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Human immunodeficiency virus
and antiretroviral therapy-
mediated immune cell metabolic
dysregulation in children born to
HIV-infected women: potential
clinical implications

Hope Mataramvura1, Madeleine J. Bunders2,3 and Kerina Duri1*

1Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS),
Harare, Zimbabwe, 2III. Medical Department, University Medical Centre Hamburg-Eppendorf,
Hamburg, Germany, 3Department of Virus Immunology, Leibniz Institute of Virology,
Hamburg, Germany
Commencing lifelong antiretroviral therapy (ART) immediately following HIV

diagnosis (Option B+) has dramatically improved the health of HIV-infected

women and their children, with the majority being of HIV-exposed children born

uninfected (HEU). This success has led to an increasing population of HIV-

infected women receiving ART during pregnancy and children exposed to ART in

utero. Nonetheless, a small proportion of children are still infected with HIV (HEI)

each year. HEI children suffer from reduced immunocompetence and host-

defence, due to CD4+ T lymphocyte depletion, but also dysregulation of other

immune cells including CD8+ T lymphocytes, natural killer (NK) cells,

macrophages including B lymphocytes. Furthermore, although HEU children

are uninfected, altered immune responses are observed and associated with

increased vulnerability to infections. The mechanisms underlying immune

dysregulation in HEU children remain poorly described. Building on early

studies, emerging data suggests that HIV/ART exposure early in life affects cell

metabolic function of HEU children. Prenatal HIV/ART exposure has been

associated with dysregulation of mitochondria, including impaired DNA

polymerase activity. Furthermore, dysregulation of oxidative phosphorylation

(OXPHOS) causes a decreased generation of adenosine triphosphate (ATP) and

increased production of reactive oxygen species (ROS), resulting in oxidative

stress. These altered metabolic processes can affect immune cell viability and

immune responses. Recent studies have indicated that immune-metabolic

dysregulation may contribute to HIV-associated pathogenesis and clinical

observations associated with HIV and ART exposure in HEU/HEI children.

Given the critical role metabolic processes in immune cell functioning,

immune-metabolic dysregulation in HEU and HEI children may have

implications in effective host-defence responses against pathogens, as well as

efficacy of standard ART regimens and future novel HIV cure approaches in HEI

children. At the same time, targeting metabolic pathways of immune cells may

provide safer and novel approaches for HIV cure strategies. Here, we review the
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current literature investigating immune-metabolic dysregulation in paediatric

HIV pathogenesis.
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Introduction

In 2020, 37.7 million people were living with HIV/AIDS

(PLWHA), and of these, 1.7 million were children aged from 0 to 14

years. During the same period about 150,000 new infections occurred

in children aged 0 to 9 years with up to 46% of the HIV-exposed

infected (HEI) children lacking access to antiretroviral therapy (ART)

(1). Without ART 50% of the HEI children are expected to succumbed

to HIV by the age of 2 years as a result of adverse birth outcomes like

prematurity, low birth weight (LBW) and HIV-associated impaired

immunity to bacterial and viral infections early in life (2). Over the past

decade the successful roll-out of ART for the prevention of mother-to-

child transmission (PMTCT) of HIV has significantly reduced vertical

transmission (3).

More than 90% of pregnant women globally now have access to

PMTCT of HIV interventions (3). As a result, the population of

maternally HIV-exposed uninfected (HEU) children is increasing

with approximately a global population of 14.8 million HEU

children in 2018 (4) and this figure continues to increase.

However, some of the children born to HIV-infected women are

still vertically infected annually with 160000 new infections

recorded in the 0 to 14 year age group in 2020 (5). Dual nucleos

(t)ide reverse transcriptase inhibitors (NRTIs) backbone in

combination with a non-NRTI (NNRTI) or an integrase strand

transfer inhibitor (INSTI) are the currently recommended ART

regimens to prevent vertical transmission (6). ART can cross the

placenta and detectable in cord blood (7). NRTI’s are known to

dysregulate the proper functioning of mitochondria (8, 9), and

concerns have been raised regarding the long term impact of in

utero ART exposure and in early life after birth.

Despite having significantly improved the quality of life of

PLWHA, ART has also been associated with a range of adverse

effects both in children and adults, particularly metabolic changes

have been reported (9–11). HEU children are exposed to maternal

HIV and ART in utero, continuing throughout the breastfeeding

period. Both HEU and HEI children present with higher morbidity

and mortality rates as a result of altered immune responses when

compared to their HIV unexposed uninfected (HUU) peers born to

HIV uninfected women (12–14). Furthermore, reduced growth is

observed in the early years of life in HEU and HEI children

compared to their HUU counterparts (15).

Cell metabolism is critical for the functioning of cells, organs

and overall human development. Metabolic dysregulation can affect

the transport, utilization or storage of metabolites such as glucose,
02
lipids and amino acid within cells. HIV infection independent of

ART can induce changes in glucose, lipid and amino acid

metabolism. Even in the presence of ART these observations are

not fully corrected (16). Metabolic dysregulation may have clinical

implications, including host-defense against pathogens, tissue

growth and development, and neurological functioning.

