–Cox

regression analysis (Figures 6A–C). Of the 499 patients, 311

patients (about 62%) were included in the high-risk group and

188 patients (about 38%) were included in the low-risk group

(Figure 6D). Consistently, Kaplan–Meier curves showed that OS

(P = 0.022) and DFS (P = 0.0028) were significantly worse in the

high-CRIRS group than in the low-CRIRS group (Figures 6E, H).

The OS and DFS predictive performance of the CRIRSs was assessed

based on time-dependent ROC curves, and the area under the curve

(AUC) values at 1, 3 and 5 years were 1.000, 0.666 and 0.698, and
Frontiers in Immunology 06
0.631, 0.619 and 0.594, respectively (Figures 6F, I). The calibration

curve shows that CRIRSs may accurately estimate the OS and DFS

(Figures 6G, J). CRIRSs are calculated in the MSKCC and GSE70770

cohorts and validated by taking the same grouping approach as the

TCGA-PRAD cohort (Figures 6K, O). Patients with lower CRIRSs

had longer DFS in both MSKCC (P = 0.029) and GSE70770 (P =

0.035) cohorts (Figures 6L, P). Therefore, CRIRS was identified as a

strong predictor of DFS, with AUC values of 0.687, 0.646 and 0.642

in MSKCC cohort and 0.573, 0.547 and 0.512 in the GSE70770

cohort at 1, 3 and 5 years, respectively (Figures 6M, Q). The

calibration curves further validate the accurate predictive

performance of CRIRSs for DFS (Figures 6N, R). These results

illustrate the strong efficacy of the CRIRS model to predict the

prognosis of prostate cancer.
3.4 Validation of the independent
prognostic value of the 3-immune-gene
signature

Figure 7A illustrates the expression of PRLR and LECT2 was

higher and that of DES was lower in the high-CRIRS group.

Univariable and multivariable Cox regression analyses based on
FIGURE 2

Flow chart of the analysis process.
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age, TNM stage, Gleason scores and CRIRSs revealed that the

CRIRS was an independent prognostic factor for OS (Figure 7B).

Additionally, To investigate whether CRIRS model correlated with

the clinical characteristics of PRAD, we performed the Wilcoxon

test and found that the high-CRIRS group had a later T stage (P =

0.0058) (Figure 7D), N stage (P = 0.014) (Figure 7E) and higher

Gleason scores (P = 5.2e-05) (Figure 7G). However, age (Figure 7C)

and M stage (Figure 7F) did not significantly differ between the two

groups. The pieTable further demonstrates the significant

correlation of CRIRSs with T stage (P = 0.0064) and Gleason

scores (P = 0.0024) (Figure 7H). Additionally, we obtained 32

prostate cancer tissue samples to conduct correlation analysis

between CRIRS and clinical parameters. The mRNA levels of
Frontiers in Immunology 07
PRLR, DES, and LECT2 were determined by qRT-PCR, while

CRIRS was calculated using a specific formula. Results showed

that in prostate cancer patients, CRIRS was positively correlated

with their T stage (P = 0.033) and Gleason score (P = 0.025).

However, no significant correlation was found between CRIRS and

patients’ age and clinical stage (P > 0.05) (Table 1).
3.5 Metabolic characteristics of patients
classified based on CRIRSs

Cuproptosis is associated with multiple cancer pathways (46).

HALLMARK enrichment analysis showed that pathways related to
A

B

C

FIGURE 3

Classification of patients with PRAD in TCGA cohort according to the expression of DLAT and DLD. (A) Association of cuproptosis-related genes with the
results of CIBERSORT. (B) Comparison of the expression of PDHB, DLAT and DLD between normal and PRAD tissues. (C) The protein levels of DLAT and
DLD in prostate hyperplasia and prostate cancer clinical tissues were examined by immunohistochemistry. *P < 0.05, **P < 0.01, ***P < 0.001.
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tumor growth and invasion, such as mTORC1 signaling (47), PI3K/

Akt/mTOR signaling (47), G2M checkpoint and Myc signaling (48)

were significantly enriched in the high-CRIRS group (Figure 8A).

Additionally, various immune activities, including complement,

IL2/STAT5 signaling and IL6/Jak/STAT3 signaling, as well as

metabolic pathways, such as spermatogenesis, myogenesis, and

xenobiotic metabolism, were significantly enriched in the low-

CRIRS group (Figure 8A). These findings explain, to some extent,

the better prognosis of the low group. Subsequently, to further

validate the function of the CRIRS model in terms of immunity, we

performed GSEA pathway enrichment analysis and found six

immune-related gene sets enriched in the high-CRIRS group,

including Early T Lymphocyte Up, Large To Small Pre Bii

Lymphocyte Up, IL6 Deprivation Dn, Immunature B Lymphocyte
Frontiers in Immunology 08
Dn and Pre Bii Lymphocyte Up. Three other immune-related

pathways Innate Immune System, Blebbishield To Immune Cell

Fusion Pbshms Dn and Silenced By Tumor Microenvironment

were enriched in the low-CRIRS group (Figure 8B). Due to the

complexity of enrichment of immune-related gene sets between the

two CRIRS groups, we need further in-depth assessment of

the immune status of the CRIRS model.
3.6 Correlation Between CRIRSs and the
Tumor Microenvironment of PRAD

Several studies have shown that patients with higher immune

scores and lower stromal scores have a better prognosis (49, 50).
D
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FIGURE 4

