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Establishment of a novel
lysosomal signature for the
diagnosis of gastric cancer with
in-vitro and in-situ validation
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Background: Gastric cancer (GC) represents a malignancy with a multi-factorial

combination of genetic, environmental, and microbial factors. Targeting

lysosomes presents significant potential in the treatment of numerous

diseases, while lysosome-related genetic markers for early GC detection have

not yet been established, despite implementing this process by assembling

artificial intelligence algorithms would greatly break through its value in

translational medicine, particularly for immunotherapy.

Methods: To this end, this study, by utilizing the transcriptomic as well as single

cell data and integrating 20 mainstream machine-learning (ML) algorithms. We

optimized an AI-based predictor for GC diagnosis. Then, the reliability of the

model was initially confirmed by the results of enrichment analyses currently in

use. And the immunological implications of the genes comprising the predictor

was explored and response of GC patients were evaluated to immunotherapy

and chemotherapy. Further, we performed systematic laboratory work to

evaluate the build-up of the central genes, both at the expression stage and at

the functional aspect, by which we could also demonstrate the reliability of the

model to guide cancer immunotherapy.

Results: Eight lysosomal-related genes were selected for predictive model

construction based on the inclusion of RMSE as a reference standard and RF

algorithm for ranking, namely ADRB2, KCNE2, MYO7A, IFI30, LAMP3, TPP1, HPS4,

and NEU4. Taking into account accuracy, precision, recall, and F1measurements,

a preliminary determination of our study was carried out by means of applying

the extra tree and random forest algorithms, incorporating the ROC-AUC value

as a consideration, the Extra Tree model seems to be the optimal option with the
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AUC value of 0.92. The superiority of diagnostic signature is also reflected in the

analysis of immune features.

Conclusion: In summary, this study is the first to integrate around 20mainstream

ML algorithms to construct an AI-based diagnostic predictor for gastric cancer

based on lysosomal-related genes. This model will facilitate the accurate

prediction of early gastric cancer incidence and the subsequent risk

assessment or precise individualized immunotherapy, thus improving the

survival prognosis of GC patients.
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Introduction

Given the characteristics of gastric cancer itself, which is a

malignant tumor caused by a combination of genetic, site-specific,

and microbiological factors, the overall prognosis of gastric cancer

patients has not improved significantly (1, 2). Both the incidence

and mortality rates of gastric cancer are among the highest of all

malignancies today, and this situation is becoming increasingly

alarming in Eastern Asia (3). Under the paradigm of accurate

medicine, integrating the exploitation of multi-omics data and

combining informatics technology with current traditional clinical

screening tools at different levels to achieve more accurate and

convenient early cancer screening is a challenge that scholars are

currently committed to solving (2, 4, 5). Throughout this process,

the exploration of new early diagnostic and prognostic biomarkers

or preclinical diagnostic or rating models could benefit the current

gastric cancer diagnosis and treatment by targeting prevention and

personalized medical care.

In light of the emerging potential usefulness of lysosomes in the

treatment of a wide range of malignancies and non-malignancies,

such as neurological and cardiovascular diseases, targeting

lysosomes presents a novel solution for the prevention of gastric

cancer (6). Long thought to act as a caretaker or housekeeper in the

context of the individual cell, it was mainly due to its role as a static

organelle and its initially perceived function, degradation, which

was not related to the altered state of the unit (7). Nevertheless, the

continuing pursuit of microscopic perspectives, combined with

multi-omics and bioinformatics methodologies, allows for a

clearer understanding that lysosomes are far from being isolated

islands from other cell organelles (8). More generally, from the

understanding that it is a participant in intracellular homeostasis,

lysosomes were shown to impact metabolic signaling, cell

proliferation and differentiation, immune responses, and other

procedures (9). Additionally, the tight association with autophagy

allows it to be likewise engaged in diverse modes of cell death, such

as ferroptosis, autophagy-dependent cell death, apoptosis, and

pyroptosis (10, 11). Considering the crucial role of lysosomes in

the progression of various human diseases as well as their

prevalence, the value of lysosomes in translational medicine could
02
likewise be maximized by integrating multi-omics data in the era of

precision medicine (12).

