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Uncovering the potential role
of oxidative stress in the
development of periodontitis
and establishing a stable
diagnostic model via combining
single-cell and machine
learning analysis

Guobin Song1†, Gaoge Peng2†, Jinhao Zhang1†, Binyu Song3†,
Jinyan Yang1, Xixi Xie1, Siqi Gou2, Jing Zhang4, Guanhu Yang5*,
Hao Chi2* and Gang Tian6*

1School of Stomatology, Southwest Medical University, Luzhou, China, 2Clinical Medical College,
Southwest Medical University, Luzhou, China, 3Department of Plastic Surgery, Xijing Hospital, Fourth
Military Medical University, Xi’an, China, 4Division of Basic Biomedical Sciences, The University of
South Dakota Sanford School of Medicine, Vermillion, SD, United States, 5Department of Specialty
Medicine, Ohio University, Athens, OH, United States, 6Department of Laboratory Medicine, The
Affiliated Hospital of Southwest Medical University, Luzhou, China
Background: The primary pathogenic cause of tooth loss in adults is

periodontitis, although few reliable diagnostic methods are available in the

early stages. One pathological factor that defines periodontitis pathology has

previously been believed to be the equilibrium between inflammatory defense

mechanisms and oxidative stress. Therefore, it is necessary to construct a model

of oxidative stress-related periodontitis diagnostic markers through machine

learning and bioinformatic analysis.

Methods: We used LASSO, SVM-RFE, and Random Forest techniques to screen

for periodontitis-related oxidative stress variables and construct a diagnostic

model by logistic regression, followed by a biological approach to build a

Protein-Protein interaction network (PPI) based on modelled genes while

using modelled genes. Unsupervised clustering analysis was performed to

screen for oxidative stress subtypes of periodontitis. we used WGCNA to

explore the pathways correlated with oxidative stress in periodontitis patients.

Networks. Finally, we used single-cell data to screen the cellular subpopulations

with the highest correlation by scoring oxidative stress genes and performed a

proposed temporal analysis of the subpopulations.

Results: We discovered 3 periodontitis-associated genes (CASP3, IL-1b, and
TXN). A characteristic line graph based on these genes can be helpful for

patients. The primary hub gene screened by the PPI was constructed, where

immune-related and cellular metabolism-related pathways were significantly

enriched. Consistent clustering analysis found two oxidative stress categories,

with the C2 subtype showing higher immune cell infiltration and immune
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function ratings. Therefore, we hypothesized that the high expression of

oxidative stress genes was correlated with the formation of the immune

environment in patients with periodontitis. Using the WGCNA approach, we

examined the co-expressed gene modules related to the various subtypes of

oxidative stress. Finally, we selected monocytes for mimetic time series analysis

and analyzed the expression changes of oxidative stress genes with the mimetic

time series axis, in which the expression of JUN, TXN, and IL-1b differed with the

change of cell status.

Conclusion: This study identifies a diagnostic model of 3-OSRGs from which

patients can benefit and explores the importance of oxidative stress genes in

building an immune environment in patients with periodontitis.
KEYWORDS

oxidative stress, periodontitis, inflammation, machine learning, diagnostic signature,
WGCNA, single-cell RNA-seq
1 Introduction

Periodontitis is a prevalent and chronic inflammatory condition

that is characterized by a destructive inflammatory response

affecting the tissues surrounding the teeth, including gingivitis,

periodontal pocket formation, and periodontal bone loss,

ultimately leading to loss of support and loss of teeth (1). Recent

research indicates that periodontitis affects approximately 50% of

adults worldwide, with an estimated prevalence of severe

periodontitis ranging from 10-15% (2). Several factors, including

plaque, tartar, traumatic occlusion, food fillings, poor restorations,

and mouth breathing, can lead to the development of periodontitis

(3). Failure to treat gingivitis in a timely manner can lead to

inflammation spreading from the gums to the deeper layers of the

periodontium, alveolar bone, and dental bone, culminating in

periodontitis (4). In the early stages of the disease, patients may

not exhibit any overt symptoms, with secondary gingival bleeding

or halitosis being the most common. However, by the time patients

develop symptoms, the disease has progressed to a more severe

stage and may lead to tooth loss, making it the primary reason for

tooth loss in adults (5). Currently, periodontitis diagnosis relies on

radiological examinations, probing pocket depth, bleeding on

analysis, and CAL(Clinical Attachment Loss) (6). Nevertheless,

these tools have limitations and may lag in identifying and

diagnosing periodontitis in the early stages.

Oxidative stress (OS) is a condition characterized by an

imbalance between antioxidant and oxidative actions in the body,

leading to the secretion of enhanced proteases, the generation of

significant amounts of oxidative intermediates, a tendency towards

oxidation, inflammatory infiltration of neutrophils, and primarily

reactive oxygen species (ROS) (7). Kanzaki et al. have reported that

periodontitis is a pathological condition in which oxidative stress

plays a direct and indirect role in tissue degradation. The balance

between defense systems and oxidative stress is essential for

maintaining healthy periodontal tissue (8). In patients with
02
periodontitis, oxidative stress induced by periodontitis can

promote pro-inflammatory pathways, including osteoclast

production, resulting in bone loss (9). ROS can indirectly

contribute to the deterioration of periodontal tissue destruction

by functioning as an intracellular signaling molecule in the

osteoclast pathway (10). Furthermore, plasma, saliva, and gingival

sulcus oxidative stress markers are higher in individuals with

periodontitis (11). The development of periodontitis is a complex

process that involves multiple genes and their products, and single

gene markers often do not adequately reflect the pathogenesis of

periodontitis and have poor sensitivity for disease diagnosis.

Therefore, there is a need to develop novel predictive models

based on oxidative stress biomarkers that can be used for the

early screening and diagnosis of the disease, which would be of

great value in clinical practice.