The expression of DLAT and DLD in immune cells in the GSE141445 dataset. (A) UMAP diagram of 13 samples. (B, C) UMAP distribution diagram showed
the relative expression of DLAT and DLD in each cell. (D, E) Violin diagram showed the relative expression of DLAT and DLD in 8 types of cells. (F, G)
Consensus matrix heat map defining two clusters (k = 2) and their correlation area. (H) Kaplan–Meier curves of overall survival in the two clusters.
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However, the low-CRIRS group with a better prognosis had higher

stromal scores and lower immune scores, and no significant

differences in immune microenvironment scores were observed

between the low and high CRIRS groups in our study

(Figures 9A–C). It has been showed that the density of infiltration

of different immune cells in the center and invasive margins of

tumors has different predictive significance for tumor prognosis and

outcome due to the different immune structures of different tumors

(51). This was also demonstrated in a study by Sun et al., kidney

renal clear cell carcinoma patients who had a worse prognosis had

higher immune scores and stromal scores (52). The relationship

between CRIRSs and 64 types of adaptive and congenital immune

cells, haematopoietic progenitor cells, epithelial cells and

extracellular stromal cells was examined using the xCell

algorithm. The proportion of multiple cell types was significantly
Frontiers in Immunology 09
different between the high- and low-CRIRS groups (Figure 9D). The

proportion of multiple stromal cells including adipocytes,

fibroblasts, lymphatic (ly) endothelial cells, and microvascular

(mv) endothelial cells was high in the low-CRIRS group, whereas

that of stem cells, such as hematopoietic stem cells (HSCs),

megakaryocytes and megakaryocyte-erythroid progenitors

(MEPs), and lymphoids NKT cells were also in higher

proportions in the low-CRIRS group. Additionally, the proportion

of a variety of lymphoids, such as B cells, CD4+ memory T cells,

CD8+ Tcm, Th2 cells and Tregs, and some myeloids including

Basophils andMast cells, were highly represented in the high-CRIRS

group. The ssGSEA analysis further demonstrates the infiltration of

immune cells in two CRIRS groups. As shown in Figure 9E,

activated B cells, activated CD8 T cells, CD56bright natural killer

cells, CD56dim natural killer cells and natural killer cells was high in
D
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C

FIGURE 5

Identification of DLAT and DLD-related immune genes in TCGA-PRAD cohort. (A) Volcano plot of cuproptosis-related DEGs between normal and
tumor tissues in TCGA-PRAD cohort. (B) Heatmap plot of immune-related DEGs between normal and tumor tissues in TCGA-PRAD cohort. (C) Top
20 terms for GO analysis of cuproptosis genes DLAT and DLD-related DEGs. (D) Top 20 pathways for KEGG analysis of cuproptosis genes DLAT and
DLD-related DEGs. (E) Top 20 terms for GO analysis of immune-related DEGs. (F) Top 20 pathways for KEGG analysis of immune-related DEGs.
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FIGURE 6

Construction and validation of a cuproptosis-related-IRG-based prognostic signature in TCGA-PRAD cohort. (A, B) DE-IRGs screened using a
LASSO–Cox regression model. (C) Coefficients of three selected genes PRLR, LECT2, DES. (D-J) Construction of TCGA-PRAD training cohort. (D)
Distribution and cut-off values of CRIRSs of TCGA training cohort. (E) OS of two CRIRS groups of TCGA-PRAD cohort. (F) ROC curves
demonstrating the prognostic value of the CRIRS model in predicting 1-, 3- and 5-year OS in TCGA. (G) Calibration curves for CRIRS model of
TCGA-PRAD cohort. y-axis: actual OS; x-axis: nomogram-predicted OS. (H) DFS of two CRIRS groups of TCGA-PRAD cohort. (I) ROC curves
demonstrating the prognostic value of the CRIRS model in predicting 1-, 3- and 5-year DFS in TCGA. (J) Calibration curves for CRIRS model of
TCGA-PRAD cohort. y-axis: actual DFS; x-axis: nomogram-predicted DFS. (K-N) Construction of MSKCC validation cohort. (K) Distribution and cut-
off values of CRIRSs of MSKCC validation cohort. (L) DFS of two CRIRS groups of MSKCC cohort. (M) ROC curves demonstrating the prognostic
value of the CRIRS model in predicting 1-, 3- and 5-year DFS in MSKCC. (N) Calibration curves for CRIRS model of MSKCC cohort. y-axis: actual
DFS; x-axis: nomogram-predicted DFS. (O-R) Construction of GSE70770 validation cohort. (O) Distribution and cut-off values of CRIRSs of
GSE70770 validation cohort. (P) DFS of two CRIRS groups of GSE70770 cohort. (Q) ROC curves demonstrating the prognostic value of the CRIRS
model in predicting 1-, 3- and 5-year DFS in GSE70770. (R) Calibration curves for CRIRS model of GSE70770 cohort. y-axis: actual DFS; x-axis:
nomogram-predicted DFS.
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the low-CRIRS group, whereas that of activated CD4 T cells,

memory B cells, neutrophils, regulatory T cells and type 2 T

helper cells was high in the high-CRIRS group. The activity status

of the seven-step tumor–immunity cycle of patients with PRAD was

determined using the Tracking Tumor Immunophenotype (TIP)

(http://biocc.hrbmu.edu.cn/TIP/) and visualised on a thermogram.

Consistent with the above results, CRIRSs were negatively correlated

with multiple step tumor–immunity cycle, especially in Step 4

(trafficking of immune cells to tumors) (Figure 9F). All three

types of immune checkpoints, major histocompatibility complex

(MHC), immunoinhibitors and immunostimulators, were highly

expressed in the low-CRIRS group, especially HLA-A, HLA-B,
Frontiers in Immunology 11
LAG3, LGALS9, CD40 and CTLA (Figures 9G–I). These results

reveal the reasons for the better prognosis in the low-CRIRS group.
3.7 Mutation landscape of patients
classified based on CRIRSs

TMB and CNV in tumor patients correlate with prognosis (53).

The mutation profile of patients stratified based on CRIRSs was

examined. Higher TMB and MATH scores were observed in the

high-CRIRS group (Figures 10A, B). The mutation profiles of patients

were different between the two groups. As shown in Figures 10C, D,
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FIGURE 7