Therefore, we attempted to integrate and compare more than 20

mainstream classifying algorithms in machine learning to identify

the most ideal diagnostic model for STAD, and subsequent insights

involving the tumor immune microenvironment and drug

sensitivity revealed the potential immunotherapeutic applicability

of our lysosomal gene model. In addition, a series of validation of

the model constructed genes for IFI30, including expression

validation in different dimensions and functional assays, have

more or less confirmed that the model constructed genes

themselves serve as negligible risk factors for GC (Figure 1).
Materials and methods

Data collection and processing

In the present study, we retrospectively collected the lysosome-

related genes from the Msigdb (https://www.gsea-msigdb.org/gsea/

msigdb/cards/LYSOSOME) repository and the transcriptomic data

with matching clinical information of Stomach Adenocarcinoma

(STAD) from the TCGA (https://www.cancer.gov/tcga) cohort (13).

All the data involved in the present study were processed by R

Foundation and Python software and randomly divided into the

training set and the validation set in a ratio of 0.8. Notably, if not

specified, a P-value<0.05 is considered statistically significant and

might be annotated as * within the figures. Moreover, **, ***, and

**** might appear within the figures to indicate the P-value

thresholds 0.01, 0.001, and 0.0001, respectively.
Feature gene selection prior to diagnostic
model construction

We first used the Recursive Feature Elimination (REF)

approach to determine the optimal number of feature genes for

model construction (14). Then, we applied Random Forest (RF)

algorithm to rank their significance from the highest to the lowest
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(15). Selected top feature genes were further utilized for

model construction.
Machine learning

According to the “No Free Lunch” theorem, we exhaustively ran

out of 20 mainstream machine-learning algorithms to find the most

ideal diagnostic model for STAD (16). The algorithms include

Linear Regression, Ridge Regression, RidgeCV, Linear LASSO,

LASSO, ElasticNet, BayesianRidge, Logistic Regression, SGD,

SVM, KNN, Naive Bayes, Decision Tree, Bagging, Random

Forest, Extra Tree, AdaBoost, GradientBoosting, Voting, and

ANN. Their performances were mainly assessed by the diagnostic

Receiver Operative Characteristic (ROC) curves in which the Area

Under Curve (AUC) represented the predictive power, but we also

considered other parameters for evaluation (i.e., accuracy, precision,

recall, and F1 measurement) to ensure our criteria were rigorous

enough. The greater the AUC value indicated the better accuracy

and robustness of the model. All the aforementioned curves were

created by the Python package “sklearn”.
Learning curve

A learning curve is a graphical depiction of the connection

between proficiency and experience. Through machine learning,

artificial intelligence mimicked human behavior, in essence.

Therefore, by visualizing its learning process in the training set

and its predictive performance in the validation set, we would be

able to see if the model worked robustly in a direct manner.
Decision curve analysis

Usually, prognostic models and diagnostic tests are

mathematically evaluated with measures of accuracy that do not

consider clinical outcomes. To overcome this disadvantage, DCA,

which is often used to compare the efficacy of different predictive

models to maximize the clinical benefits when false positives and

false negatives are inevitable, was introduced into the present study

(17, 18).
Single-sample gene set
enrichment analysis

It is an extension of Gene Set Enrichment Analysis (GSEA) that

produces distinct enrichment scores for every possible pairing of a

sample and gene set (19, 20). Each ssGSEA score would show the

extent to which the genes in a certain gene set are coordinately up-

or down-regulated within an individual sample. In the present

study, we defined the sum of the ssGSEA score in focus on the

feature genes selected from the above as Lysosomal Index (LI). All

the TCGA samples were allocated into high- and low-LI groups in

the following bioinformatic analytics.
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Functional enrichment analysis

Traditionally, the statistical principle of enrichment analysis is

to use hypergeometric distribution to test the significance of a

certain functional class in a group of genes. In recent years,

scientists also tended to perform such analytics at a gene set level,

treating numerous genes of interest as a whole. In the present study,

the functional enrichment analysis was carried out not in both ways.
Analysis of the tumor microenvironment