Machine learning has been extensively utilized in identifying

the relationship between gene expression patterns and diseases

since the advent of next-generation sequencing (12, 13). Artificial

intelligence (AI) has emerged as a potent tool for assessing the risk

and diagnosing periodontitis, ranging from its early to moderate

and severe stages. By leveraging advanced machine learning and

deep learning algorithms, AI can scrutinize vast amounts of clinical

data (14), including a patient’s oral health status, oral hygiene

habits, and lifestyle, to provide precise risk assessment and disease

diagnosis. Furthermore, AI can aid dentists in image analysis for

diagnosis, such as assessing periodontal pocket depth and bone loss

(15). This enables the early detection of moderate and severe

periodontitis and facilitates the formulation of appropriate

treatment plans to prevent further disease progression effectively.

Given the widespread prevalence and significant impact of

periodontitis on oral health and quality of life, our research aims to

elucidate the underlying molecular mechanisms and construct a

precise diagnostic model by integrating transcriptome sequencing,

machine learning algorithms, and single-cell sequencing

technologies. Through state-of-the-art Nomogram and decision
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curve analysis, we have rigorously evaluated the model’s performance

and successfully classified periodontitis patients into two distinct

subtypes, namely C1 and C2. In-depth analysis of immune

infiltration in these subtypes has shed light on the differences and

immune mechanisms underlying the subtypes, providing crucial

insights into understanding the pathogenesis of periodontitis.

Furthermore, by leveraging single-cell sequencing data, we have

delved into the intricate cellular communication and modeled gene

expression in the periodontitis microenvironment, revealing novel

insights into the disease progression at the cellular level. The findings

from our research are expected to provide robust academic support

for the development of personalized treatment and management

strategies for periodontitis, ultimately improving patient outcomes

and enhancing oral health.
2 Method

2.1 Raw data collection and processing

The flowchart summarizes the main design of the present study

(Figure 1). Raw microarray datasets GSE16134 (comprising 70

normal and 240 affected samples), GSE10334 (containing 64

normal and 183 patient samples), and GSE23586 (comprising 3

normal and 3 affected samples) were retrieved from the Gene

Expression Omnibus (GEO) database for total RNA data

(Supplementary Table 1). GSE16134 and GSE23586 were used to

screen the model genes, and GSE10334 was used to validate the

diagnostic model. In order to decrease any batch effects across or

within the three cohorts, the R package “limma” with the

“normalize between arrays” function was employed. The

performance of the combat function was evaluated using

principal component analysis (PCA). Each gene’s probe ID is

transformed into a gene symbol. If a gene symbol is related to

multiple probe ids, the average expression value of the probe id was

determined as the gene’s average expression value. Single-cell data

were collected from GSM5005043 of the GSE164241 cohort

containing 10× scRNA-seq data from affected oral mucosa

samples from patients with periodontitis and one normal mucosa

sample (16). With a relevance score of ≥50, 47 oxidative stress

protein domains were retrieved from the GeneCards (https://

www.genecards.org) database.
2.2 Characterization of OSRGs connected
to periodontitis that is differently expressed

Through the “Linear model for microarray data” (“limma”)

package in R (17), Benjamini- Hochberg false discovery rate

adjusted for p-values <0.05, and |log FC|> 1 as thresholds for

screening differentially expressed OSRGs, differential expression

analysis was carried out in GSE23586 and GSE16134 to screen for

periodontitis-associated OSRGs. Heat maps were used to display

these. Volcano plots demonstrate the OSRG expression patterns in

diseased and healthy subjects. To assess the correlation between
Frontiers in Immunology 03
OSRGs, Pearson correlation coefficients were calculated for DE-

OSRGs in periodontitis samples. Visualization in R using “corrplot”.
2.3 FEA (functional enrichment analysis) for
DE-OSRGs in patients with periodontitis

For the functional analysis of biological functions, the Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology

(GO) packages0 were used. The Benjamini-Hochberg method or

FDR for multiple testing corrections was used to modify the p-

value. The cutoff was established at FDR<0.05. Cellular components

(CC), molecular functions (MF), and biological processes (BP) were

the GO categories.
2.4 GSEA (gene set enrichment analysis) for
the model gene

GSEA was used to clarify the biological importance of defining

genes functionally (18). The reference set used in this study was the

gene set of “c2.cp.kegg.v11.0.symbols” from the Molecular

Signature Database (MSigDB, http://software.broadinstitute.org/

gsea/msigdb) (15). We sorted the training cohort according to the

expression of model genes and divided the samples into two

categories according to the median value of expression and

extracted the differential genes in different categories for

analysis.Gene set permutations were performed 1,000 times to

arrive at a normalized enrichment score for each analysis.

Significant enrichment was defined as an FDR = 0.05 or lower.
2.5 PPI (protein-protein interaction)
network construction

GeneMANIA (http://www.genemania.org) is a platform for

constructing protein-protein interaction (PPI) networks that can

be employed to anticipate gene function and discover genes with

similar functions. The network integration algorithm uses

bioinformatics techniques such as site prediction, genetic

exchange, gene enrichment analysis, co-expression, co-

localization, and physical interaction. This study analyzed PPI

networks of model genes using GeneMANIA (19). The network’s

genes were analyzed for KEGG and GO enrichment using the

“clusterProfiler” R tool. Significantly enriched functions or

pathways were identified according to the criterion: adjusted P <

0.05 and visualized with bubble plots.
2.6 Building and validating a predictive
model based on OSRG associated
with periodontitis

The genes listed above were employed to identify diagnostic

genes for periodontitis. Reduction of bias due to cohort imbalance
frontiersin.org
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by using resampling in our COX regression analysis of cohort

sequencing data and machine learning screening of biomarkers. To

accomplish this, a supervised machine learning technique, support

vector machine recursive feature elimination (SVM-RFE), was

utilized to classify and regress the genes based on a training set

with labels. SVM is a supervised learning algorithm that attempts to

find a hyperplane in a high-dimensional space that maximally

separates the classes, reducing the risk of overfitting and

improving the model’s generalization performance when dealing

with datasets with a small number of samples (20). The feature set

was then refined by training a subset of features from various

categories and identifying the most accurate characteristics. The
Frontiers in Immunology 04
most valuable variables were retained by performing a minimum