Correlation between CRIRS model and clinical characteristics based on TCGA-PRAD cohort. (A) Differences in clinicopathological features and
expression levels of PRLR, LECT2 and DES between the low- and high-CRIRS groups. (B) Results of univariable and multivariable Cox regression
analyses for predicting OS. Differences in CRIRS levels by age (C), T stage (D), N stage (E), M stage (F), and Gleason score (G) grouping. (H) Clinical
characteristics of the high- and low-CRIRS groups.
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the top 5 genes with the highest mutation frequency were tumor

protein P53 (TP53; 9%); titin (TTN; 8%); speckle-type BTB/POZ

protein (SPOP; 7%); mucin 16, cell surface associated (MUC16; 7%)

and titin-interacting RhoGEF (OBSCN; 6%) in the low-CRIRS group

and TTN (18%); SPOP (17%); TP53 (11%); MUC16 (8%) and

spectrin repeat containing nuclear envelope protein 1 (SYNE1; 8%)

in the high-CRIRS group. TTN mutations were found in 34 patients

in the high-CRIRS group and 24 patients in the low-CRIRS group

(odds ratio [OR] = 0.374, P < 0.01, Figure 10E). The mutation

frequency of HTR1E was high in the low-CRIRS group (P < 0.05),

whereas mutation frequencies in 53 genes including SPOP, ADGRE2

and KIRREL were higher in the high-CRIRS group (P < 0.05,

Figure 10E). Co-mutation relationships were observed between

multiple genes and the five genes with the highest mutation

frequencies: TTN mutations were related to FAT4, FLG, OBSCN

and SYNE1 mutations; SPOP mutations were related to USH2A and

FOXA1 mutations, TP53 mutations were related to FOXA1

mutations; MUC16 mutations were related to FOXA1 and

HMCN1 mutations; and SYNE1 mutations were related to FLG,

FOXA1, ABCA13 and FAT3 (Figure 10F). Given that CNVs may

lead to chromosomal alterations, we further investigated the

relationship between CRIRSs and CNVs. The frequency of CNV

amplification and deletion was significantly high in the high-CRIRS

group (Figures 11A–C). Figure 11D shows the topography of CNVs

in the high- and low-risk groups. More genes had CNV amplification

and deletion in the high-CRIRS group than in the low-CRIRS group.
3.8 Predicting the sensitivity of patients to
antitumor therapy

The IC50 values of several chemotherapeutic agents commonly

used in the treatment of PRAD were evaluated to predict the
Frontiers in Immunology 12
response of patients with different CRIRSs to antitumor therapy.

The IC50 values of Camptothecin (P = 0.00623) (Figure 12A),

Dactolisib (P = 1.8e-07) (Figure 12B), Epirubicin (P = 0.0016)

(Figure 12C), Gemcitabine (P = 6.4e-05) (Figure 12D), Irinotecan

(P = 3.8e-05) (Figure 12E), Mitoxantrone (P = 3.5e-06)

(Figure 12F), Niraparib (P = 0.0013) (Figure 12G) and

Oxaliplatin (P = 0.027) (Figure 12H) were significantly higher in

the high-CRIRS group than in the low-CRIRS group. In addition,

TIDE analysis showed that CRIRS was significantly and negatively

correlated with TIDE, Dysfunction and Exclusion scores

(Figure 12I). However, IPS scores were higher in the low-CRIRS

group, indicating a better response to immunotherapy in the low-

CRIRS group (Figure 12J).
4 Discussion

Unbalanced copper homeostasis can affect tumor growth and

induce tumor cell death (54). Copper also plays an integral role in

tumor immunity and antitumor therapy (55, 56). Cuproptosis plays a

complex regulatory role in the TME of various cancers such as

endometrial and colorectal cancers. However, its role in the

development of TME and its potential therapeutic value in PRAD

remain unclear. Multiple riskmodels based on cuproptosis-associated

genes can accurately predict prognosis and assess the tumor

microenvironment (57, 58). Zhu et al. reported that the three

cuproptosis patterns they constructed in colorectal cancer were

consistent with the results of immune infiltration characteristics (59).

In this study, we proposed a cuproptosis-related immune

scoring system to assess individual immune profiles. Immune

regulation was analyzed based on transcriptional changes and the

expression of cuproptosis-related genes in TCGA-PRAD cohort.

The cuproptosis genes DLAT and DLD were found to be closely
TABLE 1 Association of CRIRS with clinicopathological parameters in prostate cancer patients.

Characteristics CRIRS (Low)(%) CRIRS (High) (%) P

n 20 12

Age 0.399

≤ 60 3(15.0) 3(25.0)

> 60 17(85.0) 9(75.0)

T stage 0.033

T2 13(65.0) 3(25.0)

T3 7(35.0) 9(75.0)

Stage 0.227

II 9(45.0) 5(41.7)

III-V 11(55.0) 7(58.3)

Gleason Score 0.025

≤ 7 15(75.0) 4(33.3)

≥ 8 5(25.0) 8(66.7)
Bold values means P < 0.05.
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associated with PRAD. An unsupervised clustering approach was

used to divide TCGA-PRAD cohort into two differentially

characterized cuproptosis clusters based on the expression of

DLAT and DLD. Prognosis was significantly different between the

two groups. Based on cuproptosis-related IRGs, three genes

associated with different clinical outcomes, immune activity and

immune function were identified, namely, PRLR, DES and LECT2.

These three genes play an important role in tumor immunity. It has

been reported that PRLR might affect the prognosis of breast cancer

by inhibiting the expression of immune checkpoints (60). Liu et al.

demonstrated that TP53-associated immune prognostic model

(TIPM) including PRLR predicts overall survival and treatment

response in pancreatic cancer (61). Absence of Reed-Sternberg cell

DES and cytokeratin expression in Hodgkin’s disease with Ki-1

antigen expression may be associated with dysregulation of the
Frontiers in Immunology 13
immune system and the observed immunological abnormalities

(62). Pouyanfard et al. demonstrated that treatment of liver fibrosis

with a population of human iPSC-derived M2 subtype macrophages

in an immunodeficient Rag2 gc mouse model significantly reduced

the expression of fibrotic genes, including DES (63). LECT2

deficiency fosters the accumulation of pejorative inflammatory

monocytes harboring immunosuppressive properties and strong

tumor-promoting potential in hepatocellular carcinoma (64). Qin et

al. reported that LECT2 expression was low in hepatocellular

carcinoma and negatively correlated with the infiltration of

immune cells such as B cells, neutrophils and monocytes and

positively correlated with naïve CD8 T cells, endothelial cells and

hematopoietic stem cells (65).