The R package “ESTIMATE” was employed to calculate the

scores of stromal cells, infiltrating immune cells, and tumor purity on

the basis of gene expression. In this way, we unraveled the in-depth

correlation between the LI and the surroundings of the malignant

cells. The immune cell infiltration analysis was done by the

CIBERSORT algorithm which is a widely used immunoinformatic

tool to uncover the immunological implications of various diseases

nowadays (21).
Cell culturing

Human gastric mucosal epithelial cells GES-1 and human

gastric cancer cell lines SGC-7901, BGC-823, MGC-803, and

HGC-27, which were identified by DNA typing of STR sequences,

were purchased from Shanghai Institutes of Biological Sciences

(CAS). The above cells were cultured at 37°C in a humidified

incubator containing 5% CO2, cultured with DMEM (HyClone)

mixed with 10% fetal bovine serum (Gibco, Carlsad, CA, USA),

where the culture medium was changed once a day.
Real-time PCR

After extraction of total RNA using RNAiso Plus (Takara, Dalian,

China), RT-qPCR was performed using Revertaid First Strand cDNA

synthesis kit (Thermo Fisher Science, Waltham, MA, USA), which

was conducted under the manufacturer’s protocol. An SYBR Green-

based real-time fluorescent quantitative polymerase chain reaction

was carried out using GAPDH as an internal reference, in which the

primers involved were GAPDH-F: GGTGAAGGTCGGTGTGA

ACG; GAPDH-R: ZCTCGCTCCTGGAAGATGGTG, IFI30-F:

GTGGGAGTTCAAGTGCCAGCAT; IFI30-R: GCAGACAATGGT

CAGGAAGGCT. The aforementioned results were calculated by the

2-DDCT method to get the relative fold change of RNA expression.
Western blot

The target cells subjected to cold PBS wash were treated with cell

lysis buffer according to the reagent manufacturer’s recommendation.

And the extracted proteins were electrophoresed and separated on

SDS-PAGE gels as background, and then transferred to PVDF

membranes. After closed fixation with 5% bovine serum albumin,
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they were incubated with primary antibodies overnight at 4°C,

followed by incubation with secondary antibodies.
Immunofluorescence staining

The five cells mentioned above GES-1, SGC-7901, BGC-823,

MGC-803, and HGC-27, were treated as recommended by the

reagent supplier and incubated with IFI30 primary antibody, and

after 12 h incubation with specific secondary antibody at 37°C in the

dark for 2 h. After staining with DAPI at room temperature,

fluorescent images were captured with a confocal microscope system.
Immunohistochemical staining

Pre-fixed and paraffin-embedded pathological material was cut to

5 mm width and dewaxed. Endogenous peroxidase was inactivated

with 3% H2O2. The treated slices were incubated overnight at 4°C

with the corresponding protein antibodies, then incubated with

secondary antibodies for 30 min followed by final chromogenic

color development with freshly prepared DAB reagent.
Transwell, invasion and wound
healing assay

Transfected gastric cancer cells with high expression of IFI30

were inoculated in 6-well plates, and the cells were scratched

manually to create scratches, which were placed under standard

culture conditions for 48 h. Every 12 h, photographs were taken to

observe the healing of the scratches. The concentration of 100,000

pretreated cells (100 mL) and the control cells were inoculated into

transwell chambers, and the transwell assay and invasion assay were

performed with or without matrix gel, after 24 h of cell growth, the

cells were fixed with paraformaldehyde and stained with 0.05%

crystalline violet for over 30 mins and then counted.
Statistical analysis

The bioinformatics of this study involved was operated by R

software as well as python software, t-test and Kruskal-wallis test

were performed for the evaluation of pairwise transcriptomic data and

Pearson or Spearman methods were employed for the evaluation of the

correlation tests involved, p-values < 0.05 (*P < 0.05) were considered

significant, for which **, p<0.01, ***, p < 0.001, and ****, p < 0.0001.
Results

8 lysosome-related genes were chosen to
construct the predictor

Based on the stratification of tumor samples and healthy controls, we

exhaustively screened the differentially expressed genes (DEGs), within
Frontiers in Immunology 04
which the majority of lysosome-related genes were presented

(Figure 2A). Then, by utilizing the Recursive Feature Elimination

(REF) algorithm, it was observed that when the number of genes

involved in model construction was less than 8, the Root Mean Square

Deviation (RMSE) increased significantly. Meanwhile, when this number

exceeded 8, the RMSE fluctuated in an acceptable range (Figure 2B).