LASSO (absolute shrinkage and selection operator) regression using

the ‘glmnet’ package in R, which calculated and selected the linear

model, LASSO is a regression analysis method that aims to reduce

model complexity by shrinking the coefficients of the less important

variables to zero, making it useful in dealing with datasets that have

a large number of features (21). To perform LASSO classification,

the variables from the binomial distribution were used in

conjunction with a standard error lambda value for the minimal

criterion (1-SE criterion), which had a decent performance but only

10 cross-validation factors. On the other hand, random forest is an

ensemble learning method that constructs numerous decision trees
FIGURE 1

The flowchart summarizes the main design of the present study.
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during training and predicts the mode of the classes as the output. It

is a robust and accurate method that can handle both numerical and

categorical data, missing values, and noisy data (22). The genes were

ranked using random forest, and those with relative values greater

than 0.25 were deemed typical random causes. When used in

combination, LASSO, random forest, and SVM can provide

complementary insights into identifying reliable oxidative stress

genes for diagnosing periodontitis. LASSO can identify the most

relevant features, random forest can provide accurate and robust

predictions, and SVM can improve the generalization performance

of the model. However, careful design and validation of the

integration process are necessary to ensure that each method’s

strengths are fully utilized, while minimizing potential biases and

limitations. Subsequently, the rms algorithm was used to construct a

nomogram model that predicted the probability of acquiring

periodontitis. The predictive performance of the nomogram

model was assessed using calibration curves, and the area under

the curve (AUC) for scanning for distinctive genes and assessing

their diagnostic value was calculated using the ‘P ROC’ function in

the R package for the receiver operating characteristic (ROC)

curve (23).
2.7 Unsupervised clustering of PD patients

We used unsupervised clustering analysis using the

ConsensusClusterPlus R package (24) to group 423 samples of

periodontitis patients into various clusters based on three modelled

oxidative stress genes using a k-means method with 1,000 cycles. A

combination of cumulative distribution function (CDF) curves,

consensus matrix, and consistent clustering scores (>0.9) was

used to determine the ideal number of clusters (k=2).

Subsequently, principal component analysis (PCA) was used to

evaluate the gene distribution of different clusters. The expression of

the modelled genes was also scored with fGSEA for both subtypes.

Furthermore, gene expression profiles of prognostic DE-OSRG

within different clusters were evaluated using the t-test, with DE-

OSRG with a P-value of less than 0.001 regarded as a distinct

prognostic OSRG for periodontitis and displayed with box plots.

DEGs in various clusters were screened using |log FC criterion |≥0.2

and adjusted P-values <0.05. By examining these enriched GO

terms and KEGG pathway analyses using R in the “ clusterProfiler”

package and visualizing the differential pathways using bar charts,

the enrichment pathways of DEGs in different typologies were

studied and compared.
2.8 Analysis of single-sample gene set
enrichment for different clusters

The single-sample Gene Set Enrichment Analysis (ssGSEA)

(25) was used to compute and compare the infiltrating immune

cells. Immunological pathways in periodontitis, various clusters,

and box plots were used to visualize the results. Additionally,

Pearson correlation coefficients were computed to assess the
Frontiers in Immunology 05
relationship between DE-OSRG and the immune pathways,

infiltrating immune cells, and periodontitis samples. The results

were visualized in R using “corrplot”.
2.9 WGCNA (weighted gene co-expression
network analysis) to find co-expression
modules associated with oxidative
stress isoforms

WGCNA investigates the connections between gene networks

and disease and the relationships between gene modules and clinical

traits. WGCNA was performed using the R package (26) of

“WGCNA” (version 1,70.3) to identify co-expression modules). In

order to assure the validity of the quality outcomes, the top 5000

genes with the highest variance were applied to future WGCNA

analyses. A weighted adjacency matrix was created using the best

soft power and then converted into a topological overlap matrix

(TOM). When the minimum module size was set to at least 200,

modules were produced using a TOM dissimilarity measure (1-

TOM) based on a hierarchical clustering tree technique. A random

colour is selected for each module. The module eigengene

represents the overall gene expression profile in each module.

Dynamic tree-cutting and hierarchical clustering were used to

find the module. Gene salience (GS) and module affiliation (MM)

were evaluated to connect modules to clinical features. The hub

module was designated with the highest Pearson affiliation

correlation (MM) and an absolute p-value of 0.05. MM >0.8 and

GS >0.2 indicated module connectivity height and clinical

significance. Further investigation was carried out on the

corresponding modules’ genetic data.
2.10 scRNA-seq data subgroup processing
and pseudo-time series analysis

The following steps were used to process the 10 scRNA-seq

data: (1) The R program “Seurat” package was used to convert 10

scRNA-seq data to Seurat objects (27). (2) To undertake quality

control (QC), low-quality cells were eliminated after determining

the percentage of mitochondrial or ribosomal genes. (3) The

“FindVariableFeatures” function was used to screen the top 2000

high-variability genes after QC, and UMI was carried out. (4) Gene

correlation analyses were conducted to determine the data quality

after the first 2,000 highly variable genes were screened using the

“FindVariableFeatures” program. (5) PCA (Principal component

analysis) based on 2000 genes and unified flow approximation and

projection (UMAP) (28) was used for downscaling and cluster

identification. The “SingleR” package (29) of R software was used to

identify various cell types for cluster annotation. The inferred cell

differentiation trajectories were calculated using Monocle 2 (cell

trajectory reconstruction analysis employing gene counts and

expression). DDRTree was used to select and downscale the

DEGs in the clustering results. Cells were then binned, and

trajectories were constructed. Heat maps of sorted gene
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expression were created following clustering analysis to visualize the