The CRIRS system was established via LOSSO–Cox regression

analysis. High CRIRSs were associated with shorter OS and DFS.
A

B

FIGURE 8

Enrichment analysis in the two CRIRS groups. (A) Analysis of multiple HALLMARK pathways via GSVA in the two CRIRS groups. (B) Immune-related
pathways for GSEA enrichment analysis in two CRIRS groups.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1181370
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yao et al. 10.3389/fimmu.2023.1181370
GSEA revealed that multiple cancer-related pathways were

significantly enriched in the high-CRIRS group, suggesting that

the three cuproptosis-associated IRGs are involved in tumor

development. CRIRSs were significantly correlated with the

clinicopathological features of PRAD, such as T stage and

Gleason scores. After controlling for confounding factors, CRIRS

was identified as an independent predictor of survival outcomes in
Frontiers in Immunology 14
PRAD. ROC curves and Calibration curves demonstrated that

CRIRSs had good accuracy in predicting OS and DFS at 1, 3 and

5 years. Therefore, CRIRSs may serve as an effective tool to predict

the prognosis of PRAD. Significant differences were observed in the

frequency of gene mutations between the high- and low-CRIRS

groups. Multiple genes had higher mutation frequencies in the

high-CRIRS group. CNVs are one of the most important somatic
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FIGURE 9

Comparison of immune activity in the two CRIRS groups. (A-C) Immune, stromal and microenvironment scores in the two CRIRS subtypes. (D)
Different infiltration levels of 64 immune and stromal cells in the two CRIRS groups analysed using the xCell algorithm. (E) ssGSEA showed
differences in the infiltration of immune cells between the two CRIRS groups. (F) Heatmap demonstrating correlation between seven key steps in the
tumor immune cycle and CRIRSs. Differential expression of different types of immunomodulatory molecules MHC (G), immunoinhibitors (H) and
immunostimulators (I) in the two CRIRS groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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aberrations in cancer, which contribute to the pathogenesis of many

disease phenotypes. In this study, the frequency of CNV

amplification and deletion was high in the high-CRIRS group.

The immune response plays a dominant role in tumorigenesis

and can often serve as the target of tumor therapy. Immune and

stromal cells are major components of TME (66). Our study found

that the CIBERSORT algorithm showed zero abundance of T cell

CD4 naive infiltration, probably because CIBERSORT calculated
Frontiers in Immunology 15
the relative proportions of immune cell subpopulations in tumor

tissues instead of the actual values (67). Immune cell infiltration is

associated with the prognosis of PRAD, and high infiltration levels

of CD8+ T cells and NK cells may indicate a good prognosis, which

is consistent with the results of this study (68–70). Therefore,

cuproptosis may be involved in regulating TME, especially CD8+

T cells and NK cells, thereby promoting tumor growth and

progression. Previous studies have reported that reactivation of
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FIGURE 10

Genetic characteristics in the two CRIRS groups. (A) The distribution of TMB scores in the two CRIRS groups. (B) The distribution of MATH scores in the
two CRIRS groups. (C, D) Waterfall plot of mutations in the top 20 genes in the low-CRIRS group top and high-CRIRS group bottom. (E) Forest plots
demonstrating the frequency of 54 mutations that differed significantly between the two CRIRS groups. Higher mutation frequencies were found in the
high-CRIRS group. (F) Heatmap demonstrating the commonality of mutations in the top 25 genes in PRAD. *P < 0.05, ***P < 0.001.
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CD8+ T cells can indicate the efficacy of immunotherapy.

Therefore, targeting cuproptosis-related IRGs may be an effective

and novel therapeutic strategy for the treatment of PRAD.

Chemotherapy and androgen deprivation therapy may limit

tumor progression and improve the prognosis of patients with

PRAD (71, 72). At present, the decreasing sensitivity of PRAD to

chemotherapy is a major concern worldwide (73). The ‘cold’

tumor characteristics of PRAD inhibit the development of

immunotherapeutic strategies that can optimize treatment by
Frontiers in Immunology 16
driving T cells into the tumor and transforming the ‘cold’ TME

into an immune ‘hot’ TME (74). In this study, patients in low-

CRIRS groups were potentially sensitive to several therapeutic

drugs, which may help to mitigate resistance mechanisms and

improve clinical outcomes. To investigate whether CRIRSs can

help to predict the efficiency of immunotherapy in PRAD, the

correlation between CRIRSs and 31 immune checkpoint genes was

examined. The vast majority of these genes were highly expressed

in the low-CRIRS group. The TIDE algorithm and IPS scores
D

A B

C

FIGURE 11

Genomic mutation profiles in the two CRIRS groups. (A, B) Box plot demonstrating the amplitudes of all chromosome amplifications/deletions in the
two CRIRS groups. (C) Focal amplification/deletion of different chromosomal regions in the two CRIRS groups. (D) CNVs in the two CRIRS groups,
including the logistic scores and mutation frequencies corresponding to different CNVs. ****P < 0.0001.
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were used to predict the ICB responses of patients with the low-

CRIRS group with higher IPS predicted a better response

to immunotherapy.

This study has some limitations. First, individual differences

among patients with PRAD might have affected the cuproptosis-

associated IRG-based prognostic signature, and more external and

practical validation is required to determine whether the signature

can be used in clinical practice. In addition, we have only limited

knowledge of the signalling pathways related to the three

cuproptosis-associated IRGs identified in this study, and the

specific molecular mechanisms of these genes in PRAD and their

relationship with TME and cuproptosis remain unknown. The role
Frontiers in Immunology 17
of these genes in PRAD should be examined in vivo and in vitro in

future studies using the results of GSEA as a reference.
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FIGURE 12

Assessment of chemotherapy and immunotherapy responses in the two CRIRS groups. (A–H) The response of patients to eight common
chemotherapeutic drugs in the high- and low-CRIRS groups. (I–J) Immunotherapy response prediction in the two CRIRS groups. ***P < 0.001,
****P < 0.0001.
frontiersin.org

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.cbioportal.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70770
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70770
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://doi.org/10.3389/fimmu.2023.1181370
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yao et al. 10.3389/fimmu.2023.1181370
Author contributions