Furthermore, as proper metabolic functioning is critical for

effective immune responses, hence metabolic dysregulation may

have implications for the development of potential future HIV cure

approaches for HEI children.

The current approach to improve health of HEI children relies

on early initiation of ART (17, 18). This strategy aims to prevent the

establishment of large viral reservoirs and maintenance of host

immunocompetence. HIV cure approaches target the virus but also

rely on a good immune system, therefore an effective host immune

responses would be critical for the success of these approaches.

Metabolic impaired immune cells may render potential HIV cure

strategies less effective (19, 20). At present our knowledge of

metabolic dysregulation and consequences of impaired immune

function in HEI children is limited. However, the topic has been

investigated in more depth in adults. These studies in adults may

inform paediatric studies in the development of potential strategies

to restore metabolic homeostasis and improve cure approaches. A

better understanding of metabolic dysregulation in HEI children

may also help to identify pathways that provide targets to

ameliorate long-term consequences of growth impairment and

tissue health. In light of this, it is crucial that paediatric studies

investigating novel HIV cure strategies take into account metabolic

functioning of immune cells, including the mitochondria.
Mitochondria are regulatory hubs for
cell metabolism and functioning

Mitochondria are organelles in the cell, which serve a variety of

critical functions in eukaryotic cells. The primary function of the

mitochondria is energy production in the form of adenosine

triphosphate (ATP) mainly through oxidative phosphorylation

(OXPHOS)/electron transport chain (ETC) and the citric acid

cycle. Mitochondria are furthermore involved in regulating

cellular metabolism, cell signalling and maintenance of cell redox

state (21, 22). Disruption of mitochondrial functioning can result in

lack of energy and increased reactive oxygen species (ROS), with

both triggering processes ultimately resulting in cell senescence and
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death (23). In the context of immune responses during activation,

immune cells shift from a resting to an active state. This process

requires energy in the form of ATP (24), underscoring the

importance of ATP in activating immune responses. Furthermore,

ROS are potent activators of proinflammatory signalling pathways.

Thus the cell’s metabolism hubs, the mitochondria, is therefore

central in the establishment and maintenance of immune responses

(25, 26), processes that are compromised in HIV infection.
HIV-associated alterations in mitochondrial
functioning

In HIV infection, both the virus and ART alter mitochondrial

functioning which can have consequences for the health of PLWHA

(27). HIV can directly induce reprogramming of mitochondrial

functioning through its proteins including Tat, gp120, Nef and Vpr.

Tat and Vpr thereby affecting the mitochondrial transmembrane

potential, resulting in mitochondrial swelling and cell apoptosis (28,

29). Gp 120 furthermore affects mitochondrial fusion and

mitochondrial size (30), as well as the upregulation of glycolysis

as indicated by a high extracellular acidification rate (31).

Furthermore, HIV proteins can also induce production of ROS

through Env-mediated autophagy of peroxisomes (32) and Tat-

induced DNA damage (29), in the process dysregulating oxidative

stress-regulating pathways (33). These processes regulate immune

responses by activating inflammatory responses through the Nod-

like receptor (NLR) family of pyrin domain containing 3 (NLRP3)

inflammasome that mediate antiviral responses (34, 35).

Continuous signalling, however, in the context of chronic HIV

infection can therefore result in prolonged signalling and

inflammation associated HIV immunopathogenesis.
Frontiers in Immunology 03
ART-associated alterations in
mitochondrial functioning

Not long after the introduction of NRTIs their mitochondrial

toxicity became apparent (9, 36, 37). Zidovudine, a NRTI, has long

been shown to cause metabolic dysregulations. A study by Blanche

et al. demonstrated a low mitochondrial complex I (CI) and

complex IV (CIV) activity in children exposed to AZT in utero

and after birth (9) (Table 1). Since then, NRTIs, NNRTIs and

protease inhibitors (PIs) have all been reported to induce

mitochondrial dysfunction with more pronounced effects

observed of NRTIs. NRTIs were initially thought to affect

mitochondrial functioning by acting as substrates to polymerase

gamma, thereby disrupting mtDNA synthesis. However, recent

studies indicate alternative effects that also alter mitochondrial

functioning (8, 57).

Furthermore, NRTIs can act as DNA chain terminators through

their incorporation into the mtDNA leading to an aborted

replication with a reduced mtDNA copy number per cell (58).

Although initial studies have focused on Stavudine and Zidovudine

a study by Zhao and colleagues showed that the transcription factor

SSBP1 and the mitochondrial DNA helicase were both down-

regulated by Tenofovir which may reduce mtDNA (8). Tenofovir

is still widely used (6). PIs directly inhibit cell metabolism through

decreasing the mitochondrial membrane potential which is pivotal

in ATP production, but this effect may vary with cell type (59, 60).

Efavirenz, like HIV infection, inhibits CI in the human ETC whilst

murine studies have shown that Efavirenz inhibits CIV resulting in

decreased ATP production and increased ROS production (61). It

has been hypothesized that OXPHOS dysfunction is the mechanism

behind lactic acidosis observed among HEI children on ART (62). A

recent study reported elevated levels of methionine-sulfone, a result
TABLE 1 Metabolic processes in HEU and HEI cohorts compared to HUU controls.