top 100 driver genes and the ‘target genes’ expression trends in each

cell cluster (30–33). In order to select DE-OSRG genes and illustrate

the results, the statistical method “Branch Expression Analysis

Model (BEAM)” was employed to determine the contribution of

genes during cell development. Using the “plot cell trajectory”

feature, the association between the trajectory of gene

modifications and cell differentiation was displayed.
2.11 Statistical analysis

R software version 4.1.3 was used to conduct the statistical

analysis. A one-way analysis of variance (ANOVA) and t test are

performed on the data to investigate whether the Oxidative stress

model genes, pathway enrichment results, immune cell infiltration

and immune function score differs significantly between the patient

groups. p-values and false discovery rate (FDR) q-values below 0.05

were regarded as statistically significant.
3 Results

3.1 Differentially expressed OSRGs in
patients with periodontitis

Box-and-whisker plots were employed to normalize the data,

where different data sets were represented by different colors, rows

corresponded to samples, and columns represented gene expression

levels within the samples (Supplementary Figures 1A, B). Before

batch correction, PCA analysis was performed on several data sets,

and GSE10334 and GSE16134 were found to be distinct without any

overlap (Figure 2A). The plot of PCA analysis using the sva

program after batch correction is shown in Figure 2B, where the

intersection of the two datasets was utilized as a batch for further

evaluation. Based on the conditions of P-adjustment <0.05 and |

log2 fold-change (FC) | >0.5, a total of 891 genes, including 555 up-

regulated genes and 247 down-regulated genes, were identified as

differentially expressed genes (DEGs) (Supplementary Table 2).

Among the genes associated with oxidative stress, 52 DE-OSRGs

exhibited differential expression between samples with periodontal

disease and those without, as shown by the intersection of DEGs and

genes associated with oxidative stress (Figures 2C, D). These 52 DE-

OSRGs were subjected to correlation analysis, with GFM1 showing

the strongest negative correlation with TGFB1 and HADHA

exhibiting the strongest positive association with ACADVL

(Figure 2E). Furthermore, KEGG enrichment analysis and GO

functional analysis were conducted to assess the biological activities

and signaling pathways associated with these 52 DE-OSRGs. The

significantly enriched items were selected using P<0.05 and shown in

bar graphs (Figure 2F). The BP category was mainly associated with a

response to oxidative stress and stress-activated protein kinase

signaling cascade, while the CC category was mainly associated

with inflammasome complexes and platelet alpha particles. The MF

category was enriched with antioxidant activity, cysteine-type
Frontiers in Immunology 06
endopeptidase activity involved in apoptosis, and NAD+

nucleotidase activity protease binding. KEGG enrichment analysis

identified the top 10 pathways based on the enrichment score out of

32 significantly enriched KEGG pathways (Figure 2G). Most enriched

pathways were associated with il-17 signaling and atherosclerotic

disease, including sterol hormone production, T-cell factor cytokine

receptor interaction, natural killer cell-mediated cytotoxicity, and

other KEGG pathways. Interestingly, the enrichment analysis results

revealed a strong correlation with the immune response, which

prompted us to conduct a systematic analysis of the immune status

of patients with periodontitis.
3.2 Three machine learning algorithms to
screen modelling genes

The SVM-RFE, random forest, and LASSO algorithms are

employed to choose signature genes and assess their diagnostic

effectiveness. Three algorithms were applied to screen signature

genes among differentially expressed genes associated with crucial

periodontitis progression and oxidative stress processes. The ideal l
was determined by cross-validation to be 0.004 for the LASSO

method. By comparison, we selected the minimum criteria for

constructing the LASSO classifier to identify 30 feature genes

(Figures 3A, B).

When there were 9 features (Figure 3C), the error was minimized

for the SVM-RFE algorithm, and 9 relevant feature genes were, as a

result, found. The top 10 genes in importance were selected by

combining RandomForest feature selection and classification tree

results (Figures 3D, E). Finally, the three feature genes—IL-1b, TXN,
and CASP3—common to the SVM-RFE, Random Forest, and

LASSO algorithms were discovered by crossover. These genes are

depicted by the VENN diagram (Figure 3F).
3.3 Evaluate the diagnostic efficacy
of OSRGs

Logistic regression modeling was employed to determine the

corresponding regression coefficients, and a linear prediction model

was established by weighting the coefficients based on individual

genes. The logistic regression models for signature genes were

combined to construct a diagnostic nomogram for periodontitis

(Figure 4A). Each gene was assigned a score in the nomogram, and

the overall score was calculated by adding the scores of all the genes.

This overall score reflects various periodontitis risks. Calibration

curves were employed to assess the prediction power of the

nomogram, and the results showed that it could accurately

predict the risk of periodontitis with minimal difference between

actual and predicted risks (Figure 4B).

Furthermore, decision curve analysis (DCA) revealed that the

IL-1b+TXN+CASP3 model had a higher net benefit than the

reference model across the threshold range, suggesting that

predictions based on this model could better reflect the patient’s

condition (Figure 4C). The accuracy and area under the curve for
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the training set (GSE16134, GSE23586) and the test set (GSE10334)

were 0.915 and 0.890, respectively, indicating “excellent” resilience

of the model (Figures 4D, E). To our knowledge, after the data

balancing process, the machine learning method exhibited

significantly improved sensitivity and AUC. After SMOTE

balancing, the AUC values reached a maximum of 0.83 for IL-1b,
0.82 for CASP3, and 0.86 for TXN (Figures 4F–H).
Frontiers in Immunology 07
3.4 Interaction analysis of model genes and
enrichment analyses