KY participated in the study conception, data analysis and

visualization. RZ performed data collection and visualization. LL

and ML participated in data analysis, SF and HY analyzed the data

and prepared the manuscript. ZZ participated in data analysis and

manuscript revision. DX contributed to study design and writing. All

authors contributed to the article and approved the submitted version.
Funding

This work was supported in part by grants from the Anhui

Medical University Translational Medicine Program (2021zhyx-

C58) , Anhui Provincia l Natural Sc ience Foundat ion

(2108085MH261), University Natural Science Research Project of

Anhui Province (KJ2021A0318).
Acknowledgments

We thank Bullet Edits Limited for the linguistic editing and

proofreading of the manuscript.
Frontiers in Immunology 18
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2023.1181370/full#supplementary-material
References
1. Nguyen-Nielsen M, Borre M. Diagnostic and therapeutic strategies for prostate
cancer. Semin Nucl Med (2016) 46(6):484–90. doi: 10.1053/j.semnuclmed.2016.07.002

2. Gandaglia G, Leni R, Bray F, Fleshner N, Freedland SJ, Kibel A, et al.
Epidemiology and prevention of prostate cancer. Eur Urol Oncol (2021) 4(6):877–92.
doi: 10.1016/j.euo.2021.09.006

3. Kimura T, Egawa S. Epidemiology of prostate cancer in Asian countries. Int J Urol
(2018) 25(6):524–31. doi: 10.1111/iju.13593

4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin (2017) 67
(1):7–30. doi: 10.3322/caac.21387

5. Lalonde E, Ishkanian AS, Sykes J, Fraser M, Ross-Adams H, Erho N, et al.
Tumour genomic and microenvironmental heterogeneity for integrated prediction of
5-year biochemical recurrence of prostate cancer: a retrospective cohort study. Lancet
Oncol (2014) 15(13):1521–32. doi: 10.1016/S1470-2045(14)71021-6

6. Shao YH, Demissie K, Shih W, Mehta AR, Stein MN, Roberts CB, et al.
Contemporary risk profile of prostate cancer in the United States. J Natl Cancer Inst
(2009) 101(18):1280–3. doi: 10.1093/jnci/djp262

7. Nichol AM, Warde P, Bristow RG. Optimal treatment of intermediate-risk
prostate carcinoma with radiotherapy: clinical and translational issues. Cancer (2005)
104(5):891–905. doi: 10.1002/cncr.21257

8. Xie L, Li J, Wang X. Updates in prostate cancer detections and treatments -
Messages from 2017 EAU and AUA. Asian J Urol (2018) 5(1):3–7. doi: 10.1016/
j.ajur.2017.11.004

9. Li J, Xie H, Ying Y, Chen H, Yan H, He L, et al. YTHDF2 mediates the mRNA
degradation of the tumor suppressors to induce AKT phosphorylation in N6-
methyladenosine-dependent way in prostate cancer. Mol Cancer (2020) 19(1):152.
doi: 10.1186/s12943-020-01267-6

10. Ruiz LM, Libedinsky A, Elorza AA. Role of copper on mitochondrial function
and metabolism. Front Mol Biosci (2021) 8:711227. doi: 10.3389/fmolb.2021.711227

11. Krishnamoorthy L, Cotruvo JA Jr., Chan J, Kaluarachchi H, Muchenditsi A,
Pendyala VS, et al. Copper regulates cyclic-AMP-dependent lipolysis. Nat Chem Biol
(2016) 12(8):586–92. doi: 10.1038/nchembio.2098

12. Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, et al. Copper
is required for oncogenic BRAF signalling and tumorigenesis. Nature (2014) 509
(7501):492–6. doi: 10.1038/nature13180

13. Dodani SC, Firl A, Chan J, Nam CI, Aron AT, Onak CS, et al. Copper is an
endogenous modulator of neural circuit spontaneous activity. Proc Natl Acad Sci USA
(2014) 111(46):16280–5. doi: 10.1073/pnas.1409796111
14. Turski ML, Brady DC, Kim HJ, Kim BE, Nose Y, Counter CM, et al. A novel role
for copper in Ras/mitogen-activated protein kinase signaling. Mol Cell Biol (2012) 32
(7):1284–95. doi: 10.1128/MCB.05722-11

15. Tsang T, Posimo JM, Gudiel AA, Cicchini M, Feldser DM, Brady DC. Copper is
an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma.
Nat Cell Biol (2020) 22(4):412–24. doi: 10.1038/s41556-020-0481-4

16. Gul NS, Khan TM, Chen M, Huang KB, Hou C, Choudhary MI, et al. New
copper complexes inducing bimodal death through apoptosis and autophagy in A549
cancer cells. J Inorg Biochem (2020) 213:111260. doi: 10.1016/j.jinorgbio.2020.111260

17. Kaur P, Johnson A, Northcote-Smith J, Lu C, Suntharalingam K. Immunogenic
cell death of breast cancer stem cells induced by an endoplasmic reticulum-targeting
copper(II) complex. Chembiochem (2020) 21(24):3618–24. doi: 10.1002/
cbic.202000553

18. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al.
Copper induces cell death by targeting lipoylated TCA cycle proteins. Science (2022)
375(6586):1254–61. doi: 10.1126/science.abf0529

19. Ning L, ZhaoW, Gao H, Wu Y. Hesperidin induces anticancer effects on human
prostate cancer cells via ROS-mediated necrosis like cell death. J BUON (2020) 25
(6):2629–34.

20. Torrealba N, Rodriguez-Berriguete G, Vera R, Fraile B, Olmedilla G, Martinez-
Onsurbe P, et al. Homeostasis: apoptosis and cell cycle in normal and pathological
prostate. Aging Male (2020) 23(5):335–45. doi: 10.1080/13685538.2018.1470233

21. Beretta GL, Zaffaroni N. Necroptosis and prostate cancer: molecular
mechanisms and therapeutic potential. Cells (2022) 11(7):1221. doi: 10.3390/
cells11071221

22. Lin JZ, WangWW, Hu TT, Zhu GY, Li LN, Zhang CY, et al. FOXM1 contributes
to docetaxel resistance in castration-resistant prostate cancer by inducing AMPK/
mTOR-mediated autophagy. Cancer Lett (2020) 469:481–89. doi: 10.1016/
j.canlet.2019.11.014

23. Xi H, Zhang Y, Xu Y, Yang WY, Jiang X, Sha X, et al. Caspase-1 inflammasome
activation mediates homocysteine-induced pyrop-apoptosis in endothelial cells. Circ
Res (2016) 118(10):1525–39. doi: 10.1161/CIRCRESAHA.116.308501