Therefore, it was determined that using 8 lysosome-related genes for

predictor construction was the most ideal solution. To specify the top 8

candidate genes, we used Random Forest (RF) algorithm to rank their

importance in Stomach Adenocarcinoma (STAD) diagnosis. As a result,

ADRB2, KCNE2, MYO7A, IFI30, LAMP3, TPP1, HPS4, and NEU4

were chosen (Figure 2C). The inter-correlation analyses between these

genes were also conducted to give references to their characterization in

STAD and healthy controls (Supplementary S1). Additionally, we

explored the difference in the enrichment of lysosome-related gene

sets. Of note that lysosome and lysosomal membrane were among the

most enriched items across both KEGG and Reactome databases

(Figure 3A). The detailed expression level of each gene for the

construction of the predictive model was shown in the manner of a

box plot (Figure 3B). Aiming to gain a deeper appreciation of the above

modeled genes, we probed the expression of these genes in the gastric

cancer single cell dataset GSE167297 (Figures 3C, D). The above genes

were all found to be expressed in clusters of cells, with LAMP3, IFI30,

TPP1, KCNE2, ADRB2 being more significantly displayed. Among

them, LAMP3, IFI30, TPP1, KCNE2 and ADRB2 were more

significantly represented on functional cells such as DC cells,

macrophages, endothelial cells and mast cells, suggesting more or less

the reliability of the current model (Figure 3E).
Extra tree was the most superior machine
learning algorithm

To ensure a comprehensive comparison of the 20 mainstreamed

machine-learning algorithms, we did not solely elucidate our

models from ROC-AUC values, but in multiple aspects including

accuracy, precision, recall, and F1 measurement. Regarding the

accuracy, recall, and F1 measurement, Extra Tree and Random

Forest were found to be the most well-performing models

(Figures 4A, C, D), while for precision, except for Linear LASSO

and LASSO, all the rest of models exerted quite satisfying

predictions (Figure 4B). On the other hand, while all the models

were holding a high ROC-AUC value of over 0.7, the general bar to

consider a model was good enough in classifying questions, Extra

Tree possessed a leading ROC-AUC value of up to 0.92, followed by

Bagging and Naïve Bayes (Figure 4E). Then, we inspected the

clinical benefits that the Extra Tree model could bring into real-

world practice through the DCA curve. As indicated, the model

offered betterment when compared with the treat-all and treat-none

groups (Figure 4F). We also reviewed the learning process of the AI

behind the model, for which it was visualized in the form of a

learning curve (Figure 4G). Through the curve, it was observed that

the learning score in the training set was stable and perfect. Overall,

the difference between the training score and the testing score was

less than 10%, therefore, it was deemed as a model with high

generalizing ability.
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FIGURE 1

Graphical abstract of the present study.
A

B

C

FIGURE 2

The detailed process of feature gene selection. (A) Volcano plot demonstrating the up- and down-regulated genes in Stomach Adenocarcinoma
(STAD). (B) Scree plot demonstrating the change of cross-validation Root Mean Square Deviation (RMSE) with different amounts of feature genes
involved in the construction of diagnostic predictor. (C) Importance ranking by Random Forest (RF) algorithm. The top 8 genes were selected.
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Patients with high- and low-lysosome
index showed significant morphological
changes in their external
gastric appearance

Traditional enrichment analysis was performed to identify

whether the enriched gene ontology (GO) and signaling pathways

were distinguished between the high- and low-LI groups. The

results according to the GO database indicated that cornification

was the most distinguishable biological process, followed by
Frontiers in Immunology 06
digestion, keratinocyte differentiation, muscle contraction, and

keratinization (Figure 5A). Notably, differences in cellular

components including contractile fiber and cornified envelope

were also prominent. In short, different LI seemingly raise

morphological changes on the gastric surface. On the other hand,

we found the most enriched pathways were not similar when the

KEGG database and the Reactome database were applied separately.