Metabolite/
organelle

HEU children HEI children Ref

Glucose -HOMA-IR comparable to HUU
- paucity of data on fasting blood glucose

-HOMA-IR > 2.5 indicating insulin resistance
-impaired fasting blood glucose (>100mg/dL)

(38–43)

Amino-acid -Increased acyl-carnitine profile -Reduced serum carnitine levels (44–48)

- correlation of branched amino acids with insulin resistance - paucity of data

-increased methionine-sulfone significant in HEU with long-term
ART exposure

-paucity of data

Lipid -Increased plasma concentration of triglycerides -Increased total cholesterol, low-density lipoproteins
and triglycerides

(44, 45, 49,
50)

-Increased saturated lysophospholipids and decreased unsaturated
lysophospholipids

- paucity of data

-increased sphingolipids and ceramide -paucity of data

Mitochondria -Mitochondrial morphological damage and reduced mtDNA levels -Reduced mtDNA levels (9, 51–54)

- Reduced OXPHOS protein levels and enzyme activity - Reduced OXPHOS complex I and IV protein levels
and activity

(51, 55, 56)
fr
HOMA-IR, homeostatic model assessment for insulin resistance; mtDNA, mitochondrial deoxyribonucleic acid; OXPHOS, oxidative phosphorylation; HUU, HIV-unexposed uninfected; HEU,
HIV-exposed uninfected; HEI, HIV-exposed infected.
ontiersin.org

https://doi.org/10.3389/fimmu.2023.1182217
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mataramvura et al. 10.3389/fimmu.2023.1182217
of increased methionine oxidation by ROS, in HEU born to women

who initiated ART preconception when compared to those who

initiated ART post-conception (44). This is indicative of long-term

ART exposure being associated with oxidative stress in HEU.

Several studies have shown a decrease in mitochondrial CI and

CIV protein levels in peripheral blood mononuclear cells (PBMCs)

of PLWHA on ART, correlating with disease severity as assessed by

the CD4/CD8 ratio (62–64). One of these studies showed that the

levels of PBMCs CI and CIV protein levels were inversely related to

plasma inflammatory markers (monocyte chemotactic protein-1,

myeloperoxidase, serum amyloid A, serum amyloid P, soluble

adhesion molecules) and inflammatory intermediate monocyte

frequencies (64, 65). In return inflammatory molecules can

further enhance mitochondrial dysfunction, increasing ROS

production thereby driving enhanced dysregulation and

inflammation. In sum, HIV and ART can alter mitochondrial

functioning through different pathways of dysregulation of the

cell metabolism and downstream immune responses.
Glucose metabolism

Glucose is the primary source of energy in mammalian cells and

is crucial in cell metabolism as it is a biosynthetic precursor which

feeds into glycolysis and indirectly into the pentose phosphate

pathway, Krebs cycle and OXPHOS (66, 67). These pathways

generate ATP, which transfers energy by releasing a phosphate

group (68). In immune cells, processes such as cell movements and

effector functions all require energy in the form of ATP (69). A

variety of infections such as HIV can alter transporters and enzymes

involved in glucose metabolism which are known to affect the

functioning of immune cells (19, 20).

HIV and glucose metabolism
HIV has been reported to interfere with energy synthesis

pathways, causing an increased expression of glucose transporters.

Glucose transporter-1 (GLUT-1), glucose transporter-3 (GLUT-3)

which facilitates the transport of glucose across the plasma

membrane, including glucose transporter-4 (GLUT-4), glucose

transporter-6 (GLUT-6) and hexokinase 1 (HK1) are up-

regulated in adult HIV-infected CD4+ T lymphocytes (19, 20). A

study by Mason and colleagues demonstrated that GLUT-1

expression positively correlated with mitochondrial mass and

mitochondrial membrane potential (70). Another study in adult

PLWHA demonstrated that HIV infection caused an increase in the

uptake of a fluorescent glucose analogue, 2NBDG, by infected

monocytes (71). Remarkably, upregulated glucose metabolism has

been associated with CD4+ T lymphocytes apoptosis although it is

unknown whether these changes may be involved in the decrease of

CD4+ lymphocytes in HIV infection (72, 73).

In addition, the changes in glucose transport have been

associated with increased levels tumour necrosis factor (TNF)

production in HIV-infected CD4+ T lymphocytes (73). Long-

term viral replication and dysregulation of glucose levels have

been associated with inflammation which possibly contribute to
Frontiers in Immunology 04
chronic immune activation in adult HIV patients. Further studies

are warranted to investigate the regulation of these glucose

transporters in HEU and HEI children. However, such studies in

the context of obesity have shown that long term increases of

glucose levels are associated with chronic inflammation and

reduced antigen specific adaptive responses (74, 75).