24. Zhang J, Gao RF, Li J, Yu KD, Bi KX. Alloimperatorin activates apoptosis,
ferroptosis, and oxeiptosis to inhibit the growth and invasion of breast cancer cells in
vitro. Biochem Cell Biol (2022) 100(3):213–22. doi: 10.1139/bcb-2021-0399

25. Robinson N, Ganesan R, Hegedus C, Kovacs K, Kufer TA, Virag L. Programmed
necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos.
Redox Biol (2019) 26:101239. doi: 10.1016/j.redox.2019.101239
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181370/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181370/full#supplementary-material
https://doi.org/10.1053/j.semnuclmed.2016.07.002
https://doi.org/10.1016/j.euo.2021.09.006
https://doi.org/10.1111/iju.13593
https://doi.org/10.3322/caac.21387
https://doi.org/10.1016/S1470-2045(14)71021-6
https://doi.org/10.1093/jnci/djp262
https://doi.org/10.1002/cncr.21257
https://doi.org/10.1016/j.ajur.2017.11.004
https://doi.org/10.1016/j.ajur.2017.11.004
https://doi.org/10.1186/s12943-020-01267-6
https://doi.org/10.3389/fmolb.2021.711227
https://doi.org/10.1038/nchembio.2098
https://doi.org/10.1038/nature13180
https://doi.org/10.1073/pnas.1409796111
https://doi.org/10.1128/MCB.05722-11
https://doi.org/10.1038/s41556-020-0481-4
https://doi.org/10.1016/j.jinorgbio.2020.111260
https://doi.org/10.1002/cbic.202000553
https://doi.org/10.1002/cbic.202000553
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1080/13685538.2018.1470233
https://doi.org/10.3390/cells11071221
https://doi.org/10.3390/cells11071221
https://doi.org/10.1016/j.canlet.2019.11.014
https://doi.org/10.1016/j.canlet.2019.11.014
https://doi.org/10.1161/CIRCRESAHA.116.308501
https://doi.org/10.1139/bcb-2021-0399
https://doi.org/10.1016/j.redox.2019.101239
https://doi.org/10.3389/fimmu.2023.1181370
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yao et al. 10.3389/fimmu.2023.1181370
26. Zaffaroni N, Beretta GL. Ferroptosis inducers for prostate cancer therapy. Curr
Med Chem (2022) 29(24):4185–201. doi: 10.2174/0929867329666220111120924

27. Gromadzka G, Tarnacka B, Flaga A, Adamczyk A. Copper dyshomeostasis in
neurodegenerative diseases-therapeutic implications. Int J Mol Sci (2020) 21(23):9259.
doi: 10.3390/ijms21239259

28. Babak MV, Ahn D. Modulation of intracellular copper levels as the mechanism
of action of anticancer copper complexes: clinical relevance. Biomedicines (2021) 9
(8):852. doi: 10.3390/biomedicines9080852

29. Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K, Petris MJ.
Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol Cell
Res (2021) 1868(2):118893. doi: 10.1016/j.bbamcr.2020.118893

30. Gupta SK, Shukla VK, Vaidya MP, Roy SK, Gupta S. Serum and tissue trace
elements in colorectal cancer. J Surg Oncol (1993) 52(3):172–5. doi: 10.1002/
jso.2930520311

31. Diez M, Arroyo M, Cerdan FJ, Munoz M, Martin MA, Balibrea JL. Serum and
tissue trace metal levels in lung cancer. Oncology (1989) 46(4):230–4. doi: 10.1159/
000226722

32. Sharma K, Mittal DK, Kesarwani RC, Kamboj VP, Chowdhery. Diagnostic and
prognostic significance of serum and tissue trace elements in breast malignancy. Indian
J Med Sci (1994) 48(10):227–32.

33. Skrajnowska D, Bobrowska-Korczak B, Tokarz A, Bialek S, Jezierska E,Makowska
J. Copper and resveratrol attenuates serum catalase, glutathione peroxidase, and element
values in rats with DMBA-inducedmammary carcinogenesis. Biol Trace ElemRes (2013)
156(1-3):271–8. doi: 10.1007/s12011-013-9854-x

34. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, et al. Hypoxia-
induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the
premetastatic niche. Cancer Cell (2009) 15(1):35–44. doi: 10.1016/j.ccr.2008.11.012

35. Shanbhag V, Jasmer-McDonald K, Zhu S, Martin AL, Gudekar N, Khan A, et al.
ATP7A delivers copper to the lysyl oxidase family of enzymes and promotes
tumorigenesis and metastasis. Proc Natl Acad Sci USA (2019) 116(14):6836–41.
doi: 10.1073/pnas.1817473116

36. Yang W, Wang Y, Huang Y, Yu J, Wang T, Li C, et al. 4-Octyl itaconate inhibits
aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer.
BioMed Pharmacother (2023) 159:114301. doi: 10.1016/j.biopha.2023.114301

37. Zhang Z, Zeng X, Wu Y, Liu Y, Zhang X, Song Z. Cuproptosis-related risk score
predicts prognosis and characterizes the tumor microenvironment in hepatocellular
carcinoma. Front Immunol (2022) 13:925618. doi: 10.3389/fimmu.2022.925618

38. Li J, Wu F, Li C, Sun S, Feng C, Wu H, et al. The cuproptosis-related signature
predicts prognosis and indicates immune microenvironment in breast cancer. Front
Genet (2022) 13:977322. doi: 10.3389/fgene.2022.977322

39. Chan N,Willis A, Kornhauser N,WardMM, Lee SB, Nackos E, et al. Influencing
the tumor microenvironment: A phase II study of copper depletion using
tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in
preclinical models of lung metastases. Clin Cancer Res (2017) 23(3):666–76.
doi: 10.1158/1078-0432.CCR-16-1326

40. Voli F, Valli E, Lerra L, Kimpton K, Saletta F, Giorgi FM, et al. Intratumoral
copper modulates PD-L1 expression and influences tumor immune evasion. Cancer Res
(2020) 80(19):4129–44. doi: 10.1158/0008-5472.CAN-20-0471

41. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods (2015) 12
(5):453–7. doi: 10.1038/nmeth.3337

42. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic
properties of tumors associated with local immune cytolytic activity. Cell (2015) 160(1-
2):48–61. doi: 10.1016/j.cell.2014.12.033

43. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity
landscape. Genome Biol (2017) 18(1):220. doi: 10.1186/s13059-017-1349-1

44. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with
confidence assessments and item tracking. Bioinformatics (2010) 26(12):1572–3.
doi: 10.1093/bioinformatics/btq170

45. Camps J, Noel F, Liechti R, Massenet-Regad L, Rigade S, Gotz L, et al. Meta-
analysis of human cancer single-cell RNA-seq datasets using the IMMUcan database.
Cancer Res (2023) 83(3):363–73. doi: 10.1158/0008-5472.CAN-22-0074

46. Zhang C, Zeng Y, Guo X, Shen H, Zhang J, Wang K, et al. Pan-cancer analyses
confirmed the cuproptosis-related gene FDX1 as an immunotherapy predictor and
prognostic biomarker. Front Genet (2022) 13:923737. doi: 10.3389/fgene.2022.923737

47. Yi J, Zhu J, Wu J, Thompson CB, Jiang X. Oncogenic activation of PI3K-AKT-
mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl
Acad Sci USA (2020) 117(49):31189–97. doi: 10.1073/pnas.2017152117

48. WuMJ, Chen CJ, Lin TY, Liu YY, Tseng LL, Cheng ML, et al. Targeting KDM4B
that coactivates c-Myc-regulated metabolism to suppress tumor growth in castration-
resistant prostate cancer. Theranostics (2021) 11(16):7779–96. doi: 10.7150/thno.58729

49. Song Q, Zhou R, Shu F, Fu W. Cuproptosis scoring system to predict the clinical
outcome and immune response in bladder cancer. Front Immunol (2022) 13:958368.
doi: 10.3389/fimmu.2022.958368
Frontiers in Immunology 19
50. Lyu F, Li Y, Yan Z, He Q, Cheng L, Zhang P, et al. Identification of ISG15 and
ZFP36 as novel hypoxia- and immune-related gene signatures contributing to a new
perspective for the treatment of prostate cancer by bioinformatics and experimental
verification. J Transl Med (2022) 20(1):202. doi: 10.1186/s12967-022-03398-4

51. Li Y, Ding J, Wang H, Xu J. Research progress of immunoscore in prediction
of tumor prognosis and efficacy to treatment. Cancer Res Prev Treat (2021) 48
(8):809–13.

52. Sun Z, TaoW, Guo X, Jing C, Zhang M, Wang Z, et al. Construction of a lactate-
related prognostic signature for predicting prognosis, tumor microenvironment, and
immune response in kidney renal clear cell carcinoma. Front Immunol (2022)
13:818984. doi: 10.3389/fimmu.2022.818984

53. Zhou H, Hu Y, Luo R, Zhao Y, Pan H, Ji L, et al. Multi-region exome sequencing
reveals the intratumoral heterogeneity of surgically resected small cell lung cancer. Nat
Commun (2021) 12(1):5431. doi: 10.1038/s41467-021-25787-x

54. JiangY,HuoZ,Qi X, ZuoT,WuZ. Copper-induced tumor cell deathmechanisms
and antitumor theragnostic applications of copper complexes. Nanomedicine (Lond)
(2022) 17(5):303–24. doi: 10.2217/nnm-2021-0374

55. Percival SS. Copper and immunity. Am J Clin Nutr (1998) 67(5 Suppl):1064S–
68S. doi: 10.1093/ajcn/67.5.1064S

56. Prajapati N, Karan A, Khezerlou E, DeCoster MA. The immunomodulatory
potential of copper and silver based self-assembled metal organic biohybrids
nanomaterials in cancer theranostics. Front Chem (2020) 8:629835. doi: 10.3389/
fchem.2020.629835

57. Chen J, Wang G, Luo X, Zhang J, Zhang Y. Cuproptosis patterns and tumor
microenvironment in endometrial cancer. Front Genet (2022) 13:1001374.
doi: 10.3389/fgene.2022.1001374

58. Shan J, Geng R, Zhang Y, Wei J, Liu J, Bai J. Identification of cuproptosis-related
subtypes, establishment of a prognostic model and tumor immune landscape in
endometrial carcinoma. Comput Biol Med (2022) 149:105988. doi: 10.1016/
j.compbiomed.2022.105988

59. Zhu ZL, Zhao QY, Song W, Weng JY, Li SB, Guo TA, et al. A novel cuproptosis-
related molecular pattern and its tumor microenvironment characterization in
colorectal cancer. Front Immunol (2022) 13:940774. doi: 10.3389/fimmu.2022.940774

60. Qin J, Sun W, Zhang H, Wu Z, Shen J, Wang W, et al. Prognostic value of
LECT2 and relevance to immune infiltration in hepatocellular carcinoma. Front Genet
(2022) 13:951077. doi: 10.3389/fgene.2022.951077

61. Schneider AK, Chevalier MF, Derre L. The multifaceted immune regulation of
bladder cancer. Nat Rev Urol (2019) 16(10):613–30. doi: 10.1038/s41585-019-0226-y

62. Liang J, Deng Y, Zhang Y, Wu B, Zhou J. PRLR and CACNA2D1 impact the
prognosis of breast cancer by regulating tumor immunity. J Pers Med (2022) 12
(12):2086. doi: 10.3390/jpm12122086

63. Liu Y, Cheng L, Song X, Li C, Zhang J, Wang L. A TP53-associated immune
prognostic signature for the prediction of the overall survival and therapeutic responses
in pancreatic cancer.Math Biosci Eng (2022) 19(1):191–208. doi: 10.3934/mbe.2022010

64. Zoltowska A. Immunohistochemical comparative investigations of lymphatic
tissue in reactive processes, myasthenic thymuses and Hodgkin's disease. Arch
Immunol Ther Exp (Warsz) (1995) 43(1):15–22.