From the KEGG side, we observed that pathways relevant to

secretion were outstanding, such as Pancreatic secretion, Bile

secretion, Salivary secretion, Gastric acid secretion, and Insulin
A B

D

E

C

FIGURE 3

(A) Box plot demonstrating the enriched items with statistical significance. (B) Box plot demonstrating the expression of selected genes in the TCGA
dataset. (C) Annotation of all cell types in GSE167297 and percentage of each cell type. (D) Illustrations of the percentage of cells in different
samples. (E) Expression of ADRB2, KCNE2, MYO7A, IFI30, LAMP3, TPP1, HPS4, and NEU4 in diverse cells. *p< 0.05; ***, p < 0.001.
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secretion (Figure 5B). However, through the Reactome database, the

GO enrichment results were supported as the top pathways

contained the Formation of the cornified envelope, Keratinization,

Muscle contraction, and so on (Figure 5C). Under such

circumstances, we further conducted a GSEA analysis to

determine the secrets behind it. Again, changes in the epithelial

morphology were seen in the GO enrichment results (Figure 5D),

while the results of KEGG enrichment remained secretion-centered

(Figure 5E). Moreover, consequently, Keratinization appeared again

among the most enriched Reactome pathways (Figure 5F).
Frontiers in Immunology 07
Patients in the high- and low-LI groups
possessed different tumor immunological
microenvironment characteristics,
predictive immunotherapy efficacy,
and chemosensitivity

The R package “ESTIMATE” was used to elucidate the general

appearance of TIME quantitatively, through which we found that

except for the stromal score, the immune score, ESTIMATE score,

and tumor purity were statistically significant and that higher
B

C D

E F

G

A

FIGURE 4

Multifaceted evaluation of 20 mainstream machine-learning models. (A-D) Radar plots demonstrating accuracy, recall, and F1 measurement in the
training set and test set, respectively. (E) Receiver Operative Curve (ROC) in which the Area Under Curve (AUC) value of each machine learning
model was compared. In general, an AUC value over 0.7 was thought to be a good predictive performance. (F) Decision Curve Analysis (DCA) for the
Extra Tree model. The Guilherme position of the curve, the greater the clinical benefits. (G) Learning curve of the Extra Tree model. The closer the
learning and testing results, the more robustness the model possesses.
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immune and ESTIMATE scores were observed in the low-LI group

than that of the high LI group (Figure 6A). Therefore, we also

explored the abundance of infiltrating immune cells in each patient.

As a result, although certain fluctuation was observed in their

distribution, conclusively, it was thought that the immune cell

infiltration was obvious regarding both LI groups (Figure 6B). To

show the difference between the high- and low-LI groups, we

revealed an informative but visually clear comparison as a

heatmap, through which specific immune cells such as CD4

memory T cells, CD8 T cells, follicular T helper cells, regulatory

T cells, Macrophages M0, M1, and M2, etc. were with statistical

significance (Figure 6C). Furthermore, the TIDE algorithm was

applied to predict the immunotherapy efficacy. Subsequently, we

confirmed the close association of CD8 T cells, the main force

against tumor malignancy, with LI groups (Figure 6D). Meanwhile,

according to the explanation of the developers, higher TIDE scores

are usually accompanied by poor immunotherapy efficacy. Through

the results, it was found that the higher LI group corresponded with

lower TIDE scores, hindering a potential advantage for the higher

LI population to receive immunotherapy. Finally, we screened the

possible drugs targeting LI genes from the authorized database
Frontiers in Immunology 08
Cancer Genome Project (CGP). Remarkable differences in the IC50

values of 8 drugs, including Cisplatin, Elesclomol, FMK,

GSK1070916, GSK429286A, HG−5−113−01, T0901317, and

Talazoparib were noticed between high- and low-LI groups

(Figure 6E). Of note that the lower LI groups demonstrated

reduced IC-50 values for all 8 drugs, which suggested that

patients in the lower LI group were more sensitive to chemotherapy.
Aberrant overexpression of IFI30 in gastric
cancer impacts on tumor cell viability