ART exposure and glucose metabolism
Building on the research investigating mitochondrial toxicity of

ART, Tenofovir-mediated down-regulation of the mitochondrial

chaperone TRAP1 may be involved in the reprogramming of

glucose metabolism with increased glycolysis and glycogen

synthesis (8). ART has also been shown to induce insulin

resistance in PLWHA providing the underlying conditions for the

development of type 2 diabetes, which is common among this

population (76). Insulin resistance, measured using the

Homeostatic Model Assessment of Insulin Resistance (HOMA-

IR), is also common among HIV-infected children on ART. A

recent study observed insulin resistance in 20% of the HEI children

with clinical end stage of the disease and long-time on ART (38, 77)

(Table 1). Changes in glucose transport and metabolism contribute

to impaired insulin secretion by beta cells and altered glycogen

synthesis in hepatocytes which significantly increase the risk of

developing type 2 diabetes among PLWHA on ART (78). There is

urgent need for comprehensive research on the glucose metabolic

dysregulation in HEU children with in utero and breast milk

exposure to maternal HIV/ART versus HEI children with

additional direct exposure to HIV and ART as these two groups

may have distinct characteristics which inform on their specific

health needs.
Lipid metabolism

Next to glucose, lipid metabolism has been shown to be

critically altered in PLWHA (79, 80). Lipids are organic

compounds which play vital roles in the human body. These

include storage of energy, as structural components in plasma

membranes, as biomarkers, as hormones and in cell signalling in

mammalian cells (81). Lipids can also be used as an alternative

source of energy by the cells. The human body utilizes different

types of lipids. Triglycerides are used to store energy in lipids and

are increased in obese individuals (82). Studies focusing on obesity

have shown that increased levels of triglycerides alter immune

responses associated low level immune activation but reduced

specific immune responses to pathogens or vaccines (74, 75).
HIV and lipid metabolism

HIV infection, in the absence of ART, has been shown to induce

alterations in serum lipid profiles (83). HIV-associated dyslipidemia

is characterized by high total cholesterol, triglyceride levels and low

high-density lipoprotein cholesterol. HIV infection furthermore

affects reverse cholesterol transport causing a decrease in
frontiersin.org
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cholesterol levels and an increase in triglycerides (84). Furthermore,

cytokines can have a direct effect on lipid metabolism altering lipid

profiles through modifications of lipid processing and transport in

chronic inflammatory states (45, 78). HIV infection in macrophages

causes an increase in lipid uptake as indicated by fluorescent lipid

dye; BODIPY intensity, resulting in lipid accumulation and

increased mitochondrial size, but, decreased functioning (85).

Abnormal lipoprotein profiles and inflammatory markers have

been shown in HIV-infected children and adolescents (86–88).

These metabolic changes and chronic inflammation may have

clinical implications for cardiovascular diseases (CVD) as they

mature into adulthood.

The dysregulation of mitochondria also has repercussions for

lipid metabolism. The excess ROS produced from mitochondrial

dysfunction react with polyunsaturated fatty acids during lipid

peroxidation, and levels are increased in plasma of children born

to HIV-infected women compared to those born to healthy women

(45). The products of lipid peroxidation, malondialdehyde (MDA)

and 4-hydroxynonenal, furthermore can alter the integrity of cell

membranes (89). Mitochondrial membrane lipid peroxidation

destabilizes the membrane structure and changes integrity,

resulting in the mitochondrial permeability transition pore

formation, loss of the mitochondrial transmembrane potential,

release of cytochrome c and eventually cell death (63, 90). Thus,

mitochondrial dysregulation via altered lipids may further

aggravate mitochondrial dysfunction, with consequences for

energy production and inflammation.

ART exposure and lipid metabolism
PIs have long been associated with dyslipidemia in PLWHA

(91). Unresolved dyslipidemia increases the risk of developing

CVDs (92, 93). Elevated levels of triglycerides are observed with

PLWHA on PIs (93). Exposure to ART particularly Ritonavir-

boosted Lopinavir has been associated with hypertriglyceridemia,

previously demonstrated in adults (94), and decreased

phospholipids in children (45). Furthermore, Efavirenz, has been

shown to activate AMP-activated protein kinase, subsequently

promoting lipid accumulation in the cytoplasm associated with

the increase in mitochondrial mass (95). In utero ART-exposed

HEU-children have an altered lipid profile compared to HUU

children (45). They have increased plasma concentrations of

triglycerides, saturated lysophospholipids and decreased levels of

unsaturated lysophospholipids compared to HUU children

(Table 1). Another study reported an altered sphingolipid-

ceramide ratio in HEU with long-term ART exposure than in

those with medium, short or no exposure (44). This is indicative

of an altered lipid metabolism with increase in the duration of in

utero ART exposure. Phospholipids are important components of

the cell membranes and have anti-inflammatory properties (96).