Through GSEA analysis, we evaluated the signaling pathways

associated with the signature genes. The results revealed that IL-1b
(Figure 5A), TXN (Figure 5B), and CASP3 (Figure 5C) were

significantly associated with specific pathways. Specifically, TXN was
B

C D E

F G

A

FIGURE 2

Differentially expressed OSRGs in patients with periodontitis. (A, B) PCA of PD and control samples. (C) Heat map of DE-OSGs. (D) Volcano plot of
DE-OSGs. (E) Correlation of 26 DE-PRGs in periodontitis samples Red, positive correlation; blue, negative correlation. (F) Analysis of DE-OSGs using
gene ontology (GO) enrichment analysis. x-axis indicates the number of genes associated with a term, and y-axis indicates the pathway term. The q-
value of each term is colored according to the legend. bp, biological process; cc, cellular component; mf, molecular function. (G) Main KEGG
pathways enriched by the aforementioned genes. The significance of the differences was tested using the method of wilcox.test, and the p.signif
obtained was expressed as "***"<0.001, "**"<0.01, "*"<0.05.
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positively correlated with the OLFACTORY TRANSDUCTION

pathway, while CASP3 was negatively correlated. The opposite was

observed for the B CELL RECEPTOR SIGNALING PATHWAY.

Furthermore, IL-1b was positively correlated with the INTESTINAL

IMMUNE NETWORK FOR IGA PRODUCTION and TXN was

inversely correlated with this pathway. To further investigate the

function of the signature genes, we constructed a PPI network using

the GeneMANIA database (Figure 5D) and performed GO/KEGG
Frontiers in Immunology 08
analysis for the top 20 genes in terms of connectivity. The results

showed that oxidative stress response and stress-activated pathways

were relatively abundant biological processes (BP) in this dataset. The

mitochondrial membrane gap in the cellular component (CC), and the

outer side of the plasma membrane were significantly enriched.

Additionally, cysteine-type endopeptidase activity involved in

apoptotic processes and NAD+ nucleosidase activity were significantly

correlated with enriched molecular functions (MF) (Figure 5E).
B

C D
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A

FIGURE 3

Three machine learning algorithms to screen modelling genes. (A) Ten-fold cross-validation of tuning parameter selection in the LASSO model. Each
curve corresponds to one gene. (B) Lasso coefficient profiles. The solid vertical line indicates the partial likelihood deviation SE. The dashed line is
drawn at the optimal l. (C) Biomarker signature gene expression validation by support vector machine recursive feature elimination (SVM-RFE). (D)
Number of trees versus error rate in relationship of random forests. (E) Ranking of genes according to their relative importance. (F) Venn diagram
showing the feature genes shared by LASSO, random forest, and SVM-RFE algorithms.
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According to the results of KEGG analysis, the main enrichment

pathways were MAPK signaling pathway, apoptosis, and Th17 cell

differentiation (Figure 5F).
3.5 Construction of periodontitis oxidative
stress subtypes based on OSRGs

A total of 423 samples of periodontitis were clustered in GSE10334

and GSE16134 based on three prognostic oxidative stress-responsive
Frontiers in Immunology 09
genes (OSRGs). The clustering variable (k) was estimated as 2 based on

the relative change in the cumulative distribution function (CDF) plot

and the area under the CDF curve (Figures 6A, B), dividing the dataset

into two clusters associated with oxidative stress. Cluster 1 (C1) had 246

cases, and cluster 2 (C2) had 177 cases. Principal component analysis

(PCA) revealed significant differences between the subtypes (Figure 6C).

The gene expression profiles of the two clusters were represented by the

three prognostic OSRGs on the heat map (Figure 6D). CASP3 and IL-

1b were most highly expressed in C2, while TXN expression levels were

highest in C1. The expression levels of oxidative stress genes in the two
B C

D E
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A

FIGURE 4

Evaluate the diagnostic efficacy of OSRGs. (A) Nomogram plot based on the signature genes expression. (B) Calibration plot for the validation of the
nomogram. (C) DCA curve demonstrated the standardized net-benefit with the constructed model in the validation of the IL-1b, the TXN, and the
signature genes. ROC curves of the model to predict the benefits of diagnosis of periodontitis in (D) the training set (GSE16134, GSE23586) and (E)
the test set (GSE10334). (F–H) ROC curves for estimating the diagnostic performance of the signature genes) (IL-1b, TXN, CASP3).
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subtypes were compared using single-sample gene set enrichment

analysis (ssGSEA). The expression of oxidative stress genes was more

frequent in C2 than in C1, defining C2 as a subtype with high oxidative

stress expression (Figure 6E). Box-and-whisker plots displayed

differentially expressed genes between periodontitis progression and

oxidative stress-related gene subtypes (Figure 6F). KEGG enrichment

analysis of differentially expressed genes showed that with increased

expression of oxidative stress genes, cellular metabolism, including

unsaturated fatty acid synthesis, folate biosynthesis, and tyrosine

metabolism, also became frequent.

However, we found the opposite to be true for immune activity,

which was enriched in the subtype “Intestinal immune network for
Frontiers in Immunology 10
IgA production,” as well as pathways related to immune system

diseases such as systemic lupus erythematosus (SLE) and

autoimmune diseases (Figure 6G). Gene Ontology (biological

process) enrichment analysis was performed on subtypes, in

which some immune-related biological processes were

downregulated in C1, including positive regulation of interleukin

1b production, T helper 17 cell lineage commitment, mature B-cell

differentiation, and positive regulation of myeloid leukocyte

differentiation. We conjecture that the expression of oxidative

stress genes is involved in processes related to constructing the

immune microenvironment in patients with periodontitis

(Figure 6H).
B C
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A

FIGURE 5

Interaction analysis of model genes and enrichment analyses. (A–C) GSEA identifies signaling pathways involved in the characteristic genes. (A) IL-1b, (B)
TXN, (C) CASP3, (D) Characterized gene co–expression network. (E) GO analysis of co–expressed genes. (F) KEGG analysis of co–expressed genes.
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FIGURE 6