To further confirm the high diagnostic efficacy of the model we

constructed, after excluding the relatively well-studied genes in GC in

previous literature, we decided to focus on IFI30 as a wet-lab

validation. We examined the expression levels of the mRNA and

protein in normal gastric mucosal epithelial tissues and four gastric

cancer cell lines. At the transcriptional level, the results of RT-qPCR

revealed that IFI30 was significantly higher expressed in tumorous

cell lines than that in GSL-1 (Figure 7A). This was further verified by

the results of Western Blot at the protein level (Figure 7B). Overall,
B

C

D E F

A

FIGURE 5

LI-based enrichment analysis. (A-C) Presentation of the top 10 differential pathways from GO (A), KEGG (B), and Reactome (C) enrichment analysis
via the traditional method. (D-F) Results of GSEA analysis according to the GO (D), KEGG (E), and Reactome (F) databases, respectively.
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the trend was consistent for both validations, where BGC-823

exhibited the highest IFI30 expression levels, followed by SGC-

7901, HGC-27, and MGC-803. As a supplementary, such

conclusions were also supported by our immunofluorescence assays

(Figure 7C). The immunohistochemical staining of the 3 pairs of real

patients’ samples together with their paracancerous tissues likewise

supported the aforementioned conclusions (Figure 7D). Further to

our study, the siRNA for IFI30 was designed and PCR assays verified

that the current siRNA was able to attenuate the expression of IFI30

significantly (Figure 8A). When the expression of IFI30 in GC cells
Frontiers in Immunology 09
was attenuated, a significant decrease in migration and invasive

ability was observed, suggesting that the genes involved in the

model construction are a major risk factor for gastric cancer,

regardless of the model itself (Figures 8B-H).
Discussion

What is expected to change the plight of gastric cancer

treatment is that early diagnosis of gastric cancer gives patients a
A

B

D

E

C

FIGURE 6

TIME characteristics, predictive immunotherapy efficacy, and chemosensitivity in high- and low-LI groups. (A) ESTIMATEScore, ImmuneScore,
StromalScore, and tumor purity of the high- and low-LI groups. (B) Stacked graph demonstrating the abundance and distribution of the infiltrating
immune cell in each sample. (C) Heatmap demonstrating the statistically significant infiltrating immune cells in high- and low-LI groups. (D-E) Box
plots demonstrating the results of TIDE prediction of high- and low-LI groups (D) and the comparisons of chemosensitivity for each drug (E). Ns,
p≥0.05; **, p<0.01; ***, p < 0.001.
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90% chance of survival, while advanced gastric cancer has less than

a third chance of survival due to significant heterogeneity (22).

Therefore, the early diagnosis of gastric cancer is still the field of

efforts of many scholars, even more critical (22, 23). On the other

hand, targeting lysosomes showed immense potential in the

treatment of diseases ranging from malignancies, although

current therapeutic tools are limited by the precise targeting of

lysosomes and subsequent modulation measures (9). Indeed, both

the process of autophagy itself and the autophagic lysosomal

pathway has been the subject of a flurry of research in human

cancers due to their potential as a treasure trove for deciphering
Frontiers in Immunology 10
diverse diseases (24). Autophagy represents a regulatory

mechanism to sustain cellular dynamic homeostasis by degrading

cellular components eliminated by a series of stresses like

senescence or damaging (25, 26). The appropriate conduct of the

autophagic system relies on the degradative capacity of lysosomes, a

process that carries out in response to tolerance to cellular stress

induced by starvation or proteotoxic aggregates (25, 27). When cells

themselves undergo growth imbalance, or straightforwardly, cancer,

the autophagy-lysosome pathway adapts in response to abnormal

stress signals in the tumor microenvironment, thereby differentially

affecting tumor progression, a process that involves key hallmarks
B

C

D

A

FIGURE 7

Validation of IFI30 as a potential diagnostic biomarker in GC. (A) Results of RT-qPCR of IFI30 in GES-1, BGC-823, SGC-7901, HGC-27, and MGC-
803 cell lines, respectively. (B) Results of Western blot in GC cell lines. (C) IFS slides in 100X and 400X magnification demonstrated the expressional
abundance of IFI30 in GC cell lines. (D) Immunohistochemical staining of the 3 pairs of real patients’ samples together with their para-cancerous
tissues(20X). *p< 0.05; **, p<0.01; ***, p < 0.001.
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such as immune infiltration and tumor metabolism and could either

suppress tumors or contribute to cancer (26).