The increased levels of triglycerides and subsequent decreased levels

of phospholipids are important triggers for the unfolded protein

response (UPR) of the endoplasmic reticulum and the pro-

inflammatory milieu in early life ART-exposed HEU-children (45).
Frontiers in Immunology 05
Amino acid metabolism

Amino acids are organic molecules, which act as building blocks

for protein synthesis, e.g. enzymes. Metabolism of proteins to

generate energy only occurs in situations of low carbohydrate or

lipid intake such as during starvation or in situations of high energy

demand (97, 98). Furthermore, glutamate is critical for the

functioning of activated T lymphocytes as it provides a fuel

source which sustains mitochondrial OXPHOS (99). In NK cells

amino acids play less of a role as energy substrates. However, amino

acids do regulate NK cell functioning. Glutamine-regulated

expression of the transcription factor cMyc is critical in

controlling NK cell proliferation and effector functions (100, 101).

HIV infection and amino acid metabolism
Recent studies have reported an association between CD4+ T

lymphocyte counts in PLWHA and serum glutamine indicating that

this amino acid is utilized by cells as an energy source during HIV

infection (72, 102). In addition, macrophages during HIV infection

utilize glutamine as an alternative source of energy (19). In one

study of HIV-infected macrophages showed plasticity in fuel usage

by switching the source of energy when either glucose, fatty acid or

glutamine was inhibited (19). Inhibition of ASCT2, a glutamine

transporter, resulted in a decrease in the number of surviving HIV-

infected macrophages indicating glutamine as the primary energy

source in infected macrophages, hence absence of glutamine may

restrict HIV infection (19).

Other amino acids are involved in the functioning of

mitochondria. Cysteine and methionine residues on amino acids

are easily oxidized by ROS to form disulphides (103, 104). Mitogen

activated protein kinase (MAPK), a signalling complex which

regulates proliferation and aerobic glycolysis, is rich in cysteine

residues and formation of disulphides in the protein structure

results in a dysregulated cell signalling function (104). The

metabolic functioning of the mitochondria is reflected by the

levels of intermediary metabolites such as acyl carnitines which

are formed during fatty acid oxidation. Studies in ART-exposed

HEU-children demonstrated an altered plasma metabolite profile

especially acyl-carnitine profile and branched amino acids

compared to HUU children (45, 46) (Table 1). One of the studies

showed that postnatal exposure to Zidovudine had a greater impact

on the metabolic profiles than Nevirapine (46). HIV/ART exposure

has also been associated with an abnormal phenylalanine

metabolism and increased phenylalanine in the circulation (57).

Phenylalanine can cross the placenta and even small increases in

plasma phenylalanine levels have been reported to be associated

with decreased head circumference and birth length (105).

Additionally, HIV-mediated changes in tryptophan metabolism

have been shown to result in suppressed serotonin production

and increased kynurenine production through the upregulation of

indole amine 2,3-dioxygenase (IDO) expression that degrades the

tryptophan (57). A study by Babu and colleagues demonstrated that

an increase in kynurenine/tryptophan ratio and lower levels of
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serotonin in more than half of their cohort of PLWHA and both

were associated with neurocognitive impairment and HIV-

associated neurological disorders (106). Serotonin is essential in

neurons activation and altered levels may result in neurocognitive

impairment (107). Such alterations in pregnancy may affect the

neurological development in the foetus.

Taken together, HIV and ART can in many ways impact the cell

metabolism with consequences for immunity against pathogens,

chronic inflammation and dysregulation of energy metabolism to

sustain development during infancy. The HUU children have

clearly distinct immunometabolism than in HEI and HEU

children as illustrated in Figure 1.

Several studies have linked the metabolic dysregulations in HEI

children to clinical implications such as a higher risk of CVD in HEI

when compared to uninfected peers (108–110). Altered

sphingolipid-ceramide profiles as reported in HEU children with

long-term ART exposure (44) may predispose them to age-related

neurological disease (111, 112). The latter is a CVD biomarker

hence like HEI, HEU with long-term ART exposure may be at a

higher risk of CVD compared to HUU children (113). However,

most studies in HEI and HEU cohorts describe an increased

mortality and morbidity and/or immune cell phenotypes but not

linking them to metabolic assays (114, 115). This has left any

association between dysregulated metabolism and clinical

implication poorly described creating a need for such studies

(116, 117).

Below we describe the current understanding of altered

immunity in HEI and HEU children and how metabolic

dysregulation can contribute to these observations.
Frontiers in Immunology 06
Altered immunity in children born to
HIV-infected women

Infant vaccine responses
At birth children initially rely on their innate immune responses

and passive acquired immunity from the mother thanks to the

transfer of maternal antibodies from the mother to the foetus

during pregnancy. During childhood immune maturation in

response natural infections and vaccinations results in the

acquisition of effective adaptive responses. In HEU-children

antibody mediated passive as well as vaccine induced immunity is

affected with HEU children showing altered vaccine-specific

responses compared to HUU as previously reviewed (118).

Although data has been conflicting overall HEU and HEI have

lower antibody responses to vaccines shown by the low titres of

anti-tetanus, measles, diphtheria, pertussis and hepatitis B surface

antigen antibodies as compared to HUU (118–120), whereas

conflicting reports have been published for BCG, pneumococcus

and pertussis vaccines (121, 122). In HEI children the low CD4+

lymphocyte counts, further critically impairing the induction and

maintenance of immunological memory to vaccines and infections.