Construction of periodontitis oxidative stress subtypes based on OSRGs. (A) Consensus matrix heatmap when k = 2. (B) Consensus CDF when k = 2-
9. (C) PCA analysis of two oxidative stress typing samples. (D) Heatmap of the differences between the three modeled genes in different subtypes.
(E) Samples of different subtypes were assessed for oxidative stress expression by ssGSEA. (F) Box plots of differential expression between different
oxidative stress isoforms. (G, H) Pathway enrichment analysis and bar graph representation of differentially expressed genes in different oxidative
stress subtypes by GSVA and fGSEA, respectively. "****" indicates that P<0.0001.
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3.6 Immunological cell infiltration and
enrichment of immune pathways in
samples with various subtypes of
oxidative stress

The immune microenvironment plays a critical role in regulating

the pathology of periodontitis, as evidenced by significant variations
Frontiers in Immunology 12
in the relative enrichment scores of immune cell infiltration,

periodontitis (disease), and healthy tissue immune pathway activity

in periodontal disease (Supplementary Figures 2A, B).

Immunometabolic alterations in the immune microenvironment of

periodontitis tend to differ in patients with different subtypes of

oxidative stress. Exploring the immune infiltration patterns

of different subtypes helps to uncover the underlying mechanisms
B

C D

A

FIGURE 7

Immunological cell infiltration and enrichment of immune pathways in samples with various subtypes of oxidative stress. (A) Differences in immune
cell infiltration between high and low-oxidative stress subtypes. (B) Immune cell and immune function ssGSEA scores between high and low-
oxidative stress subtypes. (C) Spearman’s correlation coefficient analysis of biomarkers and immune cell infiltration. (D) Spearman’s correlation
coefficient analysis of biomarkers and immune function. The significance of the differences was tested using the method of wilcox.test, and the
p.signif obtained was expressed as "***"<0.001, "**"<0.01, "*"<0.05.
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of periodontitis development. We systematically investigated the

immune cell infiltration in the immune microenvironment of

periodontitis with varying subtypes of oxidative stress.

Using the CIBERSORT algorithm to compare 22 immune cells,

we observed significant differences between high and low oxidative

stress subtype groups. In the increased oxidative stress subgroup, B

cells naïve, neutrophils, NK cells resting, and other immune cells

exhibited high infiltration, while T cells CD8, T cells follicular

helper, monocytes, and other immune cells showed low infiltration

in the low oxidative stress subgroup (Figure 7A). The different levels

of infiltration of various immune cells in periodontitis tissues

significantly impacted immune function, which we scored using

the “ssGSEA” algorithm, revealing that the majority of immune

function scores were significantly higher in the high-oxidative stress

group than in the low-oxidative stress group (Figure 7B).

We then examined the spearman correlation coefficients of the

three validated biomarkers (CASP3, TXN, IL-1b) with 20 immune

cells and immune functions and observed that these three

biomarkers were considerably associated with most immune cells.

CASP3 had the strongest positive correlation with plasma cells and

the strongest negative correlation with dendritic cells resting; TXN

had the strongest positive correlation with dendritic cells resting

and the strongest negative correlation with plasma cells and B cells

naïve, and IL-1b had the strongest positive correlation with

neutrophils (Figure 7C). Based on immune functions, we found

that CASP3 and IL-1b exhibited positive correlations with all

immune functions, while TXN showed significant negative

correlations with most immune functions (Figure 7D). Based on

these results, we speculate that the expression profile of oxidative

stress genes is a crucial factor in shaping the immune environment

and promoting periodontitis development.
3.7 Analysis of weighted co-expression
networks in patients with periodontitis

In this study, we aimed to investigate the gene networks

associated with periodontitis oxidative stress subtypes. To

accomplish this, we clustered differential gene matrices of

GSE10334 and GSE16134 expression matrices of all periodontitis

patients, with a total of 423 samples, to identify functional gene

modules that are associated with periodontitis in different subtypes.

To ensure the reliability of our results, we excluded samples with

apparent abnormalities by setting a threshold (Figure 8A). Gene co-

expression similarity was determined using Pearson correlation

coefficients, and weak connections were filtered out using the

topological overlap matrix (TOM) during the network creation.

The soft threshold was set to 9, which was consistent with the scale-

free distribution and provided adequate average connectivity for the

following construction of co-expression modules (Figure 8B).

After merging the modules with strong links, five modules were

identified for further analysis using the 0.55 clustering height

restriction (Figure 8C). Finally, the primers and merged modules

were displayed beneath the clustering tree (Figure 8D). The

accuracy of module descriptions was demonstrated by

transcriptional correlation analysis inside modules, with no
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significant link observed between modules (Figures 8E, F). The

relationship between modules and clinical symptoms was

investigated using positive correlations between ME levels and

clinical characteristics. The blue-green modules showed negative

correlations with C1 (r = 0.38, p = 1e-13) and positive correlations

with C2 (r = -0.38, p = 1e-13) (Figure 8G).

Furthermore, we identified therapeutically relevant modules,

with the turquoise module shown to be substantially linked with

typing in the typing MM versus GS scatter plot (Figure 8H). We

then extracted genes from the turquoise module for enrichment

analysis, and as expected, many immune-related pathways were

enriched. These include active regulation of cytokine production,

functional regulation of immune responses, leukocyte migration,

neutrophil degranulation, regulation of lymphocyte activation,

responses to viruses, B-cell receptor signaling pathways, and

responses to bacteria. Overall, our findings highlight the crucial

involvement of oxidative stress events in forming the immune

environment in periodontitis patients.
3.8 scRNA-seq data quality control and
dimensionality reduction clustering

To investigate the gene expression profiles of individual cells, we

first pre-processed the single-cell data for normalization

(Figure 9A). The quality of the cells was examined using UMI

and Gene correlation analysis, which indicated a favorable

correlation coefficient of r = 0.77 between nCount and nFeature,

confirming the high quality of the cells (Figure 9B). We then applied

the RunPCA function in the Seurat package for principal

component analysis (PCA), using the ‘scaledata’ function to scale

selected highly variable genes, and finding anchor points by PCA

downscaling. Subsequently, we selected the data of the top 10 PCs

for downscaling (Figures 9C, D). The results of the control and

affected sites were visualized using umap and are presented

in Figure 9E.