For gastric cancer, Tan et al. previously used analysis of

genome-wide association study data to confirm that genetic

variation in genes across the autophagic lysosomal pathway may

be significantly associated with susceptibility to gastric cancer (24).

More than data analytics, Kuang et al. made their attempts to

develop a new lysosomal-targeted therapeutic agent for gastric

cancer, significantly highlighting such possibilities (28).

Meanwhile, machine learning methods are nowadays mainly

applied to the processing of medical images of gastric cancer,

including endoscopy, radiological imaging, and pathology

techniques, from which radiomics and pathomics have been

derived (29, 30). However, the exploitation of artificial

intelligence for genomic information to develop a more complete

study on which to establish a diagnostic prediction model for gastric
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cancer would be complementary to macroscopic features and would

provide new personalized medicine opportunity for patients with

gastric cancer.

Based on the assumptions described above, our study confirmed

such a possibility. To begin with, we selected eight lysosomal-related

genes for predictive model construction based on the inclusion of

RMSE as a reference standard and RF algorithm for ranking,

namely ADRB2, KCNE2, MYO7A, IFI30, LAMP3, TPP1, HPS4,

and NEU4. The ADRB2 signaling pathway has been recognized in

previous studies as being able to serve in gastric carcinogenesis and

metastasis as a b- adrenergic stress activation and might involve

autophagy in this process, along with being shown to act as a

prognostically negative biomarker for gastric cancer (31–33).

Multiple histological evidence proves that KCNE2 is expressed at

lower levels in gastric cancer than in normal tissues, and its

deficiency is likely to be a potential risk factor for gastric cancer
B C D

E F

G H

A

FIGURE 8

(A) siRNA-IFI30 efficiently depresses the expression of IFI30. (B) Relative cell migration number of migration assay. (C) Relative cell invasion numbers
in the invasion assay. (D) Relative scratch healing area of BGC-823 and SGC-7901. (E) Migration assay after reduction of IFI30 expression in BGC-
823 and SGC-7901. (F) Invasion assay after reducing the expression of IFI30 in BGC-823 and SGC-7901. (G, H) Wound healing assay after reducing
the expression of IFI30 in BGC-823 and SGC-7901. *p< 0.05; **, p<0.01; ***, p < 0.001.
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(34, 35). Unlike the former two, the biological function of LAMP3

(CD208) is mainly through its influence on the tumor

microenvironment of gastric cancer. In an earlier study, Ishigami

et al. noted that LAMP3 could be considered a marker of mature

dendritic cells owing to its specific expression upon activation of

human dendritic cells, speculating that the degree of infiltration of

CD208-positive cells was negatively correlated with surgical

outcome in patients undergoing radical gastric cancer surgery

(36). This was detailed by Sun et al. as the involvement of

LAMP3+ DC in mediating T-cell activity and with the ability to

form aggregation sites for cell-to-cell interactions in the gastric

cancer tumor microenvironment, from which they draw, and

emphasized the possibility of targeting LAMP3 for GC (36, 37).