This indicates HIV-mediated poor quality and quantity of humoral

responses among this group (118).
Innate immunity in children

Innate immunity by NK cells and macrophages plays a crucial role

in responses to infections early in life before adaptive immune

responses have matured. Exposure to viruses such as HIV is
FIGURE 1

Immunometabolism distinguishing HEI, HEU and HUU children. HEI and HEU children share many similarities in altered cell metabolism as compared
to the HUU children.
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associated with NK cell dysfunction (123). HIV infection in children is

associated with lower NK cell numbers and altered phenotype and

effector functions of NK cells in HEI children (124, 125). Exposure to

HIV is furthermore associated with reduced cytolytic potential of NK

cells in HEI and HEU children as indicated by the lower expression of

perforin compared to HUU children (124, 125).

The expression of CD69, which is upregulated upon cell

activation, is increased on NK cells in HEI compared to HUU

children. This finding suggest that NK cells undergo increased

activation in HEI compared to HUU children in the early months

of life (125). At the same time, NK cells of HEI children express

higher levels of NKG2A and KIRs inhibitory markers (126), which

may inhibit NK cell activation against virus- infected cells such as

HIV-infected cells. Taken together, NK cells have an altered

phenotype associated with reduced cytotoxic characteristics in

HEU and HEI-children, however the question remains

whether metabolic changes in NK cells may underlie these

observations (127).

Macrophages and dendritic cells (DC) are innate immune cells that

act as antigen presenting cells (APC) and shape the adaptive immune

system during an infection. Macrophages express chemokines

receptors, CCR5 and CXCR4 that are co-receptors in HIV infection.

HIV infection has been reported to induce changes in macrophage

polarization state depending on the stage of the infection (128). Due to

their plasticity during HIV infection, macrophages can polarize

towards different phenotypes with increased or decreased antiviral

capacity (128, 129). With regards to DCs HEU-children at birth have a

significantly higher percentages of myeloid dendritic cells (mDCs) than

HUU-children (130), however, the frequencies of both mDCs and

plasmacytoid dendritic cells (pDCs) remain similar throughout the first

year of life (130, 131). Upon stimulation with lipopolysaccharide (LPS)

mDCs from HEU-children showed increased upregulation of CD80,

CD86 and programmed cell death ligand 1 (PD-L1) while the mDCs

from HUU children mostly upregulated PD-L1. Furthermore, mDCs

of HEU-children at birth showed a higher responsiveness to LPS and

polysaccharides fromAtractylodes macrocephala (PAM) stimulation by

secreting TNF, IL-6 and IL-12 compared to HUU children (130).

Beyond 6 weeks of life mDCs responses to bacterial ligands became

comparable among the two groups. In sum, innate immune cells are

affected in HEU-children especially shortly after birth.

Several studies have shown that HIV-induces a switch of source of

energy in innate immune cells such as macrophages (85, 132). Glucose

and fatty acid utilization are reduced in adult HIV-infected

macrophages while glutamine uptake is increased (19, 133). There is

paucity of data regarding the implications of HIV/ART-mediated

metabolic dysregulation in macrophages and DCs on the immune

responses in children. Some adults’ studies have shown that HIV

infection mediates IFN responses and toll-like receptor (TLR)

engagement resulting in intracellular IDO expression in macrophages

and DCs. This increases the levels of circulating immunomodulatory

tryptophan catabolites like kynurenine and quinolinic acid which have

been associated with higher production of inflammatory cytokines and

increased immune activation (134). In addition, the higher glycolytic

flux in infected macrophages leads to increased production of pro-

inflammatory cytokines such as TNF and IL-6 further fueling chronic

inflammation in PLWHA (132). These studies were in adults and the
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impact of such metabolic dysregulations in children are yet to

be described.

Furthermore, HIV induces mitochondrial enlargement in

infected macrophages. A possible cause of mitochondrial

enlargement in HIV infected cells is lipid accumulation in the

mitochondrial matrix (85). The clinical implications of this is not

clear. In addition to enlargement, mitochondria of infected

macrophages have significantly lower basal oxygen consumption

rate and response to oligomycin, an ATP synthase inhibitor (85,

135). This indicates HIV-mediated mitochondrial dysfunction in

infected macrophages that may persist in HEI children whereas the

effects of maternal HIV may only be affecting macrophages and

DCs in HEU children for shorter periods.
Adaptive immunity in children

T lymphocytes serve as effector cells of adaptive immune

responses. CD4+ T lymphocytes are susceptible to HIV infection

due to their expression of CD4 and CXCR4 and CCR5 (co)-

receptors. Next to the challenge of HIV associated cell death of

CD4+ T lymphocytes in HEI children, chronic immune activation

further affects cell populations in children and in adults (73, 136).

Metabolic changes in T lymphocytes have been described in

PLWHA, e.g. the glucose transporter GLUT1 is upregulated. An

inverse association between the number of CD4+GLUT1+ T

lymphocytes and CD4+ T lymphocyte counts has been reported

(68, 73) indicating an association between cell death and glucose

metabolism in CD4+ T lymphocytes.