Next, we employed the findclusters function of the Seurat

package to cluster the cells into groups and annotated the

subgroups using the “singleR” package, which identified a total of

8 cell types (Figure 9F). To further characterize the expression

profiles of specific genes, we plotted the expression of “CASP3”,

“TXN”, and “IL-1b” in the cell clusters using umap (Figure 9G). We

subsequently calculated the OSscore for each cell subpopulation by

scoring each cell type with the oxidative stress gene set. Our analysis

showed that the expression of oxidative stress genes was more active

in monocyte in the immune cell subpopulation at the affected site

compared to the control site, while the opposite was observed for T-

cells (Figure 9H).
3.9 Pseudotime series analysis

We extracted monocytes, the immune cell subpopulation with

the highest score of the oxidative stress gene set (Figure 10A), for

the following analysis step—package for cell annotation of each

subpopulation (Figure 10B). The “monocle” software was used to
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investigate the cell trajectories, and pseudo-times of the thirteen

crucial cell types found. The earlier the cell differentiation, the

darker the blue colour, demonstrating that monocytes differentiate

from left to right over time. There are three different nodes of

differentiation for monocytes, with nodes followed by cells

indicating other states, And it was observed that memory B cells,

CD16-monocytes, and NK cells were clustered at one end of the
Frontiers in Immunology 14
trajectory and distributed among the affected sites in patients with

periodontitis (Figures 10C, D).

Then, we used the branching expression analysis model

(BEAM) to find thirteen regulatory genes differentially expressed

in different cell subpopulations, screened essential genes with qval

(corrected P), and took intersections with the set of genes for

oxidative stress. The distributed expression of oxidative stress
B
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FIGURE 8

Analysis of weighted co-expression networks in patients with periodontitis. (A) Sample clustering dendrogram with tree leaves corresponding to
individual samples. (B) Soft threshold b = 9 and scale-free topological fit indices. (C) Clustered dendrograms cut at a height of 0.55 to detect and
combine similar modules. (D) Display of original and combined modules under the clustering tree. (E) TOM between genes is represented as a heat
map, and the depth in red indicates the strength of correlation between gene pairs on a linear scale. (F) Heat map of module-trait correlations. Red
represents positive correlations and blue represents negative correlations. Blue represents negative correlations. (G) Scatter plot of MM vs. GS for
clusters. (H) Pathways with top 20 enrichment scores in turquoise modules.
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genes with the proposed time series was obtained. Finally, we

created a heat map using these 13 genes (Figure 10E). And the

temporal expressions of the genes “JUN”, “IL-1b”, and “TXN” in

the normal and diseased groups, respectively, were selected and

shown. The results showed significant differences in the expression

of most of the oxidative stress genes as the proposed time series

progressed (Figure 10F). This is consistent with our prediction.
Frontiers in Immunology 15
4 Discussion

Periodontitis is a common bacterial-induced inflammatory

disease of the oral cavity that can destroy the connective tissue

and bone of the periodontium. Approximately 1.1 billion people

suffer from severe periodontitis. In the early stages of periodontitis,

most patients do not seek medical attention due to the lack of
B C D

E F

G

H

A

FIGURE 9

scRNA-seq data quality control and dimensionality reduction clustering. (A) Expression of scRNA-seq data. Each point represents a cell,
nFeature_RNA vertical coordinate indicates the number of genes expressed in each cell, nCount_RNA vertical coordinate indicates the number of
UMIs in each cell, and per cent.mt vertical coordinate indicates the proportion of UMIs of mitochondrial genes in each cell to the total UMIs in each
cell. (B) scatter plot of the relationship between UMIs and total number of genes. (C) PCAdimplot. (D) PCA descending elbowplot. (E) Cells after
grouped UMAP clustering analysis. (F) Cell subgroup annotation results (G) Modeled gene distribution expression. (H) Cell subgroup oxidative stress
gene set scoring.
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subjective or mild symptoms (34). If periodontitis is not treated in a

timely manner, it can cause teeth to loosen or even fall out, affecting

a person’s ability to chew. Furthermore, periodontitis can lead to

other systemic diseases such as cardiovascular disease. The bacterial

load from oral infections may cause bacterial endocarditis and

subsequent heart valve destruction, increasing the risk of ischemic

heart disease mortality. For rheumatoid arthritis, periodontal

anaerobic bacteria may penetrate the synovial fluid of patients
Frontiers in Immunology 16
with rheumatoid arthritis and promote chondrocyte apoptosis.

Regarding respiratory system diseases, enzymes secreted by

periodontal bacteria may modify the mucosal surface of the oral

pharynx and promote the adhesion of respiratory pathogens.

Additionally, periodontal cells secrete a mixture of cytokines and

other biologically active factors into saliva, which could stimulate

respiratory epithelial cells to release other cytokines and attract

inflammation cells to that site. These inflammatory cells secrete
B
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FIGURE 10

Pseudotime series analysis. (A) Monocyte subpopulation clustering and dimensionality reduction. (B) Subpopulation cell annotation results.
(C) Pseudo-temporal measurement of the degree of cell differentiation, distribution of normal group disease group, and differentiation trajectory
of thirteen branches. (D) Mountain range diagram of the thirteen branches differentiated sequentially with the proposed chronological sequence.
(E) Heat map of BEAM oxidative stress gene expression with the proposed chronological sequence. (F) Changes in expression of three genes
respectively with the proposed time.
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proteases that destroy epithelial cells, making them more

susceptible to colonization by respiratory pathogens. In summary,

periodontitis is no longer an isolated disease but is associated with a

large number of systemic diseases (35–37).