65. Pouyanfard S, Meshgin N, Cruz LS, Diggle K, Hashemi H, Pham TV, et al.
Human induced pluripotent stem cell-derived macrophages ameliorate liver fibrosis.
Stem Cells (2021) 39(12):1701–17. doi: 10.1002/stem.3449

66. L'Hermitte A, Pham S, Cadoux M, Couchy G, Caruso S, Anson M, et al. Lect2
controls inflammatory monocytes to constrain the growth and progression of
hepatocellular carcinoma. Hepatology (2019) 69(1):160–78. doi: 10.1002/hep.30140

67. Hu P, Gao Y, Huang Y, Zhao Y, Yan H, Zhang J, et al. Gene expression-based
immune cell infiltration analyses of prostate cancer and their associations with survival
outcome. DNA Cell Biol (2020) 39(7):1194–204. doi: 10.1089/dna.2020.5371

68. Wang L, Saci A, Szabo PM, Chasalow SD, Castillo-MartinM, Domingo-Domenech J,
et al. EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial
cancer. Nat Commun (2018) 9(1):3503. doi: 10.1038/s41467-018-05992-x

69. Han HS, Jeong S, Kim H, Kim HD, Kim AR, Kwon M, et al. TOX-expressing
terminally exhausted tumor-infiltrating CD8(+) T cells are reinvigorated by co-
blockade of PD-1 and TIGIT in bladder cancer. Cancer Lett (2021) 499:137–47.
doi: 10.1016/j.canlet.2020.11.035

70. Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev
Drug Discovery (2020) 19(3):200–18. doi: 10.1038/s41573-019-0052-1

71. Nader R, El Amm J, Aragon-Ching JB. Role of chemotherapy in prostate cancer.
Asian J Androl (2018) 20(3):221–29. doi: 10.4103/aja.aja_40_17

72. Desai K, McManus JM, SharifiN. Hormonal therapy for prostate cancer. Endocr
Rev (2021) 42(3):354–73. doi: 10.1210/endrev/bnab002

73. Galletti G, Leach BI, Lam L, Tagawa ST. Mechanisms of resistance to systemic
therapy in metastatic castration-resistant prostate cancer. Cancer Treat Rev (2017)
57:16–27. doi: 10.1016/j.ctrv.2017.04.008

74. Bilusic M, Madan RA, Gulley JL. Immunotherapy of prostate cancer: facts and
hopes. Clin Cancer Res (2017) 23(22):6764–70. doi: 10.1158/1078
frontiersin.org

https://doi.org/10.2174/0929867329666220111120924
https://doi.org/10.3390/ijms21239259
https://doi.org/10.3390/biomedicines9080852
https://doi.org/10.1016/j.bbamcr.2020.118893
https://doi.org/10.1002/jso.2930520311
https://doi.org/10.1002/jso.2930520311
https://doi.org/10.1159/000226722
https://doi.org/10.1159/000226722
https://doi.org/10.1007/s12011-013-9854-x
https://doi.org/10.1016/j.ccr.2008.11.012
https://doi.org/10.1073/pnas.1817473116
https://doi.org/10.1016/j.biopha.2023.114301
https://doi.org/10.3389/fimmu.2022.925618
https://doi.org/10.3389/fgene.2022.977322
https://doi.org/10.1158/1078-0432.CCR-16-1326
https://doi.org/10.1158/0008-5472.CAN-20-0471
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1158/0008-5472.CAN-22-0074
https://doi.org/10.3389/fgene.2022.923737
https://doi.org/10.1073/pnas.2017152117
https://doi.org/10.7150/thno.58729
https://doi.org/10.3389/fimmu.2022.958368
https://doi.org/10.1186/s12967-022-03398-4
https://doi.org/10.3389/fimmu.2022.818984
https://doi.org/10.1038/s41467-021-25787-x
https://doi.org/10.2217/nnm-2021-0374
https://doi.org/10.1093/ajcn/67.5.1064S
https://doi.org/10.3389/fchem.2020.629835
https://doi.org/10.3389/fchem.2020.629835
https://doi.org/10.3389/fgene.2022.1001374
https://doi.org/10.1016/j.compbiomed.2022.105988
https://doi.org/10.1016/j.compbiomed.2022.105988
https://doi.org/10.3389/fimmu.2022.940774
https://doi.org/10.3389/fgene.2022.951077
https://doi.org/10.1038/s41585-019-0226-y
https://doi.org/10.3390/jpm12122086
https://doi.org/10.3934/mbe.2022010
https://doi.org/10.1002/stem.3449
https://doi.org/10.1002/hep.30140
https://doi.org/10.1089/dna.2020.5371
https://doi.org/10.1038/s41467-018-05992-x
https://doi.org/10.1016/j.canlet.2020.11.035
https://doi.org/10.1038/s41573-019-0052-1
https://doi.org/10.4103/aja.aja_40_17
https://doi.org/10.1210/endrev/bnab002
https://doi.org/10.1016/j.ctrv.2017.04.008
https://doi.org/10.1158/1078
https://doi.org/10.3389/fimmu.2023.1181370
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	The signature of cuproptosis-related immune genes predicts the tumor microenvironment and prognosis of prostate adenocarcinoma
	1 Introduction
	2 Materials and methods
	2.1 Data collection
	2.2 Estimation of stromal and immune cells
	2.3 Consensus clustering
	2.4 Analysis and validation of scRNA data
	2.5 Differentially expressed genes and cuproptosis-related immune scores
	2.6 Functional enrichment analysis
	2.7 Survival analysis
	2.8 Correlations between CRIRS model and clinical characteristics
	2.9 Quantitative real-time PCR
	2.10 Immunohistochemistry
	2.11 Frequency of somatic mutations and copy number variations
	2.12 Chemotherapy and immunotherapy drug sensitivity
	2.13 Statistical analysis

	3 Results
	3.1 Consensus clustering of patients with PRAD based on cuproptosis-related genes
	3.2 Identification and annotation cuproptosis- related and immune- related PRAD DEGs
	3.3 Construction of a prognostic model based on cuproptosis-related immune-related genes in TCGA-PRAD cohort
	3.4 Validation of the independent prognostic value of the 3-immune-gene signature
	3.5 Metabolic characteristics of patients classified based on CRIRSs
	3.6 Correlation Between CRIRSs and the Tumor Microenvironment of PRAD
	3.7 Mutation landscape of patients classified based on CRIRSs
	3.8 Predicting the sensitivity of patients to antitumor therapy

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