Besides, TPP1 was also demonstrated to act as a biomarker for

gastric cancer during its progression (38). IFI30, MYO7A, HPS4,

and NEU4 have not been mentioned in studies on the background

of gastric cancer, and we speculate that these four genes possess

sufficient potential to influence the progression of gastric cancer,

and further exploration could potentially facilitate the betterment of

the current situation in gastric cancer research and clinical

application. In fact, our experimental validation of IFI30, the

most contributing gene, did confirm such claims to a certain

extent. Previous studies similarly demonstrated the ability of

IFI30 either to affect the redox of cells, leading to the regulation

of autophagy, cell activation and proliferation, or to modulate the

T-cell tolerance and thus bridge the potentially arising

autoimmunity (39). In recent years, multitudes of scholars

extended this to the direction of tumor immunity, thus revealing

the grea t potent ia l o f IFI30 in the tumor immune

microenvironment. By way of example, in melanoma, IFI30 could

boost the processing and presentation of tumor antigens, TRP1 and

TRP2, resulting in enhanced anti-tumor T-cell responses and

ultimately higher patient survival (40–42). Same potential was

observed in DLBC, BRCA, COAD, GBM and elsewhere (42, 43).

Furthermore, we compared current mainstream machine

learning algorithms based on the eight genes screened in an

attempt to discover the optimal predictive model. Taking

accuracy, precision, recall, and F1 measurements into account, a

preliminary determination of our study was carried out by means of

applying the extra tree and random forest algorithms, incorporating

the ROC-AUC value as a consideration, we concluded that the

Extra Tree model, constructed based on lysosomal genes, would be

the optimal option for diagnosis, which was further supplementally

evidenced by the DCA curves and learning curves. Thereafter, we

hypothesized that, together with gastroscopy, which is currently the

main screening tool for early gastric cancer, the Extra Tree model

would be applied to provide complementary screening and, in line

with the predictions of the model, a comprehensive assessment of

risk factors and actively control them to reduce or delay the

occurrence and progression of the disease, or to promptly initiate

secondary and tertiary prevention to counteract the deterioration of

the disease (44–46).

To further confirm the feasibility of these observations, samples

were scored and grouped using ssGSEA, with the three dominant
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enrichment analyses conducted on the different groups focusing

primarily on the two key terms, secretion, and keratinization. We

speculated on this from a pathological and morphological point of

view, given that the cancerous tissue itself allows for deregulated

growth beyond the normal structure in terms of hallmark, and that,

in relation to the structure of the gastro-glandular body, it is

conceivable that gastric glandular cells with a cancerous tendency

would exhibit abnormalities in both gastric acid secretion and

keratinization of their cells, which is somewhat consistent with

our existing study (47). Additionally, we tried to pursue

immunotherapy as a direction to get a response (48). Firstly, we

assessed the abundance of immune cells in two subgroups based on

LI and revealed that immune infiltrating cells, which perform an

integral role in the tumor microenvironment, differed significantly

between the two subgroups, which seems to confirm our suspicions,

as current studies proved that differences in the immune

microenvironment could be an essential contributor to drug

resistance or sensitivity to the immunotherapy (49–51). We then

used the TIDE algorithm to predict the effect of immunotherapy

based on our current model, with the results implying that a higher

LI group corresponds to a lower TIDE score, thus giving an

indication that patients in this subgroup might potentially enjoy

an advantage in receiving immunotherapy, which could largely

optimize current gastric cancer treatment regimens. Not only that,

the available data prove that the clinical efficacy of single therapies is

not sufficiently superior to the combination therapies currently

being explored, mainly combined chemotherapy, targeted therapy

and radiotherapy, for which escalating therapeutic combinations

would offer a personalized therapeutic weapon for gastric cancer

patients (50, 52). Prediction of drug targets based on transcriptomic

data is now a common tool (53). Taking this as a starting point, we

screened possible drugs targeting the LI gene. 8 drugs such as

cisplatin, eletriptanil, FMK, GSK1070916, GSK429286A, HG-5-

113-01, T0901317 and talazopanib caught our attention and the

results implied that patients in the lower LI group were more

sensitive to chemotherapy with the above drugs, which might

possibly contribute some help to individualized treatment of GC

going forward.

Overall, our study essentially focused on the potential

application of lysosomal-related genes in GC itself by integrating

around 20 mainstream machine learning algorithms to construct an

AI-based diagnostic predictor, whose development of the lysosomal

index (LI) enables excellent immune assessment of patients as well

as drug prediction, which would render a unique benefit to

clinically intelligent adjunctive therapeutic approaches for GC

patients, thereby facilitating the application of personalized

management regimens.
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