Although several diagnostic methods are available, such as

bleeding on probing (BOP) and probing pocket depth (PPD), CAL

all of these methods require a particular stage of periodontitis

development before they can play a diagnostic role, which is not

conducive to improving patients’ quality of life as soon as possible

(38). Therefore, developing biomarkers that can diagnose

periodontitis early can help patients and dentists understand

periodontal health earlier (34). The function of oxidative stress in

periodontitis has received much attention in recent years. Usually,

immune cells respond by producing ROC for defence (39, 40).

However, neutrophils activate purine degradation pathways during

the bacterial invasion of periodontal tissues, producing large amounts

of ROS, ultimately creating an inflammatory environment that causes

periodontal tissue destruction (41).

In addition, ROS can interfere with the cell cycle of gingival

fibroblasts and cause apoptosis while inducing matrix proteases to

degrade the matrix, thereby altering the inflammatory environment

(42, 43). Despite the importance of oxidative stress in periodontitis,

there is a lack of diagnostic models based on oxidative stress-based

diagnostic models for the diagnosis of periodontitis is lacking.

Therefore, in this study, based on GSE10334, GSE16334

GSE23586, we screened key genes using SVM, Lasso and random

forest, respectively and took the intersection of the three, thus

creating a multigene diagnostic model of 3OSRgs that can identify

periodontitis patients early and accurately and therefore stop

disease progression.

It is clear that cystathionine 3 (CASP3), a member of the

interleukin-1b-converting enzyme family, induces apoptosis by

affecting the TNF and p53 pathways and is therefore considered a

critical link in the apoptotic signalling pathway (44, 45). Another

study showed that expression of the apoptotic marker CASP3 in the

gingiva of patients with periodontitis levels was higher than in

normal gingival tissue, indicating high apoptotic activity at the site

of periodontitis (46). Furthermore, in all severities of periodontitis,

IL-1b levels in gingival sulcus fluid were more significant than in the

control group and are thus considered a disease characteristic of

periodontitis (47). TXN can reduce ROS-producing oxidative

proteins and thus regulate cellular redox status (48).

Unfortunately, TXN has been little studied in periodontitis.

Based on the diagnostic model, we classified patients into C1

and C2 types using three modelled genes to differentiate patients

more closely to provide precision treatment. The expression of

oxidative stress genes in patients in C1 and C2 was then scored and

visualized using ssGSEA, whereby C2 was defined as a high

oxidative stress type and C1 as a low oxidative stress type.

It has been demonstrated that while the process leading to

chronic periodontitis is initially associated with bacterial biofilms,

tissue destruction occurs primarily due to an increased immune

response in the individual. Among the immune system cells involved

in this process, monocytes/macrophages produce and secrete high
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levels of metalloproteinases, reactive oxygen species (ROS), tumor

necrosis factor (TNF), interleukin-1 (IL-1), interleukin-6 (IL-6), and

nuclear factor kappa-b ligand (RANK-L), which amplify the

inflammatory response to control bacterial growth while leading to

destruction of periodontal tissue (49). Moreover, the interaction

between microbial ecological dysregulation and the inflammatory

environment has emerged as the most important pathogenesis of

periodontal disease (50), and anti-inflammatory therapies targeting

the immune microenvironment can promote cell homing and tissue

formation, thus facilitating immune regulation and tissue repair (51).

Therefore, differentiating patients with periodontitis with different

immune profiles and implementing personalized immunotherapy

accordingly may obtain better efficacy and have greater clinical

application value. In addition, the presence of type 1 cytokines in

the gingival sulcus fluid of periodontitis patients has been proposed to

be the main cause of Porphyromonas gingivalis-specific IgG2

production, while Porphyromonas gingivalis-dendritic cell-NK cell

interaction can produce IFN-g and type 1 cytokines in a short period

of time (52). In addition, pathogens can stimulate monocytes to

secrete large amounts of ROS, TNF-a, IL-1b and other cytokines to

limit bacterial multiplication and lead to periodontal destruction (53–

57). Macrophages play critical roles in periodontitis’s destruction and

repair phases (51), most likely because macrophages polarize towards

M1, release matrix-degrading enzymes and pro-inflammatory

mediators, and enhance osteoclast activity in periodontitis (58, 59).

Neutrophils have been extensively studied in periodontitis. Activating

neutrophils by MIP-1a, CXCL8, and ROS initiates phagocytosis

based on complement and antibodies, thereby causing tissue

damage (60–63). It has also been concluded that the main reason

for the healing effect of conventional mechanical therapy is the

normalization of dysfunctional phagocytes (64)

In addition, vitamin C can treat periodontitis by reducing

oxidative substances produced by neutrophils (65). Meanwhile,

based on the P38/MAPK pathway, 1,25-dihydroxy vitamin-D3

promotes neutrophil apoptosis in type 2 diabetic periodontitis

tissue to reduce periodontitis (66). Single-cell technology shows

excellent advantages in analyzing the immune microenvironment in

diseased tissues at the cellular level (67). In addition, based on

single-cell sequencing data, reconstruct pseudo-time-series and

mimic real-time trajectories (68) as closely as possible, thus

reflecting changes in gene expression and cell differentiation

during disease progression. Dentists can then target the use of

immune drugs according to the patient’s oxidative stress gene

expression and immune infiltration, potentially leading to

better outcomes.
5 Conclusion

OS signature is a novel predictive biomarker and a possible

therapeutic target for patients with PD, as we have shown for the

first time. Additionally, OS signature can characterize the

immunological milieu of PD patients and appropriately estimate

the prognosis of PD patients, which can assist doctors in identifying
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certain patient subgroups that may benefit from immunotherapy

and chemotherapy for individualized treatment.
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