In children, HIV infection is associated with an approximately 1.5

times higher frequencies of programmed cell death 1 (PD1)+ memory

CD4 T lymphocytes compared to uninfected children (137, 138). This

dysregulation was shown to be partially reversed by ART as the

frequencies decreased upon ART initiation however, remaining

higher than in uninfected children (138). High frequencies of

programmed cell death protein 1 (PD1)+ memory CD4+ T

lymphocytes predicts lower effector capacity. CD8+ T lymphocytes

are important in the control of HIV infection (139–141). However,

prolonged activation of CD8+ T lymphocytes results in cell exhaustion.

Inhibition of PD1 on CD8+ T lymphocytes reverses cell exhaustion

and restores anti-viral capacity in vitro, at one point PD1 inhibition has

been suggested as a potential target in HIV cure, however adverse

effects are not negligible therefore making this currently a limited

option for cure (142).

Activation of CD4+ T lymphocytes in response to antigen

recognition presented by macrophages or DCs during HIV

infection enhances glycolysis which in turn facilitates HIV

replication and establishment of a large reservoir (72). Unlike in

CD4+T lymphocytes, increased glycolytic activity during activation

and differentiation in CD8+ T lymphocytes is associated with viral

suppression (141). GLUT1 expression is correlated with

mitochondrial density and mitochondrial membrane potential

(MMP) in CD4+T lymphocytes. Furthermore, the MMP has been

positively correlated with ROS production in CD4+ and CD8+ T

lymphocytes (70). If let unresolved, ROS can damage the cells

reacting to cellular metabolites or DNA as discussed earlier (70).
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In utero HIV/ART exposure also has an impact on CD4+ T

lymphocytes and CD8+ T lymphocytes in HEU-children (143). HEU-

children have decreased CD4+ T lymphocyte counts but increased

CD8+ T lymphocyte counts (115, 144, 145) and in one longitudinal

study has observed altered CD8+ count that persisted until 8 years of

age (144). Furthermore, several studies have reported consistent

findings of increased activated CD8+ T lymphocyte and memory

CD4+CD45RO+ T lymphocytes among HEU-children compared to

HUU-children (143, 146). Although CD4+ T lymphocytes in HEU-

children have an activated phenotype (CD4+HLA- DR+ CD38+), IL-2

production was reduced compared to HUU-children (146). The T

lymphocytes phenotype in HEU-children reflects to a certain extend

the increased activation. Studies on the metabolic dysregulations in T

lymphocytes of HEU-children are warranted to understand whether

metabolic dysregulation may further underlie these observations.
Impact of metabolic dysregulation on
current HIV cure strategies

As PMTCT strategies are not reaching all women in time,

paediatric HIV infection still occurs. Therefore, there is a need for

HIV cure approaches in children. The success of an HIV cure

depends on the eradication of viral reservoir in latent infected cells.

Early ART initiation was one of the first strategies to be tested for a

functional cure among children (147–149). The early ART

initiation approach aims to limit the size of the viral reservoir.

In efforts to cure HIV, the “shock and kill” approach has been

suggested where latent infected cells are reactivated and next are

recognised and eliminated by immune cells. Another HIV cure

approach is the use of therapeutic vaccination which aims to

enhance HIV-specific T lymphocyte responses (149–151). Finally,

antibody based approaches have been suggested (152, 153). All the

above cure approaches depend on a functional immune system to

finally eliminate infected cells. The “surge and purge” approach

which combines early ART, passive antibody administration and

immune stimulation has been hypothesized to affect reservoir

establishment (154). This approach and the “block and lock” may

be successful in children with small viral reservoirs by blocking HIV

production. In children with large HIV reservoirs it has been

suggested that a combination of reversal agent, to reactivate viral

expression, and clearance (kick and kill) of the infected cells by the

immune system may be successful (155, 156). Considering the

metabolic dysregulation of immune cells in HIV infection and

upon ART exposure, the immune system of HEI-children is

moderately to severely impaired. This then acts as a barrier to the

eradication of the virus by the different HIV cure approaches (149).
Targeting metabolic pathways to improve
immune functioning

The growing body of evidence of HIV and/or ART-mediated

metabolic dysregulation has formed the foundation for the

possibility of cellular metabolism as a potential target for
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complimentary approaches for HIV cure strategies (Figure 2)

(141, 157). As discussed earlier HIV exposure induces a decrease

in the levels of acyl carnitines. Several studies have shown the

potential benefits of carnitines supplements as therapy for HIV/

ART-induced metabolic dysregulations and mitochondrial

dysfunction (158–161). Use of carnitine among PLWHA has been

shown to improve symptoms of lactic acidosis, reduce serum

triglyceride levels and delay CD4+ T lymphocyte apoptosis in

HIV infected adults (159–162). Although these studies were in

adult populations, carnitine supplementation may also be beneficial

to the paediatric populations.

HIV infection has been associated with increased glycolysis and

glutaminolysis in infected lymphocytes (20, 141). Because activated T

lymphocytes are largely dependent on glycolysis to fulfil their energy

requirements for proliferation and function, these cells are particularly

sensitive to a dysregulated metabolism. The plasticity of immune cells

such as T and macrophages in their varied energy source during HIV

infection has prompted studies on the effects of glutamine/glutamate

inhibitors on HIV replication and reservoir size (85, 163).

Several in vitro studies have demonstrated the effect of

glycolysis and glutaminolysis inhibitors on immune cells

functions, HIV infection, replication and reservoir size. Metabolic

inhibitors of the enzymes involved in energy metabolism have been

demonstrated to reduce HIV infection by inhibiting glycolysis and

glutaminolysis (164). Reduced HIV infection is observed in CD4+ T

lymphocytes when glycolysis and glutaminolysis are inhibited.

Glutamine deprivation resulted in a higher reduction in HIV

infected cells compared to glucose deprivation (163). Culturing

HIV-infected CD4+ T lymphocytes with poor glycolysis substrates,

such as galactose or 2-deoxyglucose, decreases both the cell

proliferation and the release of virions in the culture supernatant

when compared to culturing in the presence of glucose (72, 165).

This indicates a reduced viral latency and replication respectively in

a glycolysis-limited environment which is a vulnerability that can be

targeted in novel metabolic inhibitors for HIV cure (Figure 2).

However, given the important role of glycolysis in T lymphocyte

functioning, the extent of glycolysis inhibition may decrease T

lymphocyte efficacy in eliminating the reservoir and the host

defences against other pathogens.

The mammalian (mechanistic) target of rapamycin (mTOR)

regulates growth in response to nutrients levels and cellular stress

can lead to an increased AMP/ATP ratio, which in turn promotes

the phosphorylation and activation of adenosine monophosphate-

(AMP)-activated protein kinase (AMPK) (166). Activation of

AMPK promotes glucose uptake, glycolysis, fatty acid uptake and

fatty acid oxidation and at the same time inhibiting anabolism

(gluconeogenesis, synthesis of glycogen, fatty acids and

triglycerides) to maintain energy (167). Thus, another potential

novel strategy is to optimize immune activity is the treatment with

metformin, a drug prescribed to diabetics (168). It is an indirect

inhibitor of mTOR which functions by targeting the mitochondrial

respiratory chain complex 1 resulting in decreased ATP to ADP

ratio (169, 170). This in turn activates AMPK to phosphorylate the

raptor subunit on mTOR and alters glycolysis in T lymphocytes

(171, 172). The drug has been shown to normalize mitochondrial

dysfunction in CD4+ T lymphocytes (168).
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Themechanism of action ofMetformin in non-diabetic PLWHA is

based on this drug’s ability to normalise mitochondrial function

through improving ATP production and providing an anti-

inflammatory environment, in the process restoring the effective

functioning of immune cells (172, 173). Furthermore, the viral

reservoir and replication inhibition through Metformin-mediated

glycolysis inhibition may play a role in the “block and lock” HIV

cure strategy (141). Combining metformin and ART may assist in

limiting viral reservoirs. In a recent LILAC pilot study, treatment with

metformin among PLWHA showed a preferential activation or

phosphorylation of Th17-polarized CCR6+ CD4+ T lymphocytes

(171). This subset of CD4+ T lymphocytes is highly targeted by the

HIV virus and implicated in the blood and colon viral reservoirs

among PLWHA. Interestingly, in the same study treatment with

Metformin reduced inflammation and the HIV RNA/HIV DNA

ratios indicating a reduced viral transcription (171). It is yet to be

explored if there is a synergy between metformin and latency reversal

agents, an approach which could be used in combination with ART for

viral reservoir eradication.
Conclusion

Early life exposures to HIV and ART pose a risk on the health

outcomes of children born to women living with HIV when compared

to those born to healthy women. The impact of these factors on
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immune cell metabolism and the development of the immune system

remain poorly described. There is need for long-term follow-up of

these children to monitor clinical implications of metabolic

dysregulations. A deeper understanding on how optimal cell

metabolism is a central in the functioning of the immune system is

critical for exploring alternative novel and safer immunotherapies for

HIV cure.
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FIGURE 2

Targets in the cell that could represent a potential strategy to improve immunity for cure in HIV infection. Targeting immunometabolism may affect HIV
pathogenesis by inhibiting specific metabolic pathways which are altered by the virus, suppressing inflammation and enhancing immune responses to
infection. Targeting glucose and glutamine metabolism can block viral replication. Inhibition of mTOR, which is upregulated in HIV infection, reduce the
mTOR-mediated increase in glucose uptake. Suboptimal glycolysis produces less pyruvate which in return controls ROS overproduction and reduces
inflammation in HIV infection. The use of therapeutic approaches which improve mitochondrial function may rejuvenate the cells and enhance immune cell
mediated antiviral capacity as seen in long-lived memory T lymphocytes. The above strategies may contribute to decreasing the number of infected cells,
enhance immune responses to target remaining infected cells and prevention of chronic inflammation. ASCT, amino acid transporter; GLUT1, glucose
transporter 1; TCA cycle, tricarboxylic acid cycle; mTOR, mechanistic target of rapamycin. Potential targets which block early steps in HIV replication.